Erosión y meteorización

La geología es el estudio de la Tierra, de los materiales de los que está hecha, de su estructura y de los procesos que actúan sobre ella. Estudia además los materiales, la estructura de los materiales y cómo han cambiado a lo largo del tiempo.

¿Qué son los minerales?

Un mineral es una sustancia sólida, inorgánica, formada por una estructura cristalina y de composición específica. Son inorgánicos porque en su composición el carbono no es el elemento principal.

Los minerales pueden ser amorfos o cristalinos, son amorfos si no se hallan ordenados de manera regular, y son cristalinos si sus moléculas están estructuradas de manera específica. También se pueden clasificar de acuerdo a su composición química. En base a esto se distinguen en:

  • Elementos nativos.
  • Sulfuros
  • Halogenuros
  • Óxidos e hidróxidos
  • Boratos, nitratos y carbonatos.
  • Sulfatos, cromatos, volframatos y molibdatos.
  • Fosfatos, arseniatos y vanadatos.
Los minerales se encuentran en las minas o yacimientos y se extraen en una actividad denominada minería.

¿Qué son las rocas?

Las rocas son estructuras sólidas muy abundantes en la Tierra, están formadas por uno o más minerales, dentro de los cuales puede haber minerales esenciales, que son los más abundantes y minerales accesorios, que son los que se encuentran en menor cantidad.

Las rocas se pueden clasificar según varios criterios, si están formadas por un único mineral son monominerálicas, si están formadas por minerales diversos son rocas compuestas. De acuerdo a su formación pueden ser: ígneas si se formaron por solidificación del magma, metamórficas si están formadas de otras rocas ya existentes en la corteza terrestre, y sedimentarias si se forman a base de sedimentos procedentes de la erosión.

Rocas sedimentarias.
Rocas sedimentarias.

¿Qué es la erosión?

Proviene de la palabra en latín erosio y se define como el desgaste o pérdida de la superficie del suelo a cusa de factores externos como la lluvia o el viento. Desde el punto de vista geológico, la erosión forma parte del proceso de morfogénesis, mediante el cual se han moldeado las estructuras terrestres.

La erosión es mucho más fuerte en aquellos sitos que están desprovistos de vegetación.
La erosión es mucho más fuerte en aquellos sitos que están desprovistos de vegetación.

¿Qué elementos participan en la erosión del suelo?

Además del suelo, intervienen agentes activos como el agua y el viento, así como agentes reguladores que minimizan la erosión, por ejemplo, la vegetación.

Agentes activos

  • Viento: actúa de forma que pule y arrastra las partículas del suelo, esto ocurre principalmente cuando la superficie está desprovista de la capa protectora de vegetal, de manera que el viento puede tallar toda la superficie del suelo libremente.
  • Agua: al igual que en el caso del viento, la fuerza de la lluvia erosiona los suelos que están desprovistos de vegetación. La lluvia lava la superficie y provoca la pérdida de la materia orgánica (humus) lo que a largo plazo puede provocar la infertilidad del suelo y la formación de desiertos.

Agentes reguladores

  • Vegetación: es la mejor defensa para evitar la erosión del suelo porque su follaje evita que las gotas caigan directamente y lo dañen, además mantiene estable el suelo y retiene los nutrientes.
Las plantas absorben el agua y por lo tanto evitan que los minerales y nutrientes del suelo sean lavados.
Las plantas absorben el agua y por lo tanto evitan que los minerales y nutrientes del suelo sean lavados.

¿Cuáles son los tipos de erosión?

  • Erosión hídrica: es la que se produce a causa de la lluvia. De ella deriva la erosión marina, que es la que se produce por la acción del agua de mar; la erosión fluvial, que es aquella que se produce por el agua de río; y la erosión glaciar, que es la que se produce por acción del movimiento de las masas de hielo.
Erosión marina
Erosión marina
Erosión fluvial
  • Erosión eólica: se produce por acción del viento o por las partículas que ella trae.
  • Erosión gravitacional: es aquella que se produce por acción de la gravedad, por ejemplo, cuando caen rocas de las laderas de las montañas.

Meteorización

Se conoce como meteorización a la descomposición de rocas de la superficie terrestre a causa de agentes atmosféricos o biológicos. La meteorización puede clasificarse de acuerdo al lugar en el que ocurre, por ejemplo, se denomina meteorización edafoquímica cuando la reacción ocurre en la superficie del suelo, y meteorización geoquímica si se produce en zonas profundas del suelo, como el horizonte C.

Proceso de meteorización provocado por diversos factores.
Proceso de meteorización provocado por diversos factores.

¿Cuáles son los tipos de meteorización?

  • Meteorización física: es aquella que se produce por cambios de temperatura, por el viento o por cualquier agente climático. En la meteorización física se produce la desintegración en partes de la roca, lo que facilita la erosión.
Ruptura de una roca por meteorización física.
Ruptura de una roca por meteorización física.
  • Meteorización química: es aquella que se produce por acción de agentes químicos, como el dióxido de carbono, el oxígeno y el vapor de agua. Este tipo de meteorización es más eficiente debido a que las partículas pierden la adherencia que tienen unas con otras y se desintegran y se disuelven.
  • Meteorización biológica: es aquella en la que se produce la desintegración de la roca por la acción de organismos biológicos. Por ejemplo, cuando las raíces de los árboles perforan el suelo.
¿Sabías qué...?
Los acantilados son accidentes geográficos que se forman cerca de las cotas. Por lo general, las rocas que la conforman son resistentes a la erosión, como por ejemplo, la limonita. 

Gran Cañón

El Gran Cañón se formó hace millones de años a causa de la erosión fluvial provocada por el río Colorado, el cual socavó el terreno hasta dejar las formaciones geológicas que se ven en la actualidad.

Impulsos nerviosos

De los sistemas de nuestro cuerpo, uno de los más importantes es el sistema nervioso, porque es el encargado de recibir la información, a través de los impulsos nerviosos la procesa y emite las respuestas necesarias para que nuestro cuerpo actúe de la manera adecuada.

¿Qué es el sistema nervioso?

El sistema nervioso es una compleja red de nervios y células que transportan mensajes desde el cerebro y la médula espinal hacia las distintas partes del cuerpo. El sistema nervioso incluye tanto al sistema nervioso central como al sistema nervioso periférico, los que a su vez están conformados por el cerebro, la médula espinal, y los nervios somáticos y autónomos.

El sistema nervioso está formado por una red inmensa de nervios.

¿Qué son las neuronas?

Las unidades básicas del sistema nervioso son las neuronas. Estas células son las encargadas de recibir y transmitir los impulsos nerviosos electroquímicos. De manera general, una neurona típica tiene un cuerpo celular y brazos largos que conducen impulsos nerviosos de una parte del cuerpo a otra.

Neuronas, unidades básicas del sistema nervioso.

La neurona está formada por 3 partes básicas:

  • Cuerpo celular
  • Dendritas
  • Axón
Partes de una neurona
Partes de una neurona

El cuerpo celular es como el de cualquier otra célula, contiene el núcleo, el citoplasma y los organelos. Tiene varias extensiones muy ramificadas y gruesas que lucen como cables, éstas se denominan dendritas. Las dendritas pueden variar en número y grosor de acuerdo al tipo de célula, existen algunas con una sola dendrita, mientras que otras, como las neuronas motoras, tienen múltiples dendritas gruesas. Estas estructuras tienen como función principal transmitir el impulso nervioso hasta el cuerpo celular.

Finalmente, el axón es una estructura larga y delgada que se encargar de llevar el impulso nervioso lejos del cuerpo celular de otra neurona o tejido. Solo hay un axón por neurona.

