CAPÍTULO 10 / TEMA 4

Sistema urinario

Una vez que el cuerpo humano absorbe los nutrientes necesarios de los alimentos para el mantenimiento de todas las funciones corporales, productos de desecho se mantienen en la sangre y en los intestinos. El sistema urinario realiza un importante rol en la eliminación de esos desechos.

¿QUÉ ES EL SISTEMA URINARIO?

Es el conjunto de órganos especializados por los que circula la orina. El sistema urinario es el encargado de eliminar del organismo las sustancias nocivas que se forman en las células y de contribuir a mantener la reacción alcalina de la sangre. Está formado esencialmente por dos riñones que vuelcan cada uno su contenido en la vejiga por medio de tubos llamados uréteres. La vejiga, a su vez, evacua su contenido al exterior por medio de un conducto llamado uretra.

Componentes del sistema urinario.

¿Cómo funciona?

  • El cuerpo absorbe los nutrientes que necesita de los alimentos y los usa para que el organismo funcione correctamente.
  • Después de absorber los nutrientes necesarios, se crean sustancias nitrogenadas de desecho producto del metabolismo que permanecen en la sangre, como la urea, el ácido úrico y la creatinina.
  • El aparato urinario elimina de la sangre estos compuestos, principalmente la urea, la cual se transporta a los riñones por medio del torrente sanguíneo.
Producción de urea

 

La urea se produce en el cuerpo cuando se descomponen alimentos ingeridos que contienen proteína, como la carne de res, la carne de ave y algunos vegetales.

  • Los riñones eliminan la urea a través de las nefronas, pequeñas unidades de filtrado en las que se forma la orina.
  • Desde los riñones, la orina se dirige hasta la vejiga a través de los uréteres.
  • Los músculos de las paredes del uréter se contraen y relajan constantemente, lo que permite forzar la orina hacia abajo, fuera de los riñones.
¿Sabías qué?
Pequeñas cantidades de orina se vierten en la vejiga desde los uréteres aproximadamente cada 15 segundos.
  • La vejiga almacena la orina hasta que pueda expulsarse. Cuando está llena, se hincha en forma redonda y puede retener hasta medio litro de orina de 2 a 5 horas.
  • Los esfínteres evitan el goteo de la orina. Estos pequeños músculos se cierran con fuerza alrededor de la abertura de la vejiga, justo donde se conecta con la uretra, canal que permite la expulsión de la orina fuerza del cuerpo.
  • Los nervios de la vejiga son los responsables de hacerle saber a los individuos cuándo es tiempo de vaciarla. El cerebro envía señales a los esfínteres para que se aprieten o relajen durante el proceso de expulsión.
  • Cuando los esfínteres se relajan, la orina sale por la uretra, acto conocido como micción.
¿Sabías qué?
Un adulto puede eliminar cerca de un litro y medio de orina al día.
Sistemas involucrados en la excreción
Sistema urinario Sistema integumentario Sistema respiratorio
Los riñones son los órganos principales. La piel es el órgano principal. Los pulmones son los órganos principales.
Excreta compuestos nitrogenados, agua y electrolitos. Excreta compuestos nitrogenados, agua y electrolitos. Excreta dióxido de carbono y agua.

ÓRGANOS URINARIOS

Riñones

Son dos órganos colocados en el abdomen a ambos lados de la columna vertebral. Se hallan a la altura de la última vértebra dorsal y de las dos primeras lumbares. Tienen unos 10 a 12 centímetros de largo, unos 5 o 6 centímetros de ancho y alrededor de 3 centímetros de espesor. Pesan cerca de 150 gramos cada uno y su color es rojo castaño.

Anatomía de un riñón humano.

Los riñones son de gran importancia para mantener el balance de líquidos y los niveles de sal, así como el equilibrio ácido-base. También ayudan a mantener la tensión arterial normal; para ello, segregan hormona renina y elaboran la hormona eritropoyetina.

Los riñones extraen los productos residuales de la sangre a través de millones de pequeños filtros denominados nefronas, que son las unidades funcionales de los riñones. Hay aproximadamente un millón de nefronas en cada riñón. Cada una de ellas cuenta con un corpúsculo renal y un túbulo urinífero. Estos desembocan en canales colectores que llevan la orina a los cálices y a la pelvis renal.

Uréteres

Son conductores pares que se originan en la pelvis renal y trasladan la orina desde cada riñón hasta la vejiga urinaria, en donde desembocan para formar los llamados meatos ureterales, cuya disposición en la válvula permite a la orina pasar gota a gota del uréter a la vejiga, pero no viceversa. Su interior está revestido de un epitelio y su pared contiene músculo liso.

En una persona adulta, los uréteres tienen una longitud de 25 a 35 centímetros y un diámetro de 3 milímetros. Se ubican en la parte posterior del abdomen y descienden hacia la vejiga por medio de sus paredes en forma oblicua, para desembocar finalmente en el trígono vesical a través de los orificios ureterales.

Circulación

 

En los orificios ureterales hay un esfínter involuntario que controla la circulación del flujo urinario hacia una sola dirección. Sin embargo, cuando la vejiga está llena, cada orificio ureteral se cierra por la propia contracción muscular de la vejiga, de este modo se evita el reflujo de orina hacia el riñón.

Los uréteres poseen tres capas:

  • Capa externa o serosa: formada por tejido conjuntivo que ayuda a proteger al órgano del resto de las vísceras.
  • Capa muscular o media: formada por dos capas de músculo liso colocadas en forma longitudinal y circular. Las capas musculares son responsables del avance de la orina en una sola dirección a través movimientos de contracción y relajación.
  • Capa interna o mucosa: cubierta por tejido epitelial estratificado.
Anatomía del uréter.

