Química y Física

Todo aquello que tiene masa ocupa un volumen y posee cierta cantidad de energía se considera materia, palabra que deriva del latín y significa “sustancia de la que están hechas las cosas”. Ramas de la ciencia como la Física y la Química se encargan de estudiarla, y por lo tanto, dan explicación a fenómenos naturales y componentes del universo.

Química Física
¿Qué es? Rama de la ciencia. Rama de la ciencia.
¿Qué estudia? La materia: su composición, estructura y transformación. La materia: sus características en relación a la energía y el tiempo.
Enfoque Los cambios de la materia son estudiados a nivel estructural y molecular. Se ocupa de las interacciones entre sustancias y la energía, sus cambios (reacciones), síntesis y propiedades. Los cambios de la materia son estudiados en base a las propiedades comunes de materiales.

Se ocupa de los principios fundamentales de los fenómenos físicos y las fuerzas básicas de la naturaleza, así como de los principios básicos que explican la materia y energía.

Conceptos fundamentales Materia, elemento, átomo, molécula, ion, carga eléctrica, electrón, protón, neutrón, enlace, reacción, orbitales, solución y nomenclatura, entre otros. Materia, partícula, campo, onda, espacio-tiempo, posición, energía, momentum, masa, carga eléctrica y entropía, entre otros.
Etimología La palabra química tiene un origen controvertido. Proviene de la palabra alquimia y ésta deriva del árabe, aunque algunas hipótesis sugieren que deriva del griego. Uno de sus significados es “al arte de la metalurgia”. La palabra física proviene del latín y del antiguo griego y significa “natural, relativo a la naturaleza”.
Subdisciplinas
  • Química orgánica.
  • Química inorgánica.
  • Bioquímica.
  • Química analítica.
  • Química cuántica.
  • Química ambiental.
  • Química nuclear.
  • Física teórica.
  • Física experimental.
  • Física nuclear.
  • Física atómica.
  • Astrofísica.
  • Biofísica.
  • Física molecular.
Científicos destacados
  • John Dalton (1766-1844)
  • Dimitri Mendelejeff (1834-1907)
  • Amedeo Avogadro (1776-1856)
  • Antoine Laurent de Lavoisier (1743-1794)
  • Louis Pasteur (1822-1895)
  • Marie Curie (1867 – 1934)
  • Albert Einstein (1879 – 1955)
  • Isaac Newton (1643 – 1727)
  • Nikola Tesla (1856 – 1943)
  • Max Planck (1858 – 1947)
  • Galileo Galilei (1564 – 1642)
  • Stephen Hawking (1942 – 2018)
Algunos aportes de interés 
  • Elementos químicos.
  • Herramientas de datación.
  • Radiactividad.
  • Derivados de hidrocarburos.
  • Avances genéticos
  • Conservación de alimentos.
  • Ley de gravedad.
  • Leyes de movimiento.
  • Fuentes de energía.
  • Exploración espacial.
  • Entendimiento del mundo.
  • Rayos láser.

Destilación y decantación

Las mezclas se definen como un sistema material formado por dos o más sustancias puras no combinadas químicamente. Se las clasifica en dos tipos: homogéneas y heterogéneas. Cada una puede separarse a través de distintos métodos, dos de ellos son: destilación y decantación. 

Destilación Decantación
Definición Es un método de separación de mezclas basado en el uso consecutivo y controlado de los procesos físicos de vaporización y condensación para separar sustancias con puntos de ebullición muy distintos. Es un método utilizado para separar mezclas cuyas sustancias poseen diferentes densidades.
¿Qué tipo de mezclas separa? Homogéneas Heterogéneas
¿En qué estado de la materia se encuentran las mezclas? Puede separar mezclas de dos líquidos, de sólidos y líquidos o mezclas de gases. Puede separar mezclas de dos líquidos o sólidos con líquidos.
Procedimiento La mezcla es hervida hasta alcanzar el punto de ebullición de uno de sus componentes, el cual entonces se evaporará y será transportando hacia un recipiente de enfriamiento donde se condensará y pasará a estado líquido. Se coloca la mezcla en un embudo de decantación y se deja reposar hasta que la sustancia más densa pase al fondo para poder ser retirada.
Tipos Destilación simple, destilación fraccionada, destilación por arrastre de vapor, destilación al vacío, destilación al vacío sensible al aire, destilación de corto recorrido y destilación de zona No aplica.
Equipo Destilador.