Las neuronas están recubiertas por una sustancia denominada mielina, cuya función principal es aumentar la velocidad del impulso nervioso.

¿Qué son los impulsos nerviosos?

Se denomina impulso nervioso a la señal eléctrica que viaja a lo largo del axón de una célula nerviosa hacia otra. Los impulsos nerviosos se originan en el sistema nervioso central o en los sentidos, estos últimos transforman los estímulos en señales que puedan ser pasadas a través de los nervios y de las que se pueda finalmente obtener una respuesta.

Los impulsos nerviosos se producen porque hay una diferencia de potencial eléctrico entre el interior del axón y sus alrededores; el nervio se activa, se genera un cambio repentino en el voltaje a través de la pared del axón, lo que causa un movimiento de iones dentro y fuera de la neurona; como consecuencia se desencadena una ola de actividad eléctrica que pasa desde el cuerpo celular a lo largo de la longitud del axón hasta la sinapsis.

La sinapsis es el pequeño espacio que existe entre una célula nerviosa y otra, y es donde se lleva a cabo la transmisión del impulso nervioso como tal.

Los impulsos nerviosos deben tener cierta intensidad, de ser muy débiles no excitarán a la célula receptora y por lo tanto no se producirá el impulso.

Los impulsos nerviosos deben pasar por todas las partes de la neurona y transmitir el impulso para así poder recuperarse y producir uno nuevo. Este tiempo de recuperación es usualmente muy breve y dura aproximadamente pocas décimas de segundo.

¿Cuál es la velocidad de un impulso nervioso?

La velocidad con la que se transmite un impulso nervioso varía enormemente de acuerdo a los diferentes tipos de neuronas. El viaje más rápido puede ser de 250 mph, más rápido que un automóvil de Fórmula 1. Sin embargo, no todos necesitan esa rapidez, las células que lo requieren deben estar aisladas, tener un axón grueso y estar recubiertas por vaina de mielina.

Debido a ciertos estímulos peligrosos, el cerebro debe responder rápidamente para que el cuerpo no sufra ningún daño.
Debido a ciertos estímulos peligrosos, el cerebro debe responder rápidamente para que el cuerpo no sufra ningún daño.

Por ejemplo, una situación donde el impulso nervioso debe viajar rápidamente es cuando tocamos algún objeto caliente, el cerebro necesita recibir de manera urgente el mensaje para enviar una respuesta y el la persona retire la mano rápidamente.

¿Cómo se propaga un impulso nervioso?

  • Primeramente la membrana está polarizada, en el espacio extracelular abundan iones con carga positiva, mientras que en el interior tienen carga negativa. Aquí la célula está en potencial de reposo gracias a la bomba sodio – potasio.
  • Cuando se produce el estímulo, aumenta la entrada de los iones al interior de la célula, lo que invierte la polaridad, ahora la neurona estará cargada positivamente. A esto se le conoce como potencial de acción.
  • Esta inversión de la polarización o despolarización produce que los iones se redistribuyan. Los canales de sodio se abren, se despolarizan poco a poca las zonas a lo largo de la célula y el impulso avanza, como si fueran fichas de dominó. De esta manera, la señal recorre todo el axón.
  • La señal llega hacía la zona de sinapsis para que el impulso sea pasado a la siguiente neurona o célula.
  • Finalmente, se restablecen las concentraciones de iones características de las células en reposo.
¿Sabías qué...?
Nuestro cuerpo funciona con impulsos eléctricos transmitidos de una neurona a otra, en un día normal, el cerebro puede generar una cantidad tan grande de electricidad que podría encender una bombilla de 25 watts.

Millones de neuronas

En nuestro cuerpo existen millones de neuronas y diariamente se van creando muchas más, aproximadamente 1.400 diarias, sin embargo, su velocidad de destrucción es mucho más rápida, alrededor de unas 20.000 cada día, lo que en la actualidad se cree que puede estar relacionado con la depresión.

Corteza terrestre

El planeta se compone de tres capas principales: la corteza, el manto y el núcleo. El núcleo representa sólo el 15 % del volumen de la Tierra, mientras que el manto ocupa el 84 %y la corteza compone el 1 % restante.

¿Qué es la corteza terrestre?

La corteza de la Tierra es una capa extremadamente fina de roca que forma la más externa cubierta sólida de nuestro planeta. En términos comparativos, su espesor es como el de la piel de una manzana. Supone menos de la mitad del 1 % de la masa total del planeta, pero desempeña un papel vital en la mayoría de los ciclos naturales de la Tierra.

La corteza puede tener un grosor de más de 80 kilómetros en algunos lugares y menos de un kilómetro de grosor en otros.
La corteza puede tener un grosor de más de 80 kilómetros en algunos lugares y menos de un kilómetro de grosor en otros.

Aquí en tierra firme, en las plataformas continentales, la corteza tiene unos 30 kilómetros de espesor, mientras que en el medio del océano es de aproximadamente 5 kilómetros.

¿Cómo sabemos que la Tierra tiene una corteza?

No se supo que la Tierra tenía una corteza hasta principios del siglo XX. Hasta entonces, todo lo que sabíamos era que nuestro planeta se tambaleaba en relación con el cielo como si tuviera un núcleo grande y denso. Luego vino la sismología, que trajo un nuevo tipo de evidencia desde abajo, la velocidad sísmica.

La velocidad sísmica mide la velocidad en la que las ondas sísmicas se propagan a través de los diferentes materiales por debajo de la superficie. Con algunas excepciones importantes, la velocidad sísmica dentro de la Tierra tiende a aumentar con la profundidad.

En 1909, un documento del sismólogo Andrija Mohorovicic estableció un cambio repentino en la velocidad sísmica a unos 50 kilómetros de profundidad en la Tierra. Las ondas sísmicas rebotan de él (reflejan) y doblan (refractan) mientras que lo atraviesan, de la misma manera que la luz se comporta en la discontinuidad entre el agua y el aire.

Esa discontinuidad, llamada discontinuidad de Mohorovicic o “Moho”, es el límite aceptado entre la corteza y el manto.

Composición de la corteza

La corteza se compone de muchos tipos diferentes de rocas que caen dentro de tres categorías principales: ígneas (más del 90 % en volumen), metamórficas y sedimentarias. Sin embargo, la mayoría de estas rocas se originaron como granito o basalto. El manto debajo está hecho de peridotita. Bridgmanita, el mineral más común en la Tierra, se encuentra en el manto profundo.

La capa externa de la Tierra está formada por dos grandes categorías de rocas: basálticas y graníticas.
La capa externa de la Tierra está formada por dos grandes categorías de rocas: basálticas y graníticas.

Tipos de corteza

En general, hay dos tipos de corteza: corteza oceánica (basáltica) y corteza continental (granítica).

Corteza oceánica

La corteza oceánica cubre aproximadamente el 60 % de la superficie de la Tierra. La corteza oceánica es delgada y joven, no tiene más de 20 km de espesor ni más de 180 millones de años. Todo lo anterior ha sido arrastrado debajo de los continentes por subducción. La corteza oceánica nace en las crestas donde las placas del océano se separan. Cuando esto sucede, la presión sobre el manto subyacente se libera y la peridotita comienza a derretirse. La fracción que se funde se convierte en lava basáltica, que se eleva y entra en erupción mientras que el resto de la peridotita se agota.

Las rocas basálticas contienen más silicio y aluminio que la peridotita dejada atrás, que tiene más hierro y magnesio.

Las rocas basálticas son también menos densas.

La corteza oceánica es una fracción muy pequeña de la Tierra, pero su ciclo de vida sirve para separar el contenido del manto superior en un residuo pesado y un conjunto más ligero de rocas basálticas.