Vejiga

Es un órgano que conforma el tracto urinario en el que se deposita la orina que proviene de los riñones a través de los uréteres. La vejiga está situada en la parte inferior del abdomen y superior de la pelvis y tiende a tomar una forma ovoidea cuando está llena.

Tiene una capacidad aproximada de entre 300 y 350 centímetros cúbicos. Cuenta con tres capas: una serosa, una muscular y una mucosa. La capa serosa es un recubrimiento exterior y que está rodeado por el peritoneo; la capa muscular está formada por un músculo liso que al contraerse expulsa la orina y que tiene como freno a los esfínteres de la uretra; y la capa mucosa está formada por el epitelio de transición urinario y una lámina de tejido conjuntivo.

Además, en su interior, cuenta con un trígono vesical, región por la que entran los uréteres a la vejiga. El trígono ocupa la zona posterior e inferior de la vejiga.

La cistitis

 

Es una infección que se puede presentar en cualquier parte a lo largo del tracto urinario: los riñones, los uréteres, la vejiga o la uretra. Es muy común que las infecciones afecten principalmente la vejiga y la uretra.

Anatomía de la vejiga.

Uretra

Anatomía de la uretra en la mujer.
Anatomía de la uretra en el hombre.

Es el órgano conductor de la orina desde la vejiga hasta el exterior del cuerpo. Prácticamente es el final del proceso urinario. Su principal función consiste en excretar, aunque en los hombres también cumple una función reproductiva, pues por este conducto también pasa el semen desde las vesículas seminales hasta el exterior.

Si bien la uretra es esencialmente el órgano excretor de la orina, su forma es diferente en hombres y mujeres. En los hombres la uretra mide cerca de 20 centímetros de largo, mientras que en las mujeres mide cerca de 3 centímetros. La uretra masculina pasa por la glándula protática y luego a través del pene, y la femenina está adherida con fuerza a la pared de la vagina.

¿CÓMO SE FORMA LA ORINA?

La orina se forma esencialmente por medio de tres procesos dentro de las nefronas: la filtración glomerular, la reabsorción tubular y la secreción tubular.

Formación de la orina.

La filtración glomerular

Este proceso permite el paso de un líquido con composición química parecida al plasma sanguíneo desde el glomérulo hacia la cápsula de Bowman. Ese líquido no contiene proteínas, ni glóbulos blancos, glóbulos rojos y plaquetas, pues éstas no logran atravesar los capilares glomerulares.

¿Sabías qué?
Por medio del índice de filtrado glomerular se ha podido deducir que cada 24 horas se filtran 180 litros de orina en ambos riñones.
¿Qué es el glomérulo renal?

 

Es un conjunto de redes capilares que están protegidas por una envoltura ubicada en las nefronas en cada riñón. Son las responsables de filtrar la sangre para reabsorber materiales de provecho y extraer los desechos en forma de orina.

La reabsorción tubular

Todos aquellos componentes que fueron filtrados en el glomérulo regresan nuevamente a la sangre, luego se reabsorben. Esto ocurre a lo largo del tubo renal y permite la recuperación de agua, sales, azúcares y aminoácidos que fueron filtrados en el glomérulo.

La secreción lobular y excreción

Consiste en el paso de algunos iones desde los capilares hacia el interior del túbulo, acto opuesto al de la reabsorción. Durante este proceso se eliminan iones amonio NH4+ e hidrógenos H+ que contribuyen al mantenimiento del pH de la sangre.

PROBLEMAS RELACIONADOS CON EL SISTEMA URINARIO

Piedras en los riñones (litiasis)

Se forman en el riñón debido a sustancias presentes en la orina, pero se pueden alojar en cualquier parte del aparato urinario. Pueden tener diferentes tamaños, una piedra pequeña puede realizar el recorrido de la orina y así ser eliminada del cuerpo sin mayor dolor. En cambio, una piedra más grande puede obstruir el flujo de la orina y causar mucho dolor. Una de las mejores formas de prevenir la formación de piedras consiste en ingerir abundante agua.

Piedras en el riñón derecho.

Insuficiencia renal

Los riñones pueden dejar de funcionar por diversas causas, cuando esto sucede comienzan a acumularse desechos en el organismo, se produce un aumento de la presión arterial e insuficiente producción de glóbulos rojos. Se denomina enfermedad crónica de los riñones.

Enfermedad renal crónica

 

Se relaciona principalmente con la presencia de diabetes e hipertensión arterial, aunque otros factores de riesgo cardiovascular, como el consumo de tabaco y el colesterol elevado, también pueden predisponer a su desarrollo.

Proteinuria

Las moléculas de las proteínas son grandes y no pasan por los filtros de los riñones, excepto unas ínfimas partículas. Cuando la cantidad de proteínas que aparece en la orina es muy grande, significa que los poros de los filtros están dañados.

Retención urinaria

Es la dificultad de vaciar la vejiga. La orina queda en la vejiga por diversas causas: obstrucción del esfínter, estrés, problemas neurológicos y fallas en los músculos que contraen la vejiga.

Incontinencia urinaria

Es la falta del control de retención de la orina y la consecuente pérdida involuntaria. Existen varias causas y tipos de incontinencia. Los tratamientos los determina el médico y pueden ser desde sencillos ejercicios hasta cirugías. Generalmente, las mujeres son las más afectadas.

La diálisis

 

Es un proceso artificial que filtra la sangre. Se utiliza cuando los riñones no funcionan, entonces, por medio de una máquina se extraen las sustancias nocivas y el exceso de agua acumulado en el organismo. Existen dos tipos de diálisis: la hemodiálisis y la peritoneal.

RECURSOS PARA DOCENTES

Artículo destacado “Enfermedad renal crónica”

Artículo que destaca la importancia de esta enfermedad, así como sus causas y medidas preventivas.

