Recursos naturales renovables y no renovables

Los recursos naturales son todos aquellos elementos que provienen de la naturaleza y que, además, pueden ser usados para satisfacer las necesidades del ser humano. De acuerdo a sus posibilidades de recuperación, estos recursos naturales pueden clasificarse en renovables y no renovables.

Recurso natural renovable Recurso natural no renovable
Otro nombre Recurso natural de flujo. Recurso natural agotable.
Procedencia De la naturaleza. De la naturaleza.
Cantidad generada Ilimitada (bajo correcta gestión). Limitada.
Tiempo de regeneración Relativamente corto. Millones de años.
Consecuencias de su explotación
  • Deforestación.
  • Extinción de especies animales y vegetales.
  • Contaminación ambiental.
  • Extinción de especies animales y vegetales.
  • Contaminación ambiental.
Clasificación y ejemplos
  • Renovable con gestión sostenible.

Ejemplo: el agua subterránea.

 

  • Renovables en sentido estricto.

Ejemplo: Aire puro.

  • Destructivos o de consumo por uso.

Ejemplo: Petróleo.

 

  • Reciclables o reutilizables en partes.

Ejemplo: Oro.

 

  • Potencialmente renovables.

Ejemplo: Azufre.

Otros ejemplos
  • Fauna.
  • Flora.
  • Suelos fértiles.
  • Energía de mareas y vientos.
  • Gas.
  • Carbón.
  • Aguas fósiles.
  • Minerales metálicos y no metálicos.

 

Ecosistemas acuáticos, ecosistemas terrestres y ecosistemas aeroterrestres

Se entiende por ecosistema  a un conjunto de comunidades que interactúan entre sí y con el medio abiótico en el que viven. Existen tres tipos principales: los ecosistemas acuáticos, los ecosistemas terrestres y los ecosistemas aeroterrestres. 

Ecosistemas acuáticos Ecosistemas terrestres  Ecosistemas aeroterrestres
Definición Son aquellos cuyo medio físico es el agua. Son aquellos cuyo medio físico es la tierra. Son aquellos que albergan organismos que se desarrollan tanto en el agua como en la tierra.
Medio donde están los organismos Agua. Tierra. Tierra y aire.
Productores  Fitoplancton y plantas acuáticas. Plantas terrestres. Plantas terrestres.
Consumidores Peces, mamíferos acuáticos, aves acuáticas, anfibios, reptiles, nematodos, platelmintos, cnidarios, equinodermos y artrópodos. Mamíferos, aves, anfibios, reptiles, nematodos, platelmintos y artrópodos. Aves, artrópodos y mamíferos voladores.
Condiciones ambientales Estables. Variables. Variables.
Factores abióticos importantes Temperatura, luz, salinidad y oxígeno disuelto. Temperatura, luz, humedad y tipo de suelo. Temperatura, luz, humedad y tipo de suelo.
Penetración de la luz Después de los 50 m o 100 m la luz no es capaz de penetrar. La luz es capaz de penetrar hasta los bosques más densos. La luz es capaz de penetrar hasta los bosques más densos.
Tipos de ecosistemas  Océanos, mares, ríos y lagunas. Desiertos, bosques, praderas, tundras y montañas. Desiertos, bosques, praderas, tundras y montañas.

 

Océanos, ríos y lagos

El agua es esencial para la vida y se encuentra en diferentes formas en todo el planeta. Los océanos, ríos y lagos son cuerpos de agua que existen en variedad de formas, tamaños y ubicaciones con características distintivas: fríos, cálidos, dulces, salados y parcial o completamente rodeados de tierra.

Océanos Ríos Lagos
Movimiento superficial del agua Por acción del oleaje. Por el flujo continuo del agua. En ciertas ocasiones por acción del viento.
Profundidad Mayor que la de los lagos y ríos.

La fosa de las Marianas en el océano Pacífico, con 11.034 m de profundidad, es la parte más profunda de la Tierra.
Menor a la de los lagos y océanos.