Corteza continental

La corteza continental es gruesa y más antigua, en promedio tiene unos 50 km de espesor y alrededor de 2 mil millones de años. Cubre alrededor del 40 % del planeta.

Los continentes crecen lentamente a lo largo del tiempo geológico a medida que la corteza oceánica y los sedimentos del fondo marino son arrastrados debajo de ellos por subducción. Los basaltos descendentes tienen el agua y los elementos incompatibles que estos expulsan, este material se eleva para provocar más fusión en la llamada fábrica de subducción.

La corteza continental está hecha de rocas graníticas, que tienen aún más silicio y aluminio que la corteza oceánica basáltica. También tienen más oxígeno gracias a la atmósfera. Las rocas graníticas son aún menos densas que el basalto.

La corteza continental representa menos del 0,4 % de la Tierra, pero representa el producto de un doble proceso de refinación, primero en las crestas de los océanos y la segunda en las zonas de subducción.

Los elementos incompatibles que terminan en los continentes son importantes porque incluyen los principales elementos radiactivos uranio, torio y potasio. Estos crean calor, lo que hace que la corteza continental actúe como una manta eléctrica en la parte superior del manto. El calor también suaviza lugares gruesos en la corteza, como la meseta tibetana y los hace extenderse lateralmente.

Los continentes son rasgos verdaderamente permanentes y autosustentables de la superficie de la Tierra.
¿Sabías qué...?
La temperatura de la corteza es diferente en cada parte, comienzan en unos 200 °C y pueden elevarse hasta 400 ° C.

Corteza y placas

La corteza y las placas tectónicas no son lo mismo. Las placas son más gruesas que la corteza y consisten en la combinación de la corteza más el manto que está justo debajo de ella. Esta dura y frágil combinación de dos capas se llama litósfera. Las placas litosféricas se encuentran sobre una capa de roca de manto más blanda y más plástica llamada astenósfera que permite que las placas se muevan lentamente sobre ella como una balsa en barro grueso.

Trucos para aprender las tablas de multiplicar

La multiplicación es una de las operaciones básicas de matemática y su conocimiento es esencial durante la resolución de problemas. Para realizar multiplicaciones sencillas y complejas es necesario conocer las tablas de multiplicar, las cuales también se emplean en otras operaciones como la división.

Una gran herramienta

La multiplicación es la operación matemática que consiste en determinar el resultado de un número que se haya sumado tantas veces como indique otro. La palabra multiplicación proviene del latín de la palabra multus que significa “mucho” y plico que quiere decir “doblar”. En este sentido, multiplicar es doblar o repetir un número muchas veces.

 En símbolo “x” fue utilizado por primera vez como signo de multiplicación en 1631 por el matemático inglés William Oughtred.
En símbolo “x” fue utilizado por primera vez como signo de multiplicación en 1631 por el matemático inglés William Oughtred.

La expresión 4 x 2 indica que el 4 se debe sumar a sí mismo 2 veces, es decir, que el resultado de esa operación sería 8 porque 4 + 4 = 8. Ese es el principio de esta operación matemática, sin embargo; existen multiplicaciones un poco más complejas como 9 x 8, 7 x 9, o 6 x 8, que para poder resolverlas hay que realizar sumas muy largas, lo que resultaría tedioso y poco práctico durante los cálculos.

Para hacer cálculos de multiplicaciones se idearon las tablas de multiplicar, que no son más que un atajo para realizar sumas largas de forma rápida. La forma más común de representar las tablas de multiplicación es, como su nombre lo indica, a través de tablas. Normalmente se muestran las tablas del 1 al 10 y cada una de ellas indica las multiplicaciones del número que representan del 1 al 10 o del 0 al 10.

Aprender las tablas, no memorizarlas
Aprender las tablas, no memorizarlas

Muchas veces los estudiantes se esmeran en memorizar las tablas y no en aprenderlas, por lo cual al poco tiempo las olvidan. Esto se debe a que no entiende el significado de la multiplicación, de sus propiedades y de sus elementos principales, memorizar las tablas sin ningún aprendizaje significativo es similar a leer una receta de cocina que al poco tiempo se olvida. Los maestros y padres deben trabajar por indagar más sobre la multiplicación, de esta forma sin necesidad de memorizaciones tediosas sin sentido, el estudiante las recordará porque sabe para qué sirven y cómo funcionan.

La matemática no tiene que ser una tortura. Padres y maestros deben trabajar porque el aprendizaje de los niños sea siempre significativo.
La matemática no tiene que ser una tortura. Padres y maestros deben trabajar porque el aprendizaje de los niños sea siempre significativo.

Elementos de la multiplicación

En una multiplicación se pueden observar los siguientes elementos:

Factores: son todos aquellos números que se multiplican. Dentro de los factores se encuentra un multiplicando que, como su nombre lo indica, es el número que se multiplica y el multiplicador que es el número que indica el número de veces que se suma el multiplicando por sí mismo.

Producto: es el resultado de la multiplicación de los factores.

Signo: es el símbolo que representa a la operación de la multiplicación, comúnmente se representa con la letra equis (x) pero en algunos casos puede ser expresado con un punto.

En el ejemplo anterior 4 x 2 = 8, los factores son 4 y 2 de los cuales el multiplicando es el 4 y el multiplicador es el 2. Por su parte, el producto en dicha multiplicación es 8.

 Los factores también son denominados coeficientes.

Propiedades de la multiplicación

La multiplicación, al igual que las demás operaciones matemáticas básicas, tiene algunas propiedades que cumple. Estas propiedades permiten simplificar la resolución de problemas y también ayudan a entender cómo funciona esta operación.

Propiedad conmutativa

Esta propiedad establece que al multiplicar varios números, no importa el orden de los factores, el resultado siempre será el mismo.

4 x 2 = 8
2 x 4 = 8

Propiedad asociativa

Cuando se multiplican tres o más factores, pueden multiplicarse los dos primeros y el resultado multiplicarlo por el tercero, o multiplicar los dos últimos y el resultado multiplicarlo por el primero, en todo caso, sin importar cómo se agrupen los factores el resultado siempre será el mismo.

2 x 3 x 1 = (2 x 3) x 1 = 6 x 1 = 6
2 x 3 x 1 = 2 x (3 x 1) = 2 x 3 = 6

Propiedad del elemento neutro

El producto de cualquier número multiplicado por 1 siempre será igual al mismo número.

Ejemplo:

7 x 1 = 7
9 x 1 = 9
2 x 1 = 2

Propiedad distributiva

Al multiplicar un número por una suma o resta se puede resolver primero la suma o resta y el resultado multiplicarlo por el número o se puede multiplicar el número por cada uno de los elementos de la suma o resta y luego sumar o restar según sea el caso. En ambos casos, el resultado siempre es el mismo.

3 x (2 + 4) = 3 x 6 = 18
3 x (2 + 4) = (3 x 2) + (3 x 4) = 6 + 12 = 18

2 x (7 -2) = 2 x 5 = 10

2 x (7 -2) = (2 x 7) – (2 x 2) = 14 – 4 = 10

Las propiedades de la multiplicación son muy útiles para resolver problemas.

Algunos trucos

Después de reconocer los elementos esenciales de la multiplicación y sus propiedades, existen algunos trucos que permiten aprender las tablas con mayor facilidad y se presentan a continuación:

Tabla del 0: aunque no es común ver esta tabla, es importante saber que todos los números multiplicados por 0 dan como resultado el número 0.

Tabla del 1: como se mencionó con anterioridad en la propiedad del elemento neutro, todo número multiplicado por 1 da como resultado al mismo número.