VER

Artículo “Infecciones del tracto urinario”

Recurso explicativo sobre las infecciones causadas por gérmenes, en general bacterias, que suelen ingresar a la uretra y luego a la vejiga.

VER

Infografía “Sistema excretor”

Esta infografía describe el funcionamiento de los sistemas que excretan sustancias tóxicas del cuerpo humano, entre ellos, el sistema urinario.

VER

 

Conceptos de ácido y base: el producto de solubilidad 

La solubilidad de una sustancia en un disolvente depende de la temperatura y de la presión, la influencia de esta última es muy pequeña cuando el soluto es un sólido. Puede expresarse en cualquiera de las diversas maneras (normalidad, molaridad, gramos de soluto por litro de disolvente, etc.) que ya conocemos.

Para el caso de las sales poco solubles resulta además muy útil definir el producto de solubilidad. Para definir este concepto, consideremos la disolución en agua de una sal muy poco soluble, tal como el sulfato de bario, BaSO4.

En una disolución de esta sal, parte de las moléculas de BaSO4 estarán disociadas en iones, según la ecuación:

Si se trata de una disolución diluida podremos aplicar a ese equilibrio la fórmula de la constante de ionización. Tendremos:

Pero puesto que el sulfato de bario es muy poco soluble en agua, la ecuación anterior puede aplicarse también a la disolución saturada, ya que el BaSO4 disuelto se encontrará en equilibrio con el BaSO4 precipitado. El denominador es en este caso constante y puede escribirse:

. [BaSO4] = [Ba2+] . [SO4 2-]

Esta expresión se denomina producto de solubilidad. Su símbolo es Ks.

Ks = [Ba2+] . [SO4 2-]

El valor del producto de solubilidad es constante para cada temperatura.

Ejemplos:

1) Las concentraciones de las sustancias que participan en la reacción con H2 son:

-De H2 igual a 0,002 molar

-De I2 igual a 0,002 molar

-De IH igual a 0,014 molar

Hallar el valor de la constante de equilibrio.

Solución:

La fórmula de la constante de equilibrio es:

Por tanto, sustituyendo valores, será:

2) Si en la reacción anterior, a una cierta temperatura, la constante de equilibrio es 0,50 y en 40 litros de disolución hay 2 moles de hidrógeno y 8 de yodhídrico, hallar los moles de yodo que existen.

Solución:

De la fórmula:

conocemos:

K = 0,50

[H2] = 2 moles de hidrógeno / 40 litros de disolución = 0,05 molar

[IH] = 8 moles de á. yodhídrico / 40 litros de disolución = 0,2 molar

[I2] = x moles de yodo / 40 litros de disolución = x / 40 molar

En consecuencia:

es decir,

3) En la reacción PCl5   PCl3 + Cl2   32Kcal/mol

que se desarrolla a presión constante, se tiene que [PCl5] = 0,2 molar; [PCl3] = [Cl2] = 0,01 molar. a) Calcular la constante de equilibrio; b) indicar qué ocurriría si se elevase la temperatura; c) qué sucedería si se redujese la presión; d)y qué si se incrementase la concentración de PCl5 a 0,5 molar, permaneciendo constantes tanto la presión como la temperatura.

Solución:

a)

b) Por tratarse de una reacción endotérmica, al elevar la temperatura se favorece la formación de PCl5 y, en consecuencia, la disminución de las concentraciones de PCl3y de Cl2 (desplazamiento del equilibrio hacia la izquierda).

c) Al haber más moles gaseosos en el segundo miembro de la reacción que en el primero, una disminución de la presión hace aumentar las concentraciones de PCl3 y de Cl2 en detrimento de la concentración de PCl5 (desplazamiento del equilibrio hacia la derecha).

d) Si se aumenta la concentración de PCl5, correlativamente han de incrementarse la de PCl3 y la de Cl2 para que la constante de equilibrio no se modifique.

Para averiguar cuánto valen las nuevas concentraciones utilizaremos la fórmula de K:

4) Hallar la concentración de iones hidronio en una disolución de ácido acético, CH3  COOH, 1M sabiendo que la constante de disociación vale 1,8·10-5.

Solución:

La reacción de ionización es:

por lo que la constante de ionización será:

Sustituyendo:

Resolviendo esta ecuación de segundo grado, resulta:

x = 0,0043 molar.

5) Hallar la molaridad de una disolución de HCl cuyo pH es 2.

Solución:

pH = log10 1 / [H3O] = -log10 [H3O+] = 2

Es decir,

log10 [H3O+] = -2.

y, tomando antilogaritmos:

[H3O+] = 10-2 = 0,01 molar

6) Hallar el producto de solubilidad del BaSO4 sabiendo que a la temperatura de 50 °C su concentración es 1,4 · 10-5 molar.

Solución:

De la reacción:

se deduce que el producto de solubilidad vale:

Ks = [Ba2+] . [SO4 2-]

Por tanto,

Ks = (1,4 · 10-5)·(1,4 · 10-5) = 1,96·10-10.

Conceptos de ácido y base: el concepto de Brönsted y Lowry.

Los iones H3O+ y OH-, cuya presencia caracteriza respectivamente las disoluciones acuosas de ácidos y de bases, se forman en realidad a partir de moléculas de agua que, respectivamente, incorporan o pierden un ion H+ o, lo que es lo mismo, un protón. Con otros disolventes distintos del agua, los ácidos y las bases se comportarían del mismo modo, es decir cediendo o aceptando protones, pero los iones formados serían distintos en cada caso.