Embudo de decantación.

 

Calor y temperatura

Cuando calentamos algún objeto sabemos que su temperatura aumenta, no obstante, es usual que confundamos los términos temperatura y calor en la vida cotidiana, y aunque éstos tienen relación entre sí, sus significados son muy diferentes.

Calor Temperatura
¿Qué es? Es la energía total del movimiento molecular en un cuerpo. Es la medida de la energía del movimiento molecular en un cuerpo.
Comportamiento La energía se intercambia entre un sistema y sus alrededores debido a la diferencia de temperatura. La temperatura aumenta conforme aumenta el movimiento o los choques entre las moléculas.
Dependencia Depende de la velocidad, cantidad y tamaño de las partículas. No depende de la velocidad, cantidad y tamaño de las partículas.
Unidades
  • Calorías (cal)
  • Joule (J)
  • Ergio (erg)
  • Grado Celsius (°C)
  • Grado Fahrenheit (°F)
  • Kelvin (K)
Instrumentos de medición Calorímetro

Termómetro

Ejemplos
  • Al servir té caliente, el agua transmite su calor a la taza.
  • Al sujetar un trozo de chocolate en la palma de la mano, éste empieza a derretirse por la transferencia de calor corporal al chocolate.
  • La temperatura para que el agua hierva es de 100 °C.
  • La temperatura corporal promedio es de 36,5 °C.
    La temperatura del ambiente está entre los 20 a 25 °C.

 

Mezclas homogéneas y mezclas heterogéneas

Se conoce como mezcla a la combinación de dos o más sustancias puras, siempre y cuando cada una de ellas mantenga sus propiedades químicas individuales. Se pueden clasificar de acuerdo a su uniformidad en mezclas homogéneas y  heterogéneas.

Mezclas homogéneas Mezclas heterogéneas
Definición Son aquellas en las que sus componentes no se pueden diferenciar a simple vista, es decir, son uniformes. Son aquellas en las que sus componentes se pueden diferenciar a simple vista, es decir, no están distribuidos de manera uniforme.
Número de fases 1 Al menos 2.
¿Sus componentes se pueden distinguir a simple vista? No. Sí.
Solubilidad Sus componentes son miscibles, es decir, son solubles entre ellos. Sus componentes son inmiscibles, es decir, no son solubles entre ellos. Por eso se forman al menos dos fases.
Métodos de separación Destilación simple, destilación fraccionada, cristalización y cromatografía. Tamizado, centrifugación, levigación, decantación, filtración e imantación.
Ejemplos Aire, mezcla de cemento, agua con azúcar o sal y tinta con agua, entre otros.

Agua y aceite, arena y oro; y arroz con granos, entre otros.

 

Rayos alfa, beta y gamma

Las radiaciones son partículas subatómicas. La estabilidad de un núcleo atómico depende de la cantidad de protones y neutrones en su interior, estos núcleos, cuando tienen una mayor cantidad de protones que de neutrones se consideran inestables y pueden emitir uno o vario tipos de radiaciones, como lo son las alfa, las beta y las gamma.  