Tabla del 2: en esta tabla el resultado de un número multiplicado por 2 es igual al doble del número.

Tabla del 5: los números de esta tabla terminan en 0 o en 5.

Tabla del 9: esta tabla presenta cierta regularidad en los productos mostrados. La siguiente imagen permite observar cómo las primeras cifras de los productos siguen una secuencia ascendente mientras que las demás cifras siguen una secuencia descendente.

Truco de la tabla del 9.
Truco de la tabla del 9.

Tabla del 10: en este caso solamente es necesario agregar un 0 al lado del multiplicando.

¿Sabías qué...?
Mientras aprendes las tablas es normal que no recuerdes el resultado de alguna multiplicación, en estos casos puedes recurrir mentalmente a la propiedad conmutativa, es decir, invertir la posición de los factores para saber el resultado.

Enfermedades del sistema digestivo

Las enfermedades digestivas son todas aquellas que afectan cualquier parte del sistema digestivo, pueden ir desde afecciones simples, a enfermedades crónicas y graves como la colitis ulcerosa.

Gastritis

Se conoce como gastritis a la inflamación, irritación o erosión de las paredes del estómago. Estas lesiones provocan un daño en la barrera de moco que protege la pared del estómago y por lo tanto los jugos gástricos dañan e inflaman ese revestimiento.

La gastritis puede ser de dos tipos, aguda si ocurre repentinamente y en un periodo corto de tiempo, o crónica si ocurre de manera gradual.
La gastritis puede ser de dos tipos, aguda si ocurre repentinamente y en un periodo corto de tiempo, o crónica si ocurre de manera gradual.

Causas de la gastritis

La gastritis puede tener diversas causas, algunas pueden ser por el consumo excesivo de alcohol, por estrés, por vómitos crónicos, por usos excesivo de medicamente y por uso excesivo de fármacos antiinflamatorios. Sin embargo, las causas principales se pueden englobar dos:

  • Infección por Helicobacter pylori, bacteria que infecta el revestimiento de la mucosa del estómago. Si no se trata puede producir ulceras e incluso cáncer de estómago.

Helicobacter pylori

Aunque la infección por Helicobacter pylori está entre las infecciones humanas más comunes en todo el mundo, sólo algunas de esas infecciones desarrollan gastritis u otros trastornos gastrointestinales. Los médicos creen que la vulnerabilidad a la bacteria podría ser heredada o podría ser consecuencia del estilo de vida del paciente.

  • Reflujo biliar, es decir el reflujo de la bilis en el estómago desde el tracto biliar.

Síntomas

Los síntomas de la gastritis pueden ser diferentes entre cada individuo y en muchas personas, incluso no presentar síntomas. Dentro de las más comunes se destacan:

  • Malestar estomacal recurrente.
  • Dolor abdominal.
  • Distención abdominal.
  • Indigestión.
  • Sensación de ardor en el estómago.
  • Vómitos, en algunos casos, con sangre.
  • Pérdida de apetito.
  • Heces oscuras.

Síntomas de la gastritis

Recomendaciones y tratamiento

  • Uso de antiácidos.
  • Evitar los alimentos picantes y calientes.
  • Evitar el consumo de alimentos en gran cantidad porque eso requiere una mayor producción de jugos gástricos.
  • Si es causa por Helicobacter pylori el médico prescribirá una serie de antibióticos.

Enfermedad celiaca

Es un trastorno autoinmune que se desencadena por el consumo de gluten, es decir, la enfermedad está relacionada con una especie de alergia al gluten. El gluten es una proteína que se encuentra en muchos alimentos, como el trigo, el centeno y los granos.

A base del gluten se hacen alimentos como la pasta o el pan.
A base del gluten se hacen alimentos como la pasta o el pan.

Cuando una persona que padece de la enfermedad celiaca consume algún alimento con gluten, su cuerpo reacciona de manera excesiva a la proteína y daña las vellosidades (proyecciones muy pequeñas que se encuentran en la pared del intestino delgado).

Cuando las vellosidades se lesionan, la actividad del intestino delgado reduce su eficiencia y la absorción de nutrientes disminuye. Si esta enfermedad no se trata de manera adecuada, puede provocar desnutrición, abortos espontáneos, infertilidad, enfermedades neurológicas e incluso algunos tipos de cáncer.

Causas

La causa de la enfermedad celiaca hasta la fecha es desconocida, algunos estudios indican que los genes, la alimentación infantil, las infecciones gastrointestinales o la infección por bacterias pueden contribuir con su aparición, sin embargo, la razón precisa aún no se conoce.

La enfermedad celiaca también puede activarse luego de alguna cirugía, de un parto, de una infección viral e incluso el estrés.

La enfermedad celiaca tambi&eacute;n puede activarse luego de alguna cirug&iacute;a, de un parto, de una infecci&oacute;n viral e incluso el estr&eacute;s. </em></p> <p><u>S&iacute;ntomas </u></p>
La enfermedad celiaca también puede activarse luego de alguna cirugía, de un parto, de una infección viral e incluso el estrés.

Síntomas

Los síntomas de las personas que sufren de la enfermedad celíaca pueden variar de paciente en paciente. Las señales más comunes son: diarrea, fatiga, pérdida de peso, hinchazón, dolor abdominal, gases, nauseas, estreñimiento y vómito.

Otros síntomas pueden no estar relacionados con el sistema digestivo, por ejemplo: anemia, pérdida de densidad ósea, erupción cutánea, daño en el esmalte dental, ulceras en la boca, dolores de cabeza, dolor en articulaciones y acidez.

Recomendaciones y tratamiento

No existen medicamentos para tratar la enfermedad celíaca, por lo que se debe seguir una dieta estricta libre de gluten. El paciente que sufre de enfermedad celíaca no puede consumir pan, pasteles, cerveza, pasta, cereales y medicamentos que contengan gluten.

Cáncer colorrectal

Es un tipo de cáncer que afecta el colón y el recto, se conoce también como cáncer de intestino o cáncer de colon. Un cáncer colorrectal puede ser benigno o maligno. Si es benigno el tumor no se propagará, mientras que si es maligno, las células dañadas pueden propagarse por muchas partes del cuerpo y dañar los tejidos.

La Organización Mundial de la Salud indica que es el segundo cáncer más común en todo el mundo, después del cáncer de pulmón.
La Organización Mundial de la Salud indica que es el segundo cáncer más común en todo el mundo, después del cáncer de pulmón.

Causas

Los expertos no están seguros de cuál es la causa exacta por la que algunas personas padecen de cáncer colorrectal mientras que otras no. Sin embargo, algunos de los factores de riesgo son:

  • La edad, las personas mayores son más propensas.
  • Alto consumo de proteína animal, grasas saturadas y alcohol.
  • Poco consumo de fibra.
  • Haber padecido de cáncer de ovario, en el caso de las mujeres.
  • Antecedentes familiares.
  • Padecer de colitis ulcerosa, enfermedad de Crohn o la enfermedad del colon irritable.

Síntomas

  • Ir al baño constantemente.
  • Diarrea o estreñimiento.
  • Sensación de que el intestino no se vacía correctamente luego de una evacuación.
  • Evacuación con sangre.
  • Dolor abdominal.
  • Distención abdominal.
  • Pérdida de peso.
  • Vómito.
  • Deficiencia de hierro.
Los síntomas son similares a los de otras enfermedades digestivas por lo que siempre es necesario visitar a un médico.
Los síntomas son similares a los de otras enfermedades digestivas por lo que siempre es necesario visitar a un médico.