A partir de estas y similares consideraciones, en 1923, Brönsted y Lowry propusieron, independientemente uno de otro, las siguientes definiciones de ácido y de base: ácido es toda sustancia que puede ceder protones, y base toda sustancia que puede ganar protones. Es decir, un ácido es propiamente un dador de protones, mientras que una base es un aceptor de protones. Pero, puesto que el proceso de perder o ganar un protón es reversible, el ácido, al perder un protón, se transforma en una base y, a su vez, ésta, al ganarlo, se transforma en un ácido. Así, pues, un ácido y su base correspondiente forman un sistema conjugado.

Thomas M. Lowry fue un 1uímico británico. Trabajó en el campo de la química-física y propuso, junto con Brönsted, un concepto innovador de ácido y base.

Ácido Protón + Base

Como un protón no puede tener una existencia libre en disolución, debe incorporarse a otra sustancia que se comporta así como base. Los equilibrios se establecen pues en sistemas conjugados dobles del tipo:

Ácido1 + Base2 Ácido2 + Base1

En los que, cuanto más fuerte es un ácido, más débil es su base conjugada y, cuanto más fuerte es una base, más débil es su ácido conjugado. Ejemplos:

HCl + NH3 NH4 + + Cl-

H2SO4 + H2O H3O+ + HSO4

HSO4 – + H2O H3O+ + SO4

Según la teoría de Brönsted y Lowry, un ácido y una base pueden ser tanto compuestos moleculares como iones, y una misma sustancia molecular o iónica puede actuar en un caso como ácido y en otro como base. Por ejemplo, el agua actúa como base frente al cloruro de hidrógeno y como ácido frente al amoníaco. En disoluciones no acuosas se forman iones distintos de los iones H3O+ y OH-, pero el proceso es esencialmente el mismo; así, disueltos en amoníaco, NH3, sustancia que como disolvente tiene un comportamiento muy similar al del agua, los ácidos dan lugar a la formación de iones amonio, NH4 +, y las bases a la formación de iones amida, NH2 -.

Johannes Brönsted

Fue un químico y físico danés. Investigó en termodinámica. Su contribución más importante fue su nuevo concepto de ácido y base.

Conceptos de ácido y base: el concepto de Lewis 

La principal dificultad de las definiciones de ácido y base de Brönsted y Lowry es que sólo pueden aplicarse a reacciones que implican la transferencia de un protón, por lo que para que una sustancia pueda actuar como un ácido en el sentido de la definición de Brönsted-Lowry debe contener en su molécula un átomo de hidrógeno ionizable.

Sin embargo, hay muchas reacciones en las que una sustancia que de acuerdo con la teoría de Brönsted-Lowry no sería un ácido se comporta realmente como tal en el sentido más clásico del término (el de formador de sales). Así, por ejemplo, en ausencia de disolvente y, por lo tanto, sin que exista transferencia de protones, el dióxido de carbono, CO2, reacciona con un óxido básico como el óxido de calcio, CaO, para formar una sal:

CaO + CO2 CaCO3

El problema estriba esencialmente en el injustificado papel especial que la teoría de Brönsted-Lowry otorga al protón. Para superar esta dificultad, Lewis propuso en 1923 un innovador concepto de ácido y base. El nuevo punto de vista no tuvo apenas eco en el mundo científico hasta que el propio Lewis volvió a presentar sus ideas más ampliamente desarrolladas en 1938. De acuerdo con esta teoría, un ácido es toda sustancia (molecular o iónica) que puede aceptar un par de electrones, y una base toda sustancia que puede ceder un par de electrones. En otras palabras, un ácido debe tener su octeto de electrones incompleto y una base debe poseer un par de electrones solitarios. Entonces, la unión de un ácido y una base corresponde a la formación de un enlace covalente dativo o coordinado.

El concepto de base propuesto por Lewis coincide esencialmente con el de Brönsted-Lowry, ya que para que una sustancia pueda aceptar un protón (es decir, comportarse como base en el sentido de Brönsted-Lowry) debe poseer un par de electrones no compartidos. Por ejemplo, la molécula de agua, H2O, y el ion cloruro, Cl, que pueden aceptar un protón, tienen las siguientes estructuras electrónicas:

o sea, que poseen un par de electrones no compartidos que pueden emplear para aceptar un protón, formando, respectivamente, el ion H3O+ y la molécula HCl:

Evidentemente, tanto el agua como el ion cloruro pueden comportarse como bases de Lewis cediendo un par de electrones no compartidos a un ácido. Vemos, pues, que, respecto al concepto de base de la teoría de Brönsted-Lowry, el concepto propuesto por Lewis no amplía de forma significativa el número de compuestos que pueden ser considerados como bases.

Sin embargo, el caso es radicalmente distinto para el concepto de ácido. Para empezar, hay sustancias que son ácidos de acuerdo con la definición de Brönsted-Lowry y que no lo son en el sentido de Lewis. Por ejemplo, para Lewis el HCl no es realmente un ácido sino la combinación de un ácido (H+) y una base (Cl); ya vimos que el ion Cl es una base tanto según la definición de Brönsted-Lowry como de Lewis y ahora justificaremos que el ion H+ es un ácido en el sentido de Lewis mediante la reacción:

H+ + H2O H3O+

En la que el H+ acepta un par de electrones de la molécula de agua para formar un ion H3O+, y se comporta por lo tanto, como un ácido. También deben ser considerados como ácidos en el sentido de Lewis los cationes metálicos, que aceptan pares de electrones al hidratarse o solvatarse. Y, volviendo a la reacción que escribimos más arriba entre el dióxido de carbono y el óxido de calcio:

CaO + CO2 CaCO3

También aquí debemos considerar que el CO2 es un ácido en el sentido de Lewis, ya que en esta reacción el átomo de carbono del CO2 acepta en covalencia dativa un par de electrones cedidos por el átomo de oxígeno del CaO:

El modelo de Lewis se utiliza en química orgánica para explicar el comportamiento catalítico de algunos compuestos que son ácidos de Lewis, pero, en general, cuando se estudian reacciones que tienen lugar en disolución acuosa o simplemente que implican una transferencia de protones, la generalización propuesta por Lewis resulta innecesaria y los químicos razonan en estos casos a partir de los conceptos de Arrhenius o de Brönsted-Lowry.