Rayos alfa (\alpha) Rayos beta (\beta) Rayos gamma (\gamma)
Otros nombres Partículas alfa (\alpha) Partículas beta (\beta) Partículas gamma (\gamma)
¿Qué son? Núcleos de átomos de helio-4. Electrones. Forma de radiación electromagnética.
¿Cómo se producen? Por aceleración artificial o expulsión a partir de un átomo mayor. Por medio de la desintegración nuclear ocurrida en el núcleo de los átomos. Por desexcitación de un nucleón a un menor nivel de energía o por desintegración de isótopos radioactivo.
Constituidos por: Dos protones y dos neutrones. Electrones. Fotones.
Unidad de carga +2 -1 0
Velocidad Aproximadamente 3 . 107 m/s Aproximadamente 2,7 . 108 m/s Aproximadamente 3 . 108 m/s
Acción de un campo eléctrico y magnético Son desviadas por los campos eléctricos y magnéticos.

 

Son desviadas por campos eléctricos y magnéticos en sentido opuesto a las partículas \alpha.

 

No son desviadas por campos eléctricos y magnéticos.

 

Poder de penetración Bajo. Recorren una distancia pequeña y son detenidas por una hoja de papel o por la piel del cuerpo humano. Media. Recorren hasta un metro de distancia en el aire y son detenidas por laminas delgadas de metal o madera. Alta. Recorren cientos de metros en el aire y son detenidas por paredes de cemento o concreto.
Ejemplo Cuando el núcleo del radio (Ra) se desintegra expulsa una partícula \alpha y forma el radón (Rn).

 

_{88}^{226}\textrm{Ra} \rightarrow _{86}^{222}\textrm{Rn} + _{2}^{4}\textrm{He}

Cuando el núcleo del polonio (Po) pierde un electrón y se convierte en astato (At).

 

_{84}^{218}\textrm{Po} \rightarrow _{85}^{218}\textrm{At} + _{-1}^{ 0}\textrm{e}

Cuando se desintegra el tecnecio (Te) emite rayos \gamma.

 

_{52}^{125}\textrm{Te} \rightarrow _{52}^{125}\textrm{Te} + \gamma

Alcanos, alquenos y alquinos

Los hidrocarburos son el grupo más diverso y amplio de los compuestos orgánicos y se clasifican en alifáticos o aromáticos. Dentro de los hidrocarburos alifáticos encontramos a los alcanos, los alquenos y los alquinos, todos compuestos que constituyen mayormente cadenas abiertas de carbono e hidrógeno.

Alcanos Alquenos Alquinos
Tipo de compuesto orgánico Hidrocarburo. Hidrocarburo. Hidrocarburo.
Tipo de hidrocarburo Alifático. Alifático. Alifático.
Otros nombres Parafinas. Oleofinas. Acetilenos.
Fórmula general CnH2n+2

 

Donde n es igual a la cantidad de carbonos.

n= 1,2,3…

CnH2n

 

Donde n es igual a la cantidad de carbonos.

n= 2,3…

CnH2n-2

 

Donde n es igual a la cantidad de carbonos.

n= 2,3…

Saturaciones Saturado. No saturado. No saturado.
Tipo de enlace característico Covalente simple. Covalente doble. Covalente triple.
Hibridación sp3

(en todos sus carbonos)

sp2

(en los carbonos del doble enlace)

sp

(en los carbonos del triple enlace)

Molécula más simple Metano

Eteno

Etino

 Estado físico Hasta C4H10 son gases.

 

De C5H12 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Hasta C4H8 son gases.

 

De C5H10 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Hasta C4H6 son gases.

 

De C5H8 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Punto de ebullición
  • Aumenta con el número de carbonos.
  • Es mayor en alcanos no ramificados.
  • Aumenta con el número de carbonos.
  • Es mayor en alquenos no ramificados.
  • Muy similar al de su alcano correspondiente.
  • Aumenta con el número de carbonos.
  • Es mayor en alquinos no ramificados.
  • Ligeramente más elevados que su alcano o alqueno correspondiente.
Solubilidad Insoluble en agua, pero solubles en solventes orgánicos. Insoluble en agua, pero solubles en solventes orgánicos. Insoluble en agua, pero solubles en solventes orgánicos.
Densidad Menor a 1 g/mL. Mayor a la de los alcanos. Mayor a la de sus correspondientes alcanos y alquenos.
Fuente Petróleo y gas natural.