Recomendaciones y tratamiento

El tratamiento del paciente dependerá de varios factores por ejemplo, el tamaño del tumor, la localización y la etapa en la que se encuentre el cáncer. Los métodos más comunes para eliminar el cáncer son: las cirugías, la radioterapia y la quimioterapia.

Cálculos biliares

Los cálculos biliares son sustancias endurecidas que se forman a partir del colesterol, se almacenan dentro de la vesícula biliar y pueden tener el tamaño de un grano de área o de una pelota de golf. En general no causan muchos problemas pero si pueden producir dolor.

Relación de la biología con otras ciencias

La biología es el estudio de la vida, que incluye el origen, la evolución, la función, la estructura y la distribución de los organismos vivos. Esta ciencia se ocupa también de la clasificación de los organismos y de la interacción de éstos dentro de un entorno.

No se puede negar la interrelación que existe entre las diferentes ramas de la ciencia. Cada una de ellas se relaciona con otras y en particular la biología, ya que esta necesita como base la inclusión de otras ciencias para el estudio de los organismos. Esto constituye la base de las ciencias interdisciplinarias.

La biología está ligada a otras ciencias de la siguiente manera:

Física

La física proporciona la base para la biología. Sin espacio, materia, energía y tiempo, que son los componentes que conforman el universo, los organismos vivientes no existirían.

La física ayuda a explicar cómo los murciélagos usan ondas de sonido para volar en la oscuridad y cómo las alas dan a los insectos la capacidad de moverse por el aire.
La física ayuda a explicar cómo los murciélagos usan ondas de sonido para volar en la oscuridad y cómo las alas dan a los insectos la capacidad de moverse por el aire.

En algunos casos, la biología ayuda a probar las leyes y las teorías físicas. El físico Richard Feynman afirma que la biología ayudó a los científicos a elaborar la ley de conservación de la energía.

La interacción entre estas dos ciencias dio origen a la biofísica, que se ocupa del estudio de los principios de la física, aplicables a los fenómenos biológicos. Por ejemplo, hay una similitud entre los principios de trabajo de la palanca en la física y las extremidades de los animales en la biología.

Química

La química y la biología no sólo están relacionadas, sino que están completamente entrelazadas, ya que todos los procesos biológicos derivan de procesos químicos. Así que la capacidad de crecimiento, reproducción, actividad funcional y cambio continuo en los seres vivos no puede ocurrir sin reacciones químicas.

Incluso los procesos aparentemente físicos, tales como el movimiento muscular, requieren de la liberación de energía química, que siguen procesos ordenados por el código de ADN de un organismo.

El ADN es en sí mismo una cadena codificada de sustancias químicas que implementa sus instrucciones mediante procesos químicos.

Es allí, por tanto, que entra la bioquímica una rama específica del estudio biológico que se centra en los soportes químicos de la vida misma. Trata del estudio de la química de los diferentes compuestos y procesos que se producen en los organismos vivos.

El estudio de los metabolismos básicos de la fotosíntesis y la respiración se basan en reacciones químicas.
El estudio de los metabolismos básicos de la fotosíntesis y la respiración se basan en reacciones químicas.

Estrecha relación con la Física y la Química

Inicialmente, la biología era una ciencia descriptiva que buscaba estudiar la morfología de los seres vivos y su organización sistemática en grupos y subgrupos basados en similitudes y diferencias.

El conocimiento actual en el campo de la biología se ha logrado con la ayuda de ciencias como la física y la química. Este enfoque multidisciplinario es esencial por diversos motivos:

  1. Todos los organismos vivos están formados por compuestos orgánicos e inorgánicos disueltos en agua.
  2. Los compuestos inorgánicos se presentan en forma de iones. Estos influyen en el ambiente interno de los seres vivos y, en consecuencia, en los procesos de la vida.
  3. El equilibrio ácido-base mantiene el pH específico dentro de los organismos para proporcionar el entorno más adecuado en la realización de diversas reacciones bioquímicas.
  4. La tensión superficial y la capilaridad producida por la fuerza cohesiva y adhesiva de los líquidos también ayudan en ciertos procesos de vida.
  5. La difusión y la ósmosis son responsables del movimiento de iones y moléculas dentro y fuera de las células.
  6. La transferencia de energía y la transformación de energía son dos acontecimientos importantes en todas las células vivas.

Matemática

A diferencia de la física y la química, la biología no suele ser una ciencia asociada a las matemáticas. Pero debido a que hay aspectos cuantificables de las ciencias de la vida, las matemáticas juegan un papel importante en la comprensión del mundo natural.

La biología matemática es un campo de investigación que examina las representaciones matemáticas de los sistemas biológicos.
La biología matemática es un campo de investigación que examina las representaciones matemáticas de los sistemas biológicos.

Ejemplo cuantificable

Un biólogo que estudia migraciones de mariposas entra en el campo y cuenta una población de la muestra en una región confinada y después multiplica los números de la muestra por el rango geográfico total para conseguir una estimación de la población.

A continuación, vuelve a su laboratorio y revisa los informes de otros investigadores que describen el lapso del patrón de migración y el uso de cálculos vectoriales para predecir su futuro recorrido. Finalmente, examina los datos de años anteriores sobre el número de mariposas y la ubicación para establecer un margen de error probable para su predicción.

En cada paso de este proceso, intervienen las matemáticas para medir, predecir y comprender los fenómenos naturales.

Un sub-campo de la ciencia biológica es el campo de la bioestadística, en el cual se usan análisis estadísticos para describir y explicar las ciencias de la vida, con el propósito de encontrar correlaciones o relaciones interdependientes entre variables y comparar variables entre sí.

Geografía

La geografía y la biología se relacionan en el estudio de la ocurrencia y distribución de diferentes especies de organismos en las distintas regiones geográficas del mundo, esto es lo que se conoce como biogeografía.

La biogeografía aplica el conocimiento de las características particulares de las regiones geográficas para determinar las de los organismos vivos allí encontrados.

Antropología

La antropología biológica es el estudio de la evolución de la especie humana y se ocupa especialmente de comprender las causas de la diversidad humana actual. Dentro de esta definición abarca campos tan heterogéneos como la paleontología humana, la biología evolutiva, la genética humana, la anatomía comparada y la fisiología, el comportamiento de los primates, la ecología del comportamiento humano y la biología humana.

La biología y la antropología se unen en la búsqueda de fósiles que permitan explicar el origen y evolución de la humanidad.
La biología y la antropología se unen en la búsqueda de fósiles que permitan explicar el origen y evolución de la humanidad.

Agronomía

La relación se da por medio de la agricultura biológica, la cual entiende la necesidad de equilibrio entre los tres aspectos del suelo, físico, químico y biológico para sostener la vida.

Todo proviene del suelo y vuelve al suelo, es un sistema no vivo con billones de organismos que reciclan nutrientes y sostienen la vida.

La forma en que se maneja el suelo y la vida microbiana determina la vitalidad de los alimentos de origen vegetal que consumimos.
La forma en que se maneja el suelo y la vida microbiana determina la vitalidad de los alimentos de origen vegetal que consumimos.

La pareja dispareja

Hay casos en que la física no puede explicar los sucesos biológicos y viceversa. La física y la biología no pueden explicar el origen de la vida o cómo los objetos inorgánicos pasaron a la vida orgánica. La Universidad de Cornell de Nueva York afirma que la teoría biológica de la evolución contradice la segunda ley de la termodinámica, puesto que la naturaleza no puede crear el orden a partir del desorden y la evolución es un proceso que crea niveles crecientes de orden.

Propiedades y nomenclatura de éteres

Los éteres son utilizados como solventes orgánicos en diversas reacciones de síntesis orgánica, así como en la separación de mezclas y purificación debido a sus propiedades física y químicas.