Gilbert N. Lewis (1875-1946)

Físico y químico esta-dounidense. Fue pro-fesor en la Universi-dad de California, en la que introdujo la ter-modinámica como asignatura a princi-pios de siglo. Publicó un libro de texto en 1923 que llegó a ser un libro clásico sobre termodinámica que in-cluía todos los avan-ces del momento. Estudió el enlace co-valente y, en 1926, propuso el nombre de fotón para el cuanto de energía electro-magnética.

Conceptos de ácido y base: el concepto de Arrhenius

Arrhenius propuso definiciones precisas de ácido, base y sal basadas en su teoría de la disociación electrolítica.

Para Arrhenius, un ácido es cualquier sustancia que en disolución acuosa da iones H+ (o, para ser más precisos y puesto que estos iones se hidrolizan, iones H3O+), es decir que contiene hidrógeno reemplazable por un metal o por un radical positivo para formar sales; una base es cualquier sustancia que en disolución da iones hidroxilo OH- , es decir que contiene uno más grupos hidroxilo reemplazables por radicales ácidos negativos para formar sales; y una sal es un compuesto que se ioniza dando aniones distintos al ion OH- y cationes distintos al ion H3O+. Una sal ácida (NaHSO4, KHCO3, etc.) es la que, además de dar cationes de uno o más metales (sales dobles), da iones H3O+; análogamente, una sal básica (ClSbO, Cl(OH)Ca, etc.) es aquella que, además de los aniones que corresponden a su radical ácido, da aniones OH-. Por oposición a las sales ácidas y a las básicas, las sales normales se denominan sales neutras.

Svante August Arrhenius fue un científico sueco ganador del Premio Nobel de Química en 1903.

Concepto de Arrehnius

Arrhenius propuso definiciones precisas de ácido, base y sal basadas en su teoría de la disociación electrolítica.

Para Arrhenius, un ácido es cualquier sustancia que en disolución acuosa da iones H+ (o, para ser más precisos y puesto que estos iones se hidrolizan, iones H3O+), es decir que contiene hidrógeno reemplazable por un metal o por un radical positivo para formar sales; una base es cualquier sustancia que en disolución da iones hidroxilo OH- , es decir que contiene uno más grupos hidroxilo reemplazables por radicales ácidos negativos para formar sales; y una sal es un compuesto que se ioniza dando aniones distintos al ion OH- y cationes distintos al ion H3O+.

Arrehnius se encargó de darle difiniciones a los ácidos, las bases y las sales.

Una sal ácida (NaHSO4, KHCO3, etc.) es la que, además de dar cationes de uno o más metales (sales dobles), da iones H3O+; análogamente, una sal básica (ClSbO, Cl(OH)Ca, etc.) es aquella que, además de los aniones que corresponden a su radical ácido, da aniones OH-. Por oposición a las sales ácidas y a las básicas, las sales normales se denominan sales neutras.

Steve August Arrehnius (1859-1927) fue un reconocido científico sueco.

Concepto de Bronsted y Lowry

Los iones H3O+ y OH-, cuya presencia caracteriza respectivamente las disoluciones acuosas de ácidos y de bases, se forman en realidad a partir de moléculas de agua que, respectivamente, incorporan o pierden un ion H+ o, lo que es lo mismo, un protón. Con otros disolventes distintos del agua, los ácidos y las bases se comportarían del mismo modo, es decir cediendo o aceptando protones, pero los iones formados serían distintos en cada caso.

Razonando a partir de estas y similares consideraciones, en 1923, Brönsted y Lowry propusieron, independientemente uno de otro, las siguientes definiciones de ácido y de base: Ácido es toda sustancia que puede ceder protones, y base toda sustancia que puede ganar protones. Es decir, un ácido es propiamente un dador de protones, mientras que una base es un aceptor de protones. Pero, puesto que el proceso de perder o ganar un protón es reversible, el ácido, al perder un protón, se transforma en una base y, a su vez, ésta, al ganarlo, se transforma en un ácido. Así, pues, un ácido y su base correspondiente forman un sistema conjugado.

Ácido Protón + Base

Como un protón no puede tener una existencia libre en disolución, debe incorporarse a otra sustancia que se comporta así como base. Los equilibrios se establecen pues en sistemas conjugados dobles del tipo:

Ácido1 + Base2 Ácido2 + Base1

En los que, cuanto más fuerte es un ácido, más débil es su base conjugada y, cuanto más fuerte es una base, más débil es su ácido conjugado. Ejemplos:

HCl + NH3 NH4 + + Cl-

H2SO4 + H2O H3O+ + HSO4 –

HSO4 – + H2O H3O+ + SO4 –

Es importante saber que se considera un ácido a toda sustancia que puede ceder protones, y base a toda sustancia que puede ganar protones.

Según la teoría de Brönsted y Lowry, un ácido y una base pueden ser tanto compuestos moleculares como iones, y una misma sustancia molecular o iónica puede actuar en un caso como ácido y en otro como base. Por ejemplo, el agua actúa como base frente al cloruro de hidrógeno y como ácido frente al amoníaco. En disoluciones no acuosas se forman iones distintos de los iones H3O+ y OH-, pero el proceso es esencialmente el mismo; así, disueltos en amoníaco, NH3, sustancia que como disolvente tiene un comportamiento muy similar al del agua, los ácidos dan lugar a la formación de iones amonio, NH4 +, y las bases a la formación de iones amida, NH2.