El río Congo, con 250 m de profundidad, es el río más profundo de la Tierra.
Menor a la de los océanos.

El lago Baikal, con 1.680 m de profundidad, es el lago más profundo de la Tierra.
Temperatura Templada en la capa superficial. Disminuye a medida que aumenta la profundidad. Varía según su ubicación. Casi siempre es uniforme. Varía según su ubicación.
Presión Mayor a medida que aumenta la profundidad. Menor a la de los océanos y lagos. Menor a la de los océanos. La ausencia de sal también contribuye a la bajas presiones.
Salinidad Aproximadamente 3,5 %. El agua es salada. Aproximadamente 0,5 %.

El agua es dulce.

Variada, el agua puede ser dulce o salada.
Color Azul intenso. Depende de la profundidad. Diversos tonos de azul que provienen de los elementos del ecosistema o pH. Diversos tonos de azul que provienen de los elemento del ecosistema o pH.
Descripción física Son los cuerpos de agua más grandes, cubren la mayor parte de la superficie de la Tierra. Son cuerpos de agua delgados y largos que fluyen continuamente hasta desembocar en otro río, lago o mar. Son cuerpos de agua inmóviles de gran tamaño, depositadas en una depresión del terreno.
Estado Natural. Natural. Natural o artificial.
Embarcaciones Cruceros, yates, buques de carga y submarinos. Balsa, canoa o kayak. Veleros y canoas o kayak.
Ejemplos
  • Ártico
  • Antártico
  • Pacífico
  • Índico
  • Atlántico.
  • Nilo
  • Amazonas
  • Paraná
  • Orinoco
  • Danubio

 

  • Titicaca
  • Nicaragua
  • Michigan
  • Gran Lago del Oso
  • Hurón

Jabones y detergentes

En la actualidad es necesario mantener una higiene adecuada para tener un estilo de vida saludable, por ello se emplean diversos jabones y detergentes. Éstos son usados para limpiar la ropa, la vajilla, la casa y la piel del cuerpo, y aunque ambos productos tienen un efecto limpiador no son lo mismo.

Jabones Detergentes
 ¿Qué son? Sales alcalinas de ácidos grasos, generalmente de 16 a 18 átomos de carbonos. Sulfonatos de cadena larga en forma de sales sódicas.
Componentes complementarios Agua, glicerina y aditivos, entro otros. Coadyuvantes, aditivos, enzimas y reforzadores, entre otros.
Uso en el tiempo Desde la antigüedad. Sustancias modernas, el primero se fabricó en 1907.
Usos
  • Limpieza del cuerpo humano.
  • Eliminación de suciedad y aceites.
  • Eliminación de manchas con mayor eficiencia que el jabón.
  • Como limpiador doméstico.
Fuente Grasas animales o vegetales. Derivados de petróleo.
Función en agua dura No funcionan en agua dura. Son efectivos en agua dura.
Residuos Pueden dejar residuos. No dejan residuos.
Biodegradabilidad Son biodegradables. No son biodegradables.
Costo Son económicos. Son costosos.
Estructura química

Estearato de sodio.

p-Dodecilbencenosulfonato sódico.

Obtención Reacciones de saponificación y neutralización. Proceso industrializado.
Característica principal Son surfactantes: sustancias que reducen la tensión superficial de las moléculas de agua, lo que permite que la grasa y suciedad se emulsionen con el agua y desaparezcan al fluir el agua.

 

Los jabones son surfactantes aniónicos.

 

Son surfactantes: sustancias que reducen la tensión superficial de las moléculas de agua, lo que permite que la grasa y suciedad se emulsionen con el agua y desaparezcan al fluir el agua.

 

Los detergentes pueden ser surfactantes aniónios, catiónicos o no iónicos.