El dietil éter fue utilizado como anestésico quirúrgico en décadas pasadas, actualmente se prefiere el uso de sustancias cuyos efectos secundarios son menores.
El dietil éter fue utilizado como anestésico quirúrgico en décadas pasadas, actualmente se prefiere el uso de sustancias cuyos efectos secundarios son menores.

Los éteres (R-O–R´) son compuestos oxigenados que se caracterizan por tener dos cadenas carbonadas unidas a un átomo de oxígeno mediante enlaces simples C-O.

Dicho de otra forma, los éteres son el resultado de sustituir los hidrógenos de la molécula de agua por sustituyentes del tipo alquilo y arilo, entre otros.

PROPIEDADES FÍSICAS Y QUÍMICAS DE LOS ÉTERES

Los éteres son compuestos polares, ya que la suma de los momentos polares de sus enlaces es diferente de cero, así mismo los dos pares de electrones libres contribuyen a la polaridad de este tipo de compuestos.

Las fuerzas intermoleculares que predominan en los éteres son del tipo dipolo-dipolo. Además, debido a la ausencia de grupos hidroxilos en su estructura, no son capaces de formar enlaces o puentes de hidrogeno por lo cual sus puntos de ebullición son inferiores a los observados en alcoholes con masas molares semejantes.

Los éteres son sustancias más volátiles que los alcoholes.

En cuanto a su comportamiento químico, los éteres son sustancia de baja reactividad si se comparan con otros compuestos oxigenados, de allí que sean utilizados como solventes en diversas reacciones químicas.

Uno de los puntos a favor que presentan los éteres frente a otro solventes orgánicos polares como los alcoholes es que no se comportan como ácidos en presencia de una base fuerte y por tanto pueden ser utilizados en reacciones en medio básico sin riesgo alguno.

NOMENCLATURA DE ÉTERES

Según la nomenclatura funcional, los éteres se denominan al colocar el nombre de los sustituyentes en orden alfabético, seguidos de la palabra éter.

Por otra parte, debido a que los éteres son considerados derivados oxigenados de los alcanos, se pueden nombrar con la denominación del alcano correspondiente a la cadena principal precedido por el nombre del sustituyente alcoxido.

En el caso de los éteres cíclicos el nombre está conformado por el prefijo oxa- seguido del nombre del ciclo correspondiente, cuya numeración inicia en el átomo de oxígeno.

¡RECUERDA!

Las normas generales de nomenclatura orgánica son:

  1. Seleccionar la cadena principal, ésta siempre es la más larga y la que contiene el grupo funcional de mayor prioridad.
  2. Enumerar la cadena principal, para lo cual se asigna la numeración más baja posible al grupo funcional principal y a los sustituyentes e insaturaciones presentes en la estructura.
  3. Identificar y nombrar los sustituyentes presentes.
  4. Los sustituyentes se nombran en orden alfabético, en casos donde los sustituyentes se encuentran repetidos se utilizan prefijos de cantidad que no son considerados al momento de ordenar, por ejemplo: di = 2, tri = 3, tetra = 4, penta = 5, hexa = 6 y así sucesivamente.

¡Aplica lo aprendido!

Indica el nombre del siguiente éter.

  1. Ubicar los sustituyentes y enumerar la cadena principal de los mismos.

 

  1. El sustituyente señalado en azul es un alqueno, el nombre indica la posición del doble enlace seguida del prefijo correspondiente a la cadena principal y el sufijo –enil.

SUSTITUYENTES INSATURADOS

Para nombrar sustituyentes con doble y triple enlace es necesario cambiar los sufijos correspondientes a cada caso, como se indica a continuación:

-Alquenos, se cambia la terminación –eno por –enil.

-Alquinos, se cambia el sufijo –ino por -inil.

  1. El sustituyente señalado en verde tiene a su vez dos radicales iguales, los cuales se deben nombrar indicando la posición y utilizando el prefijo de cantidad correspondiente seguido del nombre de la cadena principal.

  1. Una vez que se nombran ambos sustituyentes, se agrega la palabra “éter” al final para completar el nombre del compuesto.

Solublidad y polaridad

Al adicionar una sustancia en un agua, ésta se puede disolver o no. Lo que determina que ocurra un hecho u otro es la solubilidad del soluto, la cual a su vez depende diferentes factores, entre ellos, la polaridad.

Solubilidad

La solubilidad es la capacidad que tiene una sustancia de disolverse en otra, por ejemplo: la sal se disuelve en el agua, por tanto la sal es soluble en agua.


El vinagre es soluble en agua. Los términos soluble, ligeramente soluble e insoluble son utilizados como medida cualitativa de la solubilidad.

Dicho de otra forma, la solubilidad es la máxima cantidad de soluto que se puede disolver en un determinado solvente y se expresa como:

Solubilidad = (g soluto ÷ g solvente) x 100

¡Recuerda!

Una sustancia tiene una solubilidad diferente para cada solvente.

¿Cuál es la solubilidad de una sustancia en 140 g de agua si sólo se disuelven 5 g de la misma?

Solubilidad = (5 g soluto ÷ 140 g) x 100 = 3,6


La presión influye en la solubilidad de los gases, ejemplo de ello es el CO2 contenido en las bebidas gaseosas cuya disolución es posible gracias al aumento de la presión.

Polaridad

La polaridad es una propiedad de las moléculas que se manifiesta cuando existe una separación de cargas en las mismas que da lugar a la formación de un dipolo eléctrico.

En este sentido se distinguen dos tipos de moléculas: polares y apolares. Las primeras son aquellas que poseen dipolos eléctricos, es decir, tienen un extremo positivo y otro negativo. En tanto, las segundas no poseen dipolo eléctrico.

¿Polares o apolares?

Solubilidad y polaridad

La solubilidad de una sustancia en un determinado solvente dependerá de la polaridad de ambos componentes. En general, la solubilidad en función de la polaridad está determinada por la siguiente regla: “Lo semejante disuelve a lo semejante”.

La anterior premisa significa que una sustancia polar se disuelve en un solvente polar, en tanto, un soluto apolar se disuelve en un disolvente apolar.

  • Etanol en agua

El etanol y el agua son sustancias polares que forman enlaces o puentes de hidrógeno (fuerza intermolecular), de manera que cuando el etanol se añade al agua, inicia el proceso de solvatación, es decir, las moléculas de etanol y agua empiezan a interactuar entre sí y dan como resultado la formación de puentes de hidrogeno entre estas.

Se denomina solvatación al proceso en el cual las moléculas del soluto interaccionan con las moléculas del solvente y dan lugar una asociación de las mismas.

 

 

  • Hexano en agua

El agua es una sustancia polar capaz de formar puentes de hidrógeno, mientras que el hexano es una sustancia apolar cuyas fuerzas dispersión de London son más débiles. Entonces, considerando la regla de “lo semejante disuelve a lo semejante”, se puede deducir que el hexano no se disuelve en agua.

A nivel molecular, lo que ocurre es que la interacción agua-agua es más fuerte que la interacción agua-hexano y como resultado el hexano no se disuelve en el agua.

La solubilidad también depende de la temperatura. Generalmente, la solubilidad de un sólido se incrementa con el aumento de la temperatura, mientras que para un gas se observa el efecto contrario.

Miscible e inmiscible

Los términos miscibles e inmiscibles son utilizados frecuentemente para describir la solubilidad de un líquido en otro. Dos líquidos son miscibles cuando forman una solución o mezcla homogénea, en tanto, son inmiscibles cuando no forman una solución.