Thomas Martin Lowry (1874-1936)
Johannes Nicolaus Bronsted (1879-1947)

Concepto de Lewis

La principal dificultad de las definiciones de ácido y base de Brönsted y Lowry es que sólo pueden aplicarse a reacciones que implican la transferencia de un protón, por lo que para que una sustancia pueda actuar como un ácido en el sentido de la definición de Brönsted-Lowry debe contener en su molécula un átomo de hidrógeno ionizable.

Sin embargo, hay muchas reacciones en las que una sustancia que de acuerdo con la teoría de Brönsted-Lowry no sería un ácido se comporta realmente como tal en el sentido más clásico del término (el de formador de sales). Así, por ejemplo, en ausencia de disolvente y, por lo tanto, sin que exista transferencia de protones, el dióxido de carbono, CO2, reacciona con un óxido básico como el óxido de calcio, CaO, para formar una sal:

CaO + CO2 CaCO3

El problema estriba esencialmente en el injustificado papel especial que la teoría de Brönsted-Lowry otorga al protón. Para superar esta dificultad, Lewis propuso en 1923 un innovador concepto de ácido y base. El nuevo punto de vista no tuvo apenas eco en el mundo científico hasta que el propio Lewis volvió a presentar sus ideas más ampliamente desarrolladas en 1938. De acuerdo con esta teoría, un ácido es toda sustancia (molecular o iónica) que puede aceptar un par de electrones, y una base toda sustancia que puede ceder un par de electrones. En otras palabras, un ácido debe tener su octeto de electrones incompleto y una base debe poseer un par de electrones solitarios. Entonces, la unión de un ácido y una base corresponde a la formación de un enlace covalente dativo o coordinado.

El concepto de Lewis propuso corregir los errores de la teoría de Bronsted y Lowry.

El concepto de base propuesto por Lewis coincide esencialmente con el de Brönsted-Lowry, ya que para que una sustancia pueda aceptar un protón (es decir, comportarse como base en el sentido de Brönsted-Lowry) debe poseer un par de electrones no compartidos. Por ejemplo, la molécula de agua, H2O, y el ion cloruro, Cl-, que pueden aceptar un protón, tienen las siguientes estructuras electrónicas:

O sea, que poseen un par de electrones no compartidos que pueden emplear para aceptar un protón, formando, respectivamente, el ion H3O+ y la molécula HCl:

Evidentemente, tanto el agua como el ion cloruro pueden comportarse como bases de Lewis cediendo un par de electrones no compartidos a un ácido. Vemos, pues, que, respecto al concepto de base de la teoría de Brönsted-Lowry, el concepto propuesto por Lewis no amplía de forma significativa el número de compuestos que pueden ser considerados como bases.

Sin embargo, el caso es radicalmente distinto para el concepto de ácido. Para empezar, hay sustancias que son ácidos de acuerdo con la definición de Brönsted-Lowry y que no lo son en el sentido de Lewis. Por ejemplo, para Lewis el HCl no es realmente un ácido sino la combinación de un ácido (H+) y una base (Cl-); ya vimos que el ion Cl- es una base tanto según la definición de Brönsted-Lowry como de Lewis y ahora justificaremos que el ion H+ es un ácido en el sentido de Lewis mediante la reacción:

H+ + H2O H3O+

En la que el H+ acepta un par de electrones de la molécula de agua para formar un ion H3O+, comportándose, por lo tanto, como un ácido. También deben ser considerados como ácidos en el sentido de Lewis los cationes metálicos, que aceptan pares de electrones al hidratarse o solvatarse. Y, volviendo a la reacción que escribimos más arriba entre el dióxido de carbono y el óxido de calcio:

CaO + CO2 CaCO3

También aquí debemos considerar que el CO2 es un ácido en el sentido de Lewis, ya que en esta reacción el átomo de carbono del CO2 acepta en covalencia dativa un par de electrones cedidos por el átomo de oxígeno del CaO:

El modelo de Lewis se utiliza en química orgánica para explicar el comportamiento catalítico de algunos compuestos que son ácidos de Lewis, pero, en general, cuando se estudian reacciones que tienen lugar en disolución acuosa o simplemente que implican una transferencia de protones, la generalización propuesta por Lewis resulta innecesaria y los químicos razonan en estos casos a partir de los conceptos de Arrhenius o de Brönsted-Lowry.

Gilbert Newton Lewis (1875-1946) fue un reconocido fisicoquímico estadounidense.

Mutación

Las mutaciones provocan cambios en el ADN, los cuales pueden provocar desórdenes genéticos devastadores o adaptaciones beneficiosas, razón por la cual es de suma importancia estudiarlas.

¿Qué son las mutaciones?

Las mutaciones son cambios en las secuencias del ADN o ARN y son una de las causas principales de la diversidad biológica. Se producen en muchos niveles diferentes, desde un bloque del ADN hasta un segmento de algún cromosoma, y tienen consecuencias diferentes en cada organismo.

A pesar de que existen varios tipos de cambios moleculares, la mutación se refiere típicamente a los cambios en los ácidos nucleicos.
A pesar de que existen varios tipos de cambios moleculares, la mutación se refiere típicamente a los cambios en los ácidos nucleicos.

En los sistemas biológicos capaces de reproducirse, los cambios pueden ser o no heredables. Por ejemplo, algunas mutaciones afectan a un solo individuo, el que la porta, mientras que otras a todos los descendientes del organismo portador y por lo tanto a futuras generaciones.