Proteínas, carbohidratos y lípidos

Los carbohidratos, los lípidos y las proteínas constituyen los tres macronutrientes. Sus requerimientos dietéticos son altos en relación con los micronutrientes. Las macromoléculas biológicas son orgánicas, lo que significa que contienen carbono y además, pueden contener hidrógeno, oxígeno, nitrógeno y elementos menores adicionales.

Proteínas Carbohidratos Lípidos
Monómero Aminoácidos Monosacárido Glicerol y ácido graso.
Formado por 20 aminoácidos. Átomos de carbono, hidrógeno y oxígeno. Cadenas de carbono e hidrógeno principalmente.
Tipos Simples y conjugadas. Simples y complejos. Grasas, fosfolípidos y colesterol.
Digestión Rápida. Lenta. Muy lenta.
¿Dónde se digieren? Intestino. Intestino. Intestino.
Solubles en agua Algunas. Todas. Ninguna.
Almacenamiento de energía A largo plazo. A corto plazo. A largo plazo.
Funciones Componentes básicos de la vida, almacenamiento de energía, movimiento muscular, soporte estructural, defensa y medio de transporte celular. Almacenamiento de energía, soporte estructural y ayudan a la comunicación entre células. Almacenamiento de energía, protección y  como mensajeros químicos.
Alimentos que lo contienen Mariscos, carnes magras, aves de corral, huevos, frijoles y guisantes, productos de soya, nueces y semillas sin sal. Frutas, granos, lácteos, harinas refinadas y bebidas gaseosas, entre otros. Lácteos, carnes, aves, mariscos, huevos, semillas, nueces, aguacates y cocos.
Ejemplos Enzimas y algunas hormonas. Glucosa, fructosa, almidón, glucógeno y celulosa. Aceites y colesterol.
Estructura

 

Contaminación del suelo, contaminación acuática y contaminación sonora

La contaminación es el proceso que consiste en alterar las condiciones naturales del suelo, el agua, el aire u otras partes del medioambiente y que no es seguro o adecuado para su uso o permanencia. Esto se puede suceder mediante la introducción de algún contaminante, que necesariamente no tiene que ser tangible.

 

Contaminación del suelo Contaminación acuática Contaminación sonora
Tipos de fuentes Puntuales y no puntuales. Puntuales y no puntuales. Puntuales.
Fuentes de contaminación Defecación al aire libre, letrinas de pozo y basura. Todas las sustancias físicas, químicas o biológicas que cambien las cualidades del agua. Sonido proveniente de aviones, industrias u otras fuentes que generen altos niveles de ruido.
Afecta  La superficie terrestre. Las aguas superficiales como ríos y lagos, la humedad del suelo, las aguas subterráneas y los océanos. Todo el ambiente.
Contaminantes biológicos Microorganismos. Bacterias, virus, protozoos y helmintos (gusanos). No.
Contaminantes químicos Fertilizantes e insecticidas. Metales pesados y pesticidas. No.
Enfermedades Larva migrans cutánea, anquilostomiasis, ascaridiasis, tétanos, esporotricosis y tungiasis, entre otras. Cólera, fiebre tifoidea, poliomielitis, meningitis, hepatitis y diarrea, entre otras. Estrés, hipertensión, disfonía y la pérdida auditiva.
Ejemplo

 

Euglena: ¿planta o animal?

Este género de más de 1.000 especies está compuesto de microorganismos flagelados unicelulares que presentan características tanto de plantas como de animales. Estos organismos han sido considerados en algunas ocasiones algas y en otras protozoos.

clasificación

Reino: Protista

Filo: Euglenophycota

Clase: Euglenophyceae

Orden: Euglenales

Familia: Euglenaceae

Género: Euglena (Ehrenberg, 1838)

La euglenas se identifican, entre otras cosas, por la presencia de una mancha ocular formada por pigmentos que absorben la luz.

características

Presenta una célula alargada de 15–500 micrómetros y un núcleo celular. Dentro de ella también se encuentran numerosos cloroplastos que contienen clorofila, una vacuola contráctil, una mancha ocular y uno o dos flagelos.