 

 

Ejercicios:

1) Resuelve los siguientes problemas.

a) En 150 g de agua se disolvieron 40 g de una sustancia. ¿Cuál es la solubilidad de la sustancia?
b) La solubilidad de una sustancia A en 120 g de agua es igual a 3. ¿Cuántos gramos de de A se disolvieron en el agua?

 

2) Una con flecha los elementos de las columnas A y B según corresponda.

A B
Metanol
Cloroformo Polar
Agua No polar
Hexano
Glicerina

 

3) Predice la solubilidad de las siguientes sustancias en agua.

a) Tolueno
b) Ácido acético
d) Metanol
e) Acetona

 

4) Predice la solubilidad de las siguientes sustancias en tolueno.

a) Hexano
b) Cloruro de sodio
c) Etanol
d) Agua

Caída libre

La caída libre es un tipo de movimiento rectilíneo uniformemente acelerado porque su desplazamiento se realiza en línea recta con una aceleración constante igual a la gravedad, lo que hace que la velocidad de los cuerpos que describen este movimientos aumente en el transcurso de su trayectoria.

La caída libre

En este movimiento, el móvil cae de forma vertical desde cierta altura sin ningún obstáculo. Es un tipo de movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) porque su aceleración es constante y coincide con el valor de la gravedad.

La gravedad

Al encontrarse cerca de la superficie terrestre, los cuerpos experimentan una fuerza de atracción que les confiere una aceleración. Cuando una manzana cae de un árbol lo hace por acción de dicha fuerza. En el caso de la Tierra, la gravedad puede considerarse constante y su dirección es hacia abajo. Generalmente se designa con la letra g y sus valores aproximados para algunos sistemas de medición son:

Sistema M.K.S → g = 9,8 m/s²

Sistema c.g.s → g = 980 cm/s²

Sistema inglés → g = 32 ft/s² (pies por segundo)

En algunas ocasiones la gravedad de la Tierra suele aproximarse a 10 m/s², pero el valor más usado en la resolución de problemas es el de 9,8 m/s².
En algunas ocasiones la gravedad de la Tierra suele aproximarse a 10 m/s², pero el valor más usado en la resolución de problemas es el de 9,8 m/s².
 En el movimiento de caída libre se considera que el rozamiento con el aire es despreciable.
En el movimiento de caída libre se considera que el rozamiento con el aire es despreciable.

Características del movimiento de caída libre

  • Es un tipo de movimiento uniformemente acelerado o variado.
  • Su trayectoria es vertical.
  • La altura inicial es mayor que la final.
  • La velocidad inicial es igual cero, es decir, el cuerpo se deja caer.

Ecuaciones de caída libre

Dónde:

Vo = velocidad inicial

Vf = velocidad final

h = altura

g = gravedad

t = tiempo

La velocidad inicial en este tipo de movimiento es igual a 0 m/s si el objeto se deja caer, por el contrario, si el objeto no se deja caer sino que se lanza, se le confiere una velocidad inicial diferente a 0 m/s.

Los paracaidistas describen un movimiento de caída libre hasta el momento en el que abren su paracaídas.
Los paracaidistas describen un movimiento de caída libre hasta el momento en el que abren su paracaídas.

Ejercicios

1.- Se deja caer desde la parte alta de un edificio una roca, la cual tarda 4 segundos en llegar al suelo. Determinar:

a) La altura del edificio.
b) La velocidad con la que impacta la roca al suelo.

Datos:

V0 = 0 m/s à la velocidad inicial es cero porque la roca se dejó caer.
t = 4 s

a) Para calcular la altura del edificio se debe emplear la ecuación número 4 mostrada anteriormente, ya que es la que involucra el término de altura.

El único dato no proporcionado es el valor de la gravedad, pero como se explicó anteriormente, la gravedad de la Tierra se aproxima a 9,8 m/s². Al sustituir los datos en la ecuación quedaría:

Recuerda simplificar las unidades iguales.

El edificio tiene una altura de 78,4 metros.

b) Para determinar la velocidad con la que impactó la roca al suelo se aplica la ecuación 1 de las fórmulas mostradas anteriormente.

Al sustituir los datos en la ecuación se tiene:

La roca golpeó el suelo con una velocidad de 39,2 m/s.

Otra forma de calcular la velocidad de impacto con el suelo es aplicar la fórmula 3, la cual involucra la altura, pero como se calculó ese valor en la primera parte (78,4 m) se puede aplicar. En caso de no conocer el valor de la altura, se debería aplicar la ecuación 1.

Como podrás observar, se obtuvo el mismo resultado que el obtenido con la ecuación 1.

2.- Desde lo alto de un balcón de 6 m se lanza hacia abajo una pelota con una velocidad inicial de 4 m/s. Determinar:

a) La velocidad final de la pelota.
b) El tiempo que tarda en llegar al suelo.

Datos:

h = 6 m
V0 = 4 m/s → La velocidad no es de 0 m/s porque la pelota no se dejó caer desde el reposo.

a) Para calcular la velocidad de la pelota se emplea la ecuación 3 porque no se ha calculado el tiempo aún.

La velocidad final de la pelota es aproximadamente igual a 11,56 m/s.

En el movimiento de caída libre, la velocidad aumenta de forma constante hasta que el cuerpo llega al suelo.
En el movimiento de caída libre, la velocidad aumenta de forma constante hasta que el cuerpo llega al suelo.

b) Para determinar el tiempo que la pelota emplea en llegar al suelo, se utiliza la ecuación 2.

El tiempo que tarda la pelota en llegar al suelo es aproximadamente igual a 0,77 segundos.

Otra forma de calcular el tiempo

Para los casos en los que se conoce la altura y la velocidad inicial se puede calcular el tiempo por medio de la ecuación 4, en este caso, se formaría una ecuación de segundo grado al sustituir los datos y de la cual se tomaría la raíz positiva.

En el problema anterior, al sustituir los valores en la ecuación 4 quedarían de la siguiente forma:

(Para efectos ilustrativos no se colocaron las unidades)

Organizando los términos en la ecuación quedaría de la siguiente forma:

4,9t2+4t6=0

Al calcular las raíces de la ecuación anterior se tienen:

t1 = 0,77 s (Es el valor verdadero y coincide con el que se calculó anteriormente)

t2 = -1,58 s (No se considera este valor ya que no hay tiempos negativos)

No todos los ejercicios siguen una misma metodología por ello debes reconocer muy bien los datos con los que cuentas y las ecuaciones que debes usar.

Aplicaciones y propiedades de los elementos químicos

El avance de la ciencia en gran parte se debió a los usos que los seres humanos le dieron a los elementos químicos, cada uno de los cuales presenta cualidades particulares, como su dureza, resistencia a la corrosión y otras más que permiten emplearlos para distintos fines como chips, medicinas y cosméticos.

Los elementos químicos

Un elemento químico se define como la sustancia conformada por un solo tipo de átomo. Hasta la fecha se han identificado 118 elementos de los que solamente 92 pueden encontrarse en la naturaleza y el resto son elementos sintéticos producidos por el ser humano de forma artificial.

Cada elemento químico de la tabla periódica tiene un número atómico que indica la cantidad de protones que posee en su estructura atómica.
Cada elemento químico de la tabla periódica tiene un número atómico que indica la cantidad de protones que posee en su estructura atómica.

El elemento que se encuentra con mayor presencia en el universo es el hidrógeno y sirve como combustible para las estrellas, el segundo más abundante es el helio. Por otra parte, el elemento más abundante en la corteza y atmósfera de nuestro planeta es el oxígeno, seguido por el silicio que se encuentra en formas rocosas y en la arena.

El cuerpo es un conglomerado de elementos químicos, los más abundantes son el oxígeno y el carbono.
El cuerpo es un conglomerado de elementos químicos, los más abundantes son el oxígeno y el carbono.