Mutaciones hereditarias vs. mutaciones somáticas o adquiridas

Las mutaciones hereditarias son aquellas que pasan de padres a hijos, generalmente están presentes en toda la vida de la persona y ocupan prácticamente todas las células de su cuerpo. Estas mutaciones también se conocen como mutaciones de línea germinal, porque se pueden hallarse en las células germinales del padre o de la madre, es decir, en el óvulo o los espermatozoides.

Las mutaciones hereditarias se producen en las células sexuales.
Las mutaciones hereditarias se producen en las células sexuales.

Por otro lado, las mutaciones adquiridas o somáticas pueden producirse en algún momento de la vida de la persona, pero sólo estarán presentes en ciertas células del cuerpo. Estas no son pasadas a las siguientes generaciones porque no se producen en las células germinales, ocurren en las somáticas.

Las mutaciones adquiridas se pueden generar por factores ambientales o errores durante la división celular de las células somáticas.

Tipos de mutaciones

Existen muchas formas diferentes en las que el ADN puede cambiar, lo que da como resultado diversos tipos de mutaciones, las cuales se diferencias entre sí de acuerdo al lugar donde se producen, dividiéndose en:

  • Mutaciones génicas o moleculares.
  • Mutaciones cromosómicas.
  • Mutaciones genómicas.

Mutaciones genéticas

Son aquellas que ocurren cuando se producen cambios en la secuencia de nucleótidos del ARN, lo que puede traer como consecuencia que se formen las proteínas incorrectas. Dentro de este tipo se encuentran:

  • Sustituciones: son aquellas en las que hay un intercambio entre dos bases nitrogenadas, ejemplo, un cambio entre una timina (T) y una citosina (C). Dicha sustitución podría cambiar el codón y generar un aminoácido diferente, lo que provocará a su vez un cambio en la proteína producida.

CTGGAG

CTGGTG

La anemia falciforme es causada por una mutación de sustitución, en esta el codón GAG muta a GTG, y conduce al cambio del aminoácido glutamato a valina.

En algunos casos las sustituciones pueden no afectar la estructura de la proteína, a éstas se las conoce como mutaciones silenciosas.

Mutaciones cromosómicas

Son aquellas que afectan a los cromosomas mediante las supresiones o duplicaciones de algún segmento del cromosoma. Dentro de este tipo se encuentran:

  • Inserciones: son aquellas mutaciones en las que pares de bases extra se insertan en el ADN. Este número de bases puede variar entre uno y miles. La enfermedad de Huntington y el síndrome de X frágil son ejemplos de este tipo de mutaciones.
Mutación de tipo inversión.
Mutación de tipo inversión.
  • Deleciones: son aquellas en las que se suprime o se pierde una sección del ADN. El número de bases suprimidas puede variar de uno a miles.

El síndrome de deleción 22q11.2 es un ejemplo de mutación por deleción, en éste se suprimen algunos pares de bases del cromosoma 22, lo que trae como consecuencias, trastornos autoinmunes y defectos cardíacos.

Mutación de tipo deleción.
Mutación de tipo deleción.
  • Translocaciones: son aquellas mutaciones en las que una porción del ADN es pasada de un cromosoma a otro no homólogo. Algunos tipos de leucemia son provocados por translocaciones.
Mutación de tipo translocación.
Mutación de tipo translocación.

Mutaciones genómicas

También conocidas como mutaciones numéricas, son aquellas que afectan el número total de cromosomas de un individuo. Dentro de este tipo se pueden destacar:

  • Poliploidía: es aquella condición en la que un organismo diploide adquiere uno o más juegos de cromosomas adicionales. La poliploidía se produce como consecuencia de la no separación o separación incompleta de los cromosomas durante la mitosis o meiosis.
  • Aneuploidía: en este caso la mutación se produce en uno o varios cromosomas pero no afecta el juego completo, como en el caso de la poliploidía. La aneuploidía genera un número anormal de algún cromosoma. De acuerdo a esto, las aneuploidias pueden ser de tipo, monosomías, trisomías y tetrasomías, entre otras, de acuerdo al número de cromosomas que se dupliquen.
El síndrome de Down se produce porque hay 3 cromosomas del tipo 21, por eso también se conoce como trisomía 21.
El síndrome de Down se produce porque hay 3 cromosomas del tipo 21, por eso también se conoce como trisomía 21.
  • Haploidía: son aquellas en las que se produce una disminución en el juego total de cromosomas de un individuo.

Efectos de las mutaciones

Los efectos de las mutaciones pueden ser beneficiosos, perjudiciales o neutrales, todo depende del contexto y de la ubicación donde ocurra la misma.

La mayoría de las mutaciones no neutrales son deletéreas, es decir, afectan la capacidad de un individuo sin causarle la muerte. Generalmente, cuanto mayor es el número de bases afectadas por una mutación, mayor será el efecto de la misma sobre el individuo.

Las mutaciones pueden variar en efecto, algunas pueden tener efectos enormes, mientras que otras, tienen efectos pequeños que pueden generar cambios evolutivos.

La mayoría de las veces en las que ocurre una mutación, se logra invertir por los procesos de reparación del ADN, los cuales están en constante trabajo para evitar cualquier error. Sin embargo, algunos cambios pueden permanecer y son los potencialmente generaran una enfermedad.

Ciclo de Krebs: respiración celular

Después de la glucólisis, sigue otro mecanismo de la respiración celular que consta de múltiples etapas: el ciclo de Krebs, también conocido como el ciclo del ácido cítrico o el ciclo de ácido tricarboxílico.

¿Qué es el ciclo de Krebs?

Ciclo de ácido tricarboxílico, también conocido como ciclo de Krebs o ciclo de ácido cítrico, es la segunda etapa del proceso de respiración celular, mecanismo mediante el cual las células vivas descomponen moléculas de combustible orgánico en presencia de oxígeno para recoger la energía que necesitan para crecer y dividirse.