A diferencia de las células vegetales, la euglena carece de una pared de celulosa rígida y tiene una envoltura protéica flexible que le permite cambiar de forma y le da protección.

Aunque la mayoría de las especies realizan la fotosíntesis, también se alimentan de otros organismos a través de un proceso llamado fagocitosis.

La euglena se reproduce asexualmente a través de un proceso conocido como fisión binaria.

Bajo el microscopio

Por ser un organismo unicelular, no puede verse a simple vista. Por esta razón se debe utilizar un microscopio compuesto para observarla y estudiarla.

La euglena se puede encontrar en estanques y superficies de aguas poco profundas que contienen material orgánico. Por lo tanto, se pueden recoger y preparar fácilmente para su visualización.

La especie más observada en las demostraciones de laboratorio es la Euglena gracilis.

Forma y flagelos

Bajo el microscopio la euglena aparece como un organismo unicelular alargado que se mueve rápidamente a través de la superficie del campo. El cuerpo de este organismo generalmente tiene un extremo redondeado y uno puntiagudo.

El extremo redondeado es a menudo la parte principal de la cual surge la llamada cola en forma de látigo que se conoce como flagelo.

Aunque a menudo se ve un flagelo, las euglenas tienen dos flagelos y uno de estos generalmente se oculta en una parte conocida como reservorio.

El flagelo más largo y visible que se encuentra ubicado en el extremo anterior se mueve rápidamente, lo que hace posible que estos organismos se desplacen a través de la superficie del agua.

Membrana

A diferencia de la mayoría de las células vegetales, este organismo no tiene una pared celular. Los orgánulos y el citoplasma están unidos por una membrana plasmática que facilita el movimiento.

La observación de la euglena bajo un microscopio electrónico ha revelado la presencia de una película compuesta por una capa protéica debajo de la membrana plasmática.

La presencia de esta delgada capa protege la membrana celular y también ayuda a mantener su forma. Además, debido a su naturaleza flexible, facilita el movimiento.

Mancha ocular

Una observación más cercana del organismo revela a través del microscopio una mancha rojiza en la parte anterior. Este es un orgánulo compuesto de gránulos de carotenoides que le permiten sentir y moverse hacia la luz solar.

La mancha ocular también ayuda a filtrar la longitud de onda de la luz que llega al cuerpo paraflagelar, que es la estructura de detección de luz que se encuentra en la base del flagelo.

El movimiento corporal del organismo hacia la fuente de luz donde ocurre la fotosíntesis se conoce comúnmente como fototaxis positiva.

Clorofila

Además de la mancha ocular, también se logra notar bajo el microscopio unas manchas oscuras y verdosas en todo el cuerpo del organismo.

Algunos de estos puntos son cloroplastos que contienen clorofila, lo que produce el tono verde y es responsable de la fotosíntesis. Esto generalmente se conoce como clorofila A.


¿Sabías qué...?
Algunas euglenas tienen clorofila A y B. La clorofila B produce un color verde azulado y mejora la absorción de luz requerida para la fotosíntesis.

El cloroplasto en el organismo atrapa la luz solar que se utiliza para fabricar su alimento a través de la fotosíntesis. Este proceso se puede resumir de la siguiente manera:

Dióxido de carbono + agua, glucosa y oxígeno (en presencia de luz solar)

Aunque son capaces de fabricar su propio alimento, también se alimentan de otros organismos al envolverlos en sus membranas celulares a través de un proceso conocido como fagocitosis. 

Fagocitosis

En este proceso, el organismo envuelve la partícula de alimento en una vacuola para ser digerida a través de la liberación de ciertas enzimas. Las euglenas también tiene una vacuola contráctil que ayuda a recolectar y eliminar el exceso de líquidos de la célula. Esto evita que la célula ingiera demasiada agua, para evitar que la misma colapse y se rompa.

Reproducción

Este organismo se reproduce de forma asexual a través de un proceso conocido como fisión binaria. Este proceso comienza cuando la euglena replica su ADN y se expande en tamaño. Luego se divide por la mitad y crea dos organismos completos, cada uno con ADN idéntico.