Aplicaciones de los elementos

Dependiendo de las propiedades físicas y químicas de los elementos, el ser humano ha sabido hacer uso de ellos para una infinidad de productos que muchas veces pasan desapercibidos en nuestra vida, pero juegan un gran papel importante en la ciencia y en la sociedad actual.

Los elementos de la tabla periódica se encuentran distribuidos en 7 filas denominadas periodos y 18 columnas denominadas grupos. Cada grupo de elementos presenta características químicas similares. A continuación se muestran algunas de las aplicaciones de los elementos de cada grupo:

Grupo IA – Metales alcalinos

Son todos (a excepción del hidrógeno) blancos, brillantes y muy activos, se encuentran en la naturaleza en forma de compuestos. El sodio y el potasio se emplean en la industria principalmente en forma de sales. El litio se usa en reactores de fusión y en la fabricación de baterías eléctricas. El rubidio es empleado en las celdas fotoeléctricas y como localizador de tumores cerebrales.

La sal común está formada por cloro y sodio.
La sal común está formada por cloro y sodio.

Grupo IIA – Metales alcalinotérreos

Obtienen su nombre debido al aspecto térreo de sus óxidos, se caracterizan por ser buenos conductores de calor y de electricidad. Debido a que son demasiado activos, no existen en la naturaleza y son metales difíciles de obtener, por lo que sus aplicaciones son muy limitadas. El berilio se usa en aleaciones de uso industrial y para fabricar pantallas y ventanas de radiación en dispositivos de rayos X. El magnesio presenta alta resistencia a la tensión, por lo que es usado en aleaciones para la industria aeronáutica y para fabricar émbolos y pistones, se usa también como material refractario y para la elaboración de pastillas. El estroncio se emplea como purificador del azúcar, aunque la medicina lo ubica como un elemento causante de cáncer. El bario se emplea en la pirotecnia y sirve como medio de contraste para que el estómago y los intestinos puedan observarse en las radiografías. El radio es usado en la pintura fluorescente.

En la purificación del azúcar se emplea el estroncio.
En la purificación del azúcar se emplea el estroncio.

Grupo IIIA – Familia del boro

El boro tiene una amplia química de estudio, se usa para fabricar vidrios, esmaltes y utensilios de cocina. El aluminio es empleado en la fabricación de materiales de cocinas como ollas y sartenes, también se usa en la industria automotriz para fabricar pistones y motores. El galio, el indio y el talio son raros y existen en cantidades mínimas. El galio y el indio tienen aplicaciones principalmente médicas en dispositivos especiales para detectar enfermedades. El talio se usa como veneno para las ratas por no tener ni olor ni sabor.

Muchos utensilios de cocina son fabricados con aluminio.

Grupo IV – Familia del carbono

La química orgánica es la disciplina encargada de estudiar los compuestos del carbono, el cual en su estado elemental se presenta como diamante y como grafito, este último empleado en la fabricación de lápices y para generar fibras de carbono. El silicio se emplea para la preparación de siliconas y por ser un elemento semiconductor muy abundante, se usa en la industria electrónica para crear chips. El óxido de silicio se usa para la fabricación de hormigón y también se emplea en la fabricación de vidrios. El germanio se usa en la fabricación de transistores y semiconductores, en las fibras y lentes ópticas. El estaño es ampliamente usado en los procesos industriales, en soldaduras de circuitos y en la fabricación del vidrio para reducir su fragilidad, también se usa como fungicida y en otros productos como tintes, dentífricos e insecticidas. El plomo se usa para la fabricación de baterías, como aislante de la radiación y como químico en la refinación del petróleo.

Los lápices emplean láminas de grafito, un mineral formado casi completamente por carbono.

Grupo V – Familia del nitrógeno

Es el grupo más heterogéneo de la tabla periódica y por esta razón las aplicaciones de los elementos de este grupo son muy variadas. El nitrógeno se usa para fabricar fertilizantes, explosivos, colorantes y para la síntesis del amoníaco. El fósforo se emplea en la fabricación de fuegos artificiales, en explosivos y en venenos para el control de plagas. El arsénico es un elemento muy contaminante y peligroso, es usado para limpiar las impurezas del vidrio y para fabricar pesticidas. El antimonio se emplea en aleaciones metálicas y en la fabricación de esmaltes y pinturas, también se usa en el proceso de vulcanización del caucho. El bismuto se usa para fabricar fusibles, para aleaciones de bajo punto de fusión y en la medicina se emplea en forma de subsalicilato de bismuto para tratar la diarrea.

El fósforo es usado en los fuegos artificiales.
El fósforo es usado en los fuegos artificiales.

Grupo VI – Colágenos

Son elementos no metálicos y la mayoría son corrosivos. El oxígeno se usa como aire artificial y como combustible de cohetes en su forma líquida. El azufre se emplea en la fabricación de pólvora, fósforos y como fungicida. El selenio es usado en la fabricación de dispositivos fotoeléctricos y en células solares. El teluro se usa para realizar aleaciones con cobre y el plomo para aumentar la resistencia a la tensión.

El azufre se emplea en la fabricación de la pólvora.

Grupo VII – Halógenos

Son compuestos que presentan una coloración característica en su estado gaseoso y tienen gran afinidad con el hidrógeno y con el oxígeno. El flúor es usado en la fabricación de dentífricos y enjuagues bucales, también se usa para el tratamiento del agua. El cloro se usa como blanqueador y desinfectante. El bromo se emplea en los fluidos de perforación de pozos petroleros, también es usado como colorante y en la fotografía. El yodo se usa principalmente en la medicina como antiséptico y desinfectante, también se usa como medio de contraste para la radiografía y como tratamiento de alteraciones de la tiroides.

Los dentífricos emplean flúor para proteger los dientes.
Los dentífricos emplean flúor para proteger los dientes.

Grupo VIII – Gases nobles

Los elementos que conforman a este grupo presentan propiedades similares, en condiciones normales son gases monoatómicos incoloros e inodoros, también puede decirse que su reactividad química es muy baja. El helio se usa para llenar globos meteorológicos, se usa mezclado con el oxígeno como aire artificial en los tanques de buceo. El neón es empleado como refrigerante, también se usa en los tubos incandescentes y en las pantallas de televisión. El argón se usa en las lámparas de incandescencia y se usa como gas para las soldaduras. El kriptón se emplea en las pistas de aterrizajes en los focos incandescentes debido a la luz roja que emite.

El helio es usado para llenar globos.
El helio es usado para llenar globos.

Elementos de transición

Están formados por los grupos IIB, IVB, VB, VIB, VIIB, IB y IIB de la tabla periódica. Los elementos pertenecientes a estos grupos presentan características muy variadas y todos son metales. Debido a su variabilidad en el estado de oxidación, sus compuestos son muy coloridos. Algunos de los elementos que conforman a este grupo son: cromo, hierro, níquel, cobre, cinc, plata y oro. El cromo es usado en aleaciones con otros metales para aumentar la dureza y resistencia a la corrosión de estos. El hierro debido a su abundancia se emplea mayormente para fabricar aceros. El níquel se emplea en la fabricación de componentes electrónicos como pilas y como revestimiento de otros metales propensos a la corrosión. El cobre se usa en la fabricación de cables y monedas, también se emplea para elaborar pigmentos. El cinc es usado en la fabricación de termómetros de altas temperaturas, también se emplea en componentes electrónicos como células fotoeléctricas y transistores. El oro y la plata se usan principalmente en la joyería y en algunos dispositivos electrónicos.

El hierro es el metal más abundante.
El hierro es el metal más abundante.