 

Se lleva a cabo en las mitocondrias, específicamente en la matriz, a excepción de las bacterias.

El ciclo de Krebs desempeña un papel central en la descomposición o catabolismo de moléculas de combustible orgánico, es decir, la glucosa, los ácidos grasos y algunos aminoácidos. Antes de que estas moléculas puedan entrar en el ciclo, deben ser degradadas en un compuesto de dos carbonos llamado acetil coenzima A (acetil CoA).

El ciclo de Krebs se produce en la mayoría de los organismos, tanto animales como vegetales.

¿Qué es el acetil CoA?

Es una molécula sintetizada a partir del piruvato e imprescindible para la síntesis de sustancias como: ácidos grasos, colesterol acetilcolina. Está formado por un grupo acetil unido a la coenzima A, el cual finalmente es degradado en CO2 H2O a través del ciclo de Krebs, la síntesis de ácidos grados o la fosforilación oxidativa.

El acetil CoA, es una molécula sumamente energética.

Etapas del ciclo de Krebs

El ciclo de Krebs consiste en ocho etapas catalizadas por ocho enzimas diferentes. Se inicia cuando el acetil CoA reacciona con un compuesto denominado oxaloacetato para formar citrato y liberar coenzima A (CoA-SH).

¿Sabías qué...?
El ciclo de Krebs en total forma 1 molécula de GTP, NADH y FADH2, las cuales en su paso por la cadena transportadora de electrones, realizada en la mitocondria, serán transformadas por ATP sumamente energética. 

Luego, el citrato se reordena para formar isocitrato; el cual posteriormente pierde una molécula de dióxido de carbono y sufre oxidación para formar alfa-cetoglutarato; seguidamente éste pierde una molécula de dióxido de carbono y se oxida para formar succinil CoA; el succinil-CoA se convierte en succinato y se oxida a fumarato, el cual se hidrata para producir malato, finalmente el malato se oxida a oxaloacetato.

Reacciones del ciclo de Krebs.

Reacción 1: citrato sintasa

La primera reacción del ciclo de Krebs es catalizada por la enzima citrato sintasa, durante esta etapa, el oxaloacetato, un intermediario metabólico, se une con el acetil-CoA para formar ácido cítrico. Una vez unidas las dos moléculas, una de agua ataca al acetilo para provocar la liberación de la coenzima A.

Reacción 2: acontinasa

La siguiente reacción del ciclo del ácido cítrico es catalizada por la enzima acontinasa. En esta reacción, una molécula de agua se retira del ácido cítrico y se coloca en otra ubicación. El efecto de esta conversión es que el grupo -OH se mueve de la posición 3′ a la posición 4′ sobre la molécula, esto trae como consecuencia la transformación de citrato a isocitrato.

Reacción 3: Isocitrato deshidrogenasa

En esta etapa ocurren dos eventos dependientes de la enzima isocitrato deshidrogenasa, localizada en la mitocondria. En la primera fase dicha enzima cataliza la oxidación del isocitrato, el cual se transforma en oxalsuccinato (un intermediario), lo que libera una molécula de NADH formada a partir de NAD.

Seguidamente, se produce la descarboxilación (liberación del CO2) del oxalsuccinato, lo que conlleva a la formación de alfa-cetoglutarato, una molécula compuesta por dos grupos carboxilos en los extremos y una cetona en posición alfa a uno de los carboxilos.

Reacción 4: alfa-cetoglutarato deshidrogenasa

Durante esta reacción se produce otra descarboxilación, el alfa-cetoglutarato es quien pierde la molécula de dióxido de carbono y en su lugar se añade la coenzima A. Esta descarboxilación se produce con la ayuda de NAD, quien es transformado durante el proceso en NADH.

La enzima catalizadora de esta reacción es la alfa-cetoglutarato deshidrogenasa u oxoglutarato deshidrogenasa, como resultado de esta etapa se forma la molécula succinil CoA.

Reacción 5: succinil CoA sintetasa

La enzima succinil-CoA sintetasa es la protagonista de esta reacción y se encarga de catalizar la síntesis de trifosfato de guanosina o GTP. El GTP es una molécula muy similar en estructura y propiedades energéticas al ATP, por lo que puede ser utilizado por las células de la misma manera.

El GTP es formado por la adición de un grupo fosfato libre a una molécula de GDP. En esta reacción, el grupo fosfato libre ataca primero a la molécula de succinil-CoA lo que provoca la liberación de la coenzima A. Después de que el fosfato se une a la molécula, se transfiere al GDP para formar GTP, el producto final es una molécula denominada succinato.

Reacción 6: succinato deshidrogenasa

La enzima succinato deshidrogenasa cataliza la eliminación de dos hidrógenos del succinato en la sexta reacción del ciclo del ácido cítrico. En esta etapa, una molécula de FAD, se reduce a FADH2 debido a que recibe los hidrógenos provenientes del succinato, de esta reacción se genera el fumarato.

Reacción 7: fumarasa

Esta reacción se produce gracias a la catálisis de la enzima fumarasa, la cual genera la adición de una molécula de agua en forma de OH al fumarato para dar lugar a la molécula L-malato.

Reacción 8: malato deshidrogenasa

Es la reacción final del ciclo, en ella es regenerado el oxaloacetato mediante la oxidación del L-malato, se utiliza otra molécula de NAD como aceptor de hidrógeno y se forma un NADH.

Energía en los alimentos

La mayor parte de nuestra energía la obtenemos de nuestros alimentos, los cuales por varias reacciones metabólicas nos permiten obtener moléculas energéticas como el ATP, FADH2 y el NADH, por ejemplo, el ciclo de Krebs logra aprovechas el 62 % de la energía contenida en la glucosa.