La parte más importante de la fisión binaria es la división del núcleo donde se encuentra el material genético, que se produce a través de la mitosis que consta de cuatro etapas.

Generación espontánea

Durante milenios los seres humanos se han preguntado cómo surge la nueva vida, y esto se ha mantenido en una constante disputa entre la religión, la filosofía y la ciencia. Una de las primeras explicaciones fue la teoría de la generación espontánea, ampliamente aceptada durante la Edad Media.

Teoría de la generación espontánea

Esta teoría tiene como objetivo explicar el surgimiento aparentemente repentino de organismos en la materia inerte. Sugiere que estos no descienden de otros organismos y que sólo requiere que se cumplan ciertas condiciones en su entorno para que ocurra la creación.

La generación espontánea es la hipótesis incorrecta de que las cosas no vivas son capaces de producir vida.

Aristóteles como precursor

Aristóteles fue quien teorizó que la materia no viva contenía un calor vital llamado pneuma. Sugirió que los animales y las plantas podrían surgir de la tierra y del líquido, porque había calor vital en el aire, aire en el agua y agua en la tierra. Esta creencia sentó las bases para la teoría de la generación espontánea.

Generación espontánea de ratones

Para crear ratones se requiere que la ropa interior sucia y el grano de trigo se mezclen y se dejen al aire libre. En 21 días o menos, aparecerían los ratones. La causa real puede parecer obvia desde una perspectiva moderna, pero para los defensores de esta idea, los ratones surgieron espontáneamente de los granos de trigo.

La teoría de la generación espontánea persistió en el siglo XVII, cuando los científicos realizaron experimentos adicionales para apoyarla o refutarla.

Redi Vs. Needham

En 1668 un científico italiano llamado Francesco Redi diseñó un experimento para probar la creación espontánea de gusanos. Redi sospechaba que las moscas que aterrizaban en la carne ponían huevos y estos eventualmente se convertían en gusanos.

Para probar esta idea realizó el siguiente experimento:

  1. Usó tres piezas de carne.
  2. Una de ellas la colocó debajo de una hoja de papel, como resultado las moscas no pudieron poner huevos en la carne y no se desarrollaron gusanos.
  3. La segunda pieza la dejó al aire libre, donde aparecieron los gusanos.
  4. La tercera pieza la cubrió con una gasa. Las moscas fueron capaces de poner los huevos en la gasa pero en la carne no se desarrollaron gusanos.
  5. Para concluir, colocó la gasa que contenía los huevos en un trozo de carne fresca y observó como se desarrollaron los gusanos.
El experimento de Redi demostró que fueron los huevos los que originaron las moscas y no la generación espontánea.

En Inglaterra, John Needham desafió los hallazgos de Redi al realizar un experimento en el que colocó un caldo orgánico en una botella, lo calentó para matar cualquier organismo que estuviese dentro y luego la selló. Días después, informó sobre la presencia de vida en el caldo y anunció que la vida había sido creada a partir de materia no viva.

Experimento de Spallanzani

Lazzaro Spallanzani, también un científico italiano, revisó los datos y el diseño experimental de Redi y Needham y concluyó que quizás el calentamiento de la botella de Needham no mató todo lo que había dentro, por lo que construyó su propio experimento.

  1. Colocó caldo en cada una de las dos botellas.
  2. Hirvió el caldo en ambas botellas.
  3. Selló una botella y dejó la otra abierta.
  4. Días después, la botella sin sellar estaba llena de pequeños seres vivos que observó con más precisión en el microscopio recién inventado. La botella sellada no mostraba signos de vida.
El experimento de Spallanzani ciertamente excluye a la generación espontánea como una teoría viable.
Llegada de la microscopía

La invención del microscopio en ese momento sirvió para realzar la creencia de la generación espontánea. La microscopía reveló un mundo completamente nuevo de organismos que parecían surgir espontáneamente.