 

Procesos de craking del petróleo natural. Deshidrogenación y deshalonación de derivados de alquenos.
Ejemplo Propano

 

Propeno

Propino

 

Jabones y detergentes

En la actualidad es necesario mantener una higiene adecuada para tener un estilo de vida saludable, por ello se emplean diversos jabones y detergentes. Éstos son usados para limpiar la ropa, la vajilla, la casa y la piel del cuerpo, y aunque ambos productos tienen un efecto limpiador no son lo mismo.

Jabones Detergentes
 ¿Qué son? Sales alcalinas de ácidos grasos, generalmente de 16 a 18 átomos de carbonos. Sulfonatos de cadena larga en forma de sales sódicas.
Componentes complementarios Agua, glicerina y aditivos, entro otros. Coadyuvantes, aditivos, enzimas y reforzadores, entre otros.
Uso en el tiempo Desde la antigüedad. Sustancias modernas, el primero se fabricó en 1907.
Usos
  • Limpieza del cuerpo humano.
  • Eliminación de suciedad y aceites.
  • Eliminación de manchas con mayor eficiencia que el jabón.
  • Como limpiador doméstico.
Fuente Grasas animales o vegetales. Derivados de petróleo.
Función en agua dura No funcionan en agua dura. Son efectivos en agua dura.
Residuos Pueden dejar residuos. No dejan residuos.
Biodegradabilidad Son biodegradables. No son biodegradables.
Costo Son económicos. Son costosos.
Estructura química

Estearato de sodio.

p-Dodecilbencenosulfonato sódico.

Obtención Reacciones de saponificación y neutralización. Proceso industrializado.
Característica principal Son surfactantes: sustancias que reducen la tensión superficial de las moléculas de agua, lo que permite que la grasa y suciedad se emulsionen con el agua y desaparezcan al fluir el agua.

 

Los jabones son surfactantes aniónicos.

 

Son surfactantes: sustancias que reducen la tensión superficial de las moléculas de agua, lo que permite que la grasa y suciedad se emulsionen con el agua y desaparezcan al fluir el agua.

 

Los detergentes pueden ser surfactantes aniónios, catiónicos o no iónicos.

Compuestos orgánicos e inorgánicos

Los compuestos químicos pueden clasificarse en dos grandes grupos: compuestos orgánicos y compuestos inorgánicos. Cada grupo presenta un conjunto de características muy particulares que hacen posible diferenciarlos fácilmente. A continuación se comparan estos dos tipos de compuestos.

Compuestos orgánicos Compuestos inorgánicos
Base de construcción Átomo de carbono. Mayoría de los elementos conocidos.
Tipo de enlace Enlace covalente. Predomina el enlace iónico.
Isómeros La mayoría presenta isómeros. Muy pocos presentan isómeros, son raros.
Formación estructural Átomos organizados en largas cadenas basadas en carbono, sobre las que se insertan otros elementos. No es común la formación de cadenas.
Tipo de estructura Complejas, de alto peso molecular. Simples, de bajo peso molecular.
Solubilidad La mayoría son insolubles en agua y solubles en solventes apolares. La mayoría son solubles en agua e insolubles en solventes apolares.
Punto de ebullición y fusión Bajos. Altos.
Densidad Baja. Alta.
Conductividad eléctrica No son conductores de la electricidad. Son conductores de la electricidad.
Velocidad de reacción Reacciones lentas. Reacciones muy rápidas.
Estabilidad Poco estables, se descomponen fácilmente. Muy estables.
Clasificación principal
  • Óxidos
  • Hidróxidos
  • Ácidos
  • Sales
  • Hidrocarburos
  • Oxigenados
  • Nitrogenados
Variedad Mayor a la de los compuestos inorgánicos. Menor a la de los compuestos orgánicos.
Ejemplos
  • Óxido de aluminio (Al2O3)
  • Hidróxido de sodio (NaOH)
  • Ácido fosfórico (H3PO4)
  • Bicarbonato de sodio (NaHCO3)
  • Ácido acético (CH3COOH)
  • Etanol (CH3OH)
  • Octano (C8H18)
  • Benceno (C6H6)

 

Punto de fusión y punto de ebullición

La materia tiene propiedades características y no características. Las primeras son particulares para cada sustancia ya que dependen de la naturaleza del átomo que la constituye, por lo que permiten identificar sustancias. Entre las propiedades características de la materia están el punto de fusión y el punto de ebullición.