Algunos científicos notaron que Spallanzani, al haber privado la botella de aire, había obviado el hecho de que éste era necesario para la generación espontánea. Aunque su experimento fue exitoso, una fuerte refutación debilitó sus afirmaciones.

Experimento de Pasteur

Louis Pasteur, un científico francés, aceptó el desafío de recrear el experimento y dejar el sistema abierto al aire.

  1. Diseñó varias botellas con cuellos curvos en S orientados hacia abajo para que la gravedad impidiera el acceso de materiales extraños en el aire.
  2. Colocó un caldo enriquecido con nutrientes en una de las botellas de cuello de cisne.
  3. Hirvió el caldo y no observó vida en la botella durante un año.
  4. Luego rompió la parte superior de la botella, la expuso más directamente al aire y observó formas de vida en el caldo en unos días.

Concluyó que mientras el polvo y otras partículas en el aire quedaran atrapadas en el cuello en forma de S de la botella, no se crearía vida hasta que se eliminara ese obstáculo.

Pasteur finalmente convenció al mundo de que aunque la materia inerte estuviese expuesta al aire no surgirían formas de vida en ella.
¿Sabías qué...?
La pasteurización originalmente fue el proceso de calentar los alimentos para eliminar microorganismos dañinos antes del consumo humano.

 

 

Los peces

Van y vienen, algunos sólo nadan y otros pueden saltar. Se los ve en los arroyos, ríos, mares, océanos y en los hogares. Son tan coloridos como las flores y tan preciados como el oro. ¡Vamos a sumergirnos con los peces!

Hace 500 millones de años, el primer pez nadó en las aguas de la Tierra.

Son los primeros vertebrados que llegaron a la Tierra; están dotados de aletas y branquias para poder vivir en el medio acuático. Existen más de 20.000 especies y son tan diferentes entre sí que resulta complejo compararlos.

Para el hombre siempre representaron una gran fuente de alimento. Su carne contiene en su fracción seca entre un 15 y 30% de proteínas. Además reúne los diez aminoácidos esenciales para el organismo humano y posee bajo contenido en azúcar. La comercialización es redituable pero ha generado grandes perjuicios en el medio ambiente.

En el ecosistema también cobran importancia; pues su desaparición significa un desequilibrio en el medio acuático. Por ejemplo, las algas dependen de los peces para vivir, ellos son los encargados de devolver al agua nutrientes, como el nitrógeno y el fósforo, mediante la excreción.

LA VIDA EN EL AGUA

Para poder vivir en el agua se requiere una fisonomía particular y un sistema de órganos adaptados al medio. Los peces indudablemente lo tienen y ahora lo vamos a descubrir.

Esqueleto: Todos los peces poseen un esqueleto interno, por eso se dice que son animales vertebrados. Algunos tienen un esqueleto de cartílago en vez de huesos y por eso se les dice “peces cartilaginosos”; es el caso de los tiburones y las rayas. Pero la mayoría tienen esqueleto de huesos (óseos o teleósteos). La forma no es igual en todos los peces, depende del modo de vida y del ambiente donde viva. Por ejemplo, los peces que habitan en el océano tienen poderosos músculos y requieren espinas dorsales fuertes.

Percepción: El cerebro de los peces es el encargado de recibir los datos del mundo exterior mediante órganos sensoriales como los ojos. También perciben en la línea lateral, allí hay un tubo lleno de fluido que corre bajo la piel; entonces, cuando las vibraciones entran en el canal a través de los poros de la piel, unos pequeños bultitos gelatinosos comienzan a vibrar estimulando las terminales nerviosas. De este modo, perciben los movimientos del entorno.

Los peces tienen el olfato muy desarrollado, lo utilizan para detectar enemigos y conseguir alimentos.
¿Sabías qué...?
El “pez luna” puede alcanzar los 3 metros, pesar hasta 1 tonelada y tiene un cerebro de 4 gramos.

Locomoción: El principal medio donde se desplazan los peces es el agua; allí utilizan sus aletas. Algunas de ellas son.
Aletas dorsales: les otorgan estabilidad y maniobrabilidad.
Aleta caudal: se encuentra en la cola, permite impulsar el nado.
Aletas anales: son estabilizadoras.
Aletas pectorales: situadas detrás de las branquias, son estabilizadoras.
Aletas pélvicas o ventrales: ventrales a las aletas pectorales.

Respiración: Los peces no poseen pulmones para respirar como los seres humanos, sino que cuentan con unas estructuras denominadas branquias. Se encuentran a los lados de la cabeza y están formadas por delicadas laminillas por donde corre sangre. Cuando el agua fluye entre las branquias, el oxígeno (contenido en el agua) pasa a la sangre y así se distribuye por todo el cuerpo.

Ilustración del sistema respiratorio. En azul se gráfica el circuito del agua y en rojo las laminillas de las branquias.

El corazón: Está conformado por dos cavidades: una aurícula y un ventrículo. Bombea sangre oxigenada hacia las branquias que se ocupan de distribuirla hacia todo el cuerpo. Finalmente, la sangre que fluyó y se desoxigenó porque le llevó oxígeno a las diferentes partes del cuerpo, regresa al corazón.

Alimentación: Existen peces carnívoros, herbívoros u omnívoros. Los primeros consumen insectos, peces, crustáceos, moluscos o gusanos poliquetos; los herbívoros, plantas o algas; y los omnívoros, tanto vegetales como animales.

Los peces no tienen el mismo tipo de boca, varía de acuerdo a su alimentación y entorno. Por ejemplo, los peces cazadores tienen hocicos alargados y numerosos dientes para atrapar sus presas. Hay otros que no han desarrollado boca y tienen mandíbulas; estas especies acceden a una variedad mucho más amplia de alimentos, incluyendo plantas.

Una vez ingerido el alimento, se desglosa en el estómago y otros órganos, como el hígado y el páncreas, que le aportan enzimas digestivas. La absorción de nutrientes se realiza en el intestino.

Excreción: Los peces excretan residuos nitrogenados en forma de amoníaco por dos vías: una parte es expulsada por las branquias en el agua y el resto mediante los riñones que filtran la sangre. Los peces de agua salada están dotados de riñones que concentran la basura y expulsan tanta agua como sea posible; en cambio, los que habitan en aguas dulces poseen riñones adaptados para bombear grandes cantidades de orina diluida. Algunos peces han desarrollado riñones especialmente adaptados que cambian su función, permitiéndoles trasladarse de agua dulce a agua de mar.

Reproducción: La mayoría de las especies se reproducen colocando huevos en el agua. Las hembras los ponen y los machos los fecundan con su esperma. De los huevos nacen pequeñas larvas que se nutren del resto de la yema de huevo que llevan adherido. Con el tiempo se convierten en alevines, con una estructura más desarrollada y finalmente se convierten en adultos.

Existen ciertas especies que directamente paren a la cría completamente formados; y otros, que retienen los huevos hasta la eclosión. Hay muchas excepciones al modo normal de reproducción, por ejemplo el caballito de mar macho guarda los huevos en desarrollo en una pequeña bolsa de su propio cuerpo hasta que eclosionan.

¿Sabías qué...?
El caballito de mar sólo puede alcanzar velocidades de 0.016 kilómetros por hora.

LA VIDA MARINA EN PELIGRO

Actualmente se llevan a cabo actividades sin previsión que perjudican al medio marino, cuando éste representa un gran tesoro para la humanidad. Los científicos estiman que el 60% de los grandes ecosistemas marinos han sido degradados o están siendo utilizados de manera no sostenible. Esto quiere decir que a largo plazo ya no podremos sacar provecho de los servicios esenciales que nos otorgan los ecosistemas marinos.