Punto de fusión Punto de ebullición
¿Qué es? Temperatura a la cual una sustancia cambia de estado sólido a líquido. Temperatura a la cual una sustancia cambia de estado líquido a gaseoso.
Condición Presión = 1 atm. Presión = 1 atm.
Tipo de magnitud Constante física. Constante física.
Fases en equilibrio Sólida y líquida. Líquido y gaseoso.
¿Qué sucede durante el equilibrio? La temperatura permanece constante a pesar de que el tiempo de calentamiento aumenta. La temperatura permanece constante a pesar de que el tiempo de calentamiento aumenta.
¿De qué depende? Tipo de enlace químico, polaridad e intensidad de las fuerzas de atracción intermolecualres. Principalmente de la presión atmosférica. También influye el tipo de enlace, polaridad e intensidad de las fuerzas de atracción intermolecualres.
En sustancias covalentes Bajo. Bajo.
En sustancias iónicas Muy alto. Muy alto.
¿Cómo determinarlo? Los aparatos más usados son:

  • Tubo de Thiele.
  • Aparato Fisher-Jhons.
  • Aparato Melt-Temp.
Los métodos más usados son:

  • Método por destilación.
  • Método de Siwoloboff.

 

Representación gráfica temperatura/tiempo
Ejemplo del proceso
  • Derretimiento de un hielo.
  • Derretimiento de una vela.
  • Fundición del hierro.
  • Hervir agua para espagueti.
  • Cocinar una sopa.
  • Hacer café.
En algunas sustancias Agua: 0 °C

Mercurio: – 38,87 °C

Etanol: – 117,3 °C

Cobre: 1.083 °C

Hierro: 1.535 °C

Agua: 100 °C

Mercurio: 356,58 °C

Etanol: 64,96 °C

Cobre: 2.595 °C

Hierro: 3.000 °C

 

Fórmula molecular, empírica y estructural

Los compuestos moleculares están formados por moléculas que a su vez contienen cantidades determinadas de átomos unidos por enlaces covalentes. Estos compuestos se representan mediante una fórmula química, es decir, una representación simbólica que indica los elementos presentes y el número de átomos de cada elemento.

Fórmula empírica Fórmula molecular Fórmula estructural
¿Qué representa? La cantidad simplificada de átomos que conforman la molécula. La cantidad real de átomos que conforman la molécula. La estructura de la moléculas y distribución espacial de sus átomos.
¿Qué muestra?
  • Los tipos de átomos.
  • Cantidad relativa de átomos.
  • Los tipos de átomos.
  • Cantidad real de átomos.
  • Los tipos de átomos.
  • Los enlaces que los unen.
Expresión matemática Fórmula empírica (FE) = Fórmula molecular (FM) / n Fórmula molecular (FM)= Fórmula empírica (FE) . n No posee.
Ejemplo 1: Glucosa CH_{2}O

 

n = 6 (múltiplo calculado experimentalmente)

FE = C6H12O6 / 6 = CH2O

C_{6}H_{12}O_{6}

 

n = 6 (múltiplo calculado experimentalmente)

FM = 6 (CH2O) = C6H12O6

Ejemplo 2: Agua H_{2}O

 

FE coincide con FM.

H_{2}O

 

FM coincide con FE.

Ejemplo 3: Amoniaco NH_{3}

 

FE coincide con FM.

NH_{3}

 

FM coincide con FE.