Lo que está ocurriendo:

  • Sobreexplotación comercial de las reservas pesqueras. Sólo por mencionar un ejemplo, la totoaba (Totoaba macdonaldi), un pez de gran valor económico por su considerable tamaño y el sabor de su carne, fue llevado casi al exterminio por una sobre pesca.
  • El medio marino está recibiendo aguas residuales y desechos de la agricultura. Esto ha generado el aumento de las “zonas muertas”, es decir, de regiones donde la vida marina no es posible por la falta de oxígeno.
  • Emisiones de CO2. Provoca acidificación en los océanos, esto afecta el crecimiento de los arrecifes de coral y a la normal reproducción de las especies. Además acaba con ciertas especies de plancton y zooplancton que son la base de la cadena alimentaria marina.
  • Los océanos sufren las consecuencias de los derrames de hidrocarburos y productos tóxicos.
  • Destrucción de manglares, arrecifes, estuarios y embalses.
  • Urbanización sin previsión, modificación de costas.
Aguas residuales vertidas en el mar.
Barco de pesca de gambas.
Derrame de petróleo.

Lo que se hace para protegerlo:

  • La FAO (Organización para el alimento y la agricultura) trabaja con estimaciones, en investigaciones y proyectos de protección ambiental.
  • La Comisión Oceanográfica Intergubernamental de la UNESCO (COI) gestiona el Sistema de Información Biogeográfica de los Océanos, que forma parte del Intercambio Internacional de Datos e Información Oceanográficos. Además trabaja junto con los Estados para conservar la diversidad biológica en todas las regiones marinas y para asegurar su futuro. La Comisión proporciona la base científica necesaria para hacer el inventario mundial de las zonas marinas de importancia biológica y ecológica que necesitan protección.
  • La Red de sitios marinos del Patrimonio Mundial de la UNESCO trabaja para preservar el medio marino y coopera con otras organizaciones que se proponen el mismo fin.
  • El Programa sobre el Hombre y la Biosfera (MAB) es un Programa Científico Intergubernamental que busca establecer una base científica con el fin de mejorar la relación global de las personas con su entorno.
  • Organizaciones No gubernamentales Ambientalistas también procuran proteger el medio ambiente con diferentes acciones. Una de las más conocidas es Greenpeace.
Diversos organismos llevan a cabo investigaciones para establecer líneas de acción.

PECES EXTRAÑOS

Peces con huesos verdes
Es el caso del pez aguja marino que tiene un esqueleto color verde brillante. Cuando los pescadores lo capturan, no tienen mucha aceptación porque genera impresión ver el esqueleto brillar aun cuando fue hervido.

Peces con patas
Existen peces que pueden “caminar” utilizando sus extrañas aletas como patas. Incluso pueden abandonar el agua y respirar aire por una largo tiempo. Uno de estos peces es el saltarín de barro que “salta” en los manglares y costas de África, sudeste de Asia y Australasia.

Peces que se inflan
Hay peces que tienen la capacidad de inflarse y erizar sus espinas para resguardarse de los enemigos. De este modo pueden lastimar a su predador. El pez ballesta, el pez globo y ciertas especies de bagres son algunos de los peces que tienen esta capacidad.

Peces limpiadores
Son pequeños peces que han firmado un muy buen contrato con los peces grandes: los más pequeños se ocupan de quitar los restos de comida que quedan en los dientes de los peces grandes para alimentarse y los peces grandes, conscientes de las ventajas de la limpieza, no los atacan. Como ejemplo podemos encontrar los Labridae, Cichlidae, Siluriformes y Gobiidae.

Peces con electricidad
Estos peces no sólo llaman la atención por tener un aspecto bastante similar al de una serpiente, sino porque tienen la habilidad de emitir descargas eléctricas de hasta 600 voltios para cazar presas, defenderse y comunicarse con otras anguilas.

CURIOSIDADES

¿Los peces duermen?

No, ellos no pueden conciliar el sueño; sólo pueden reposar. Si bien carecen de parpados, tienen una membrana que cubre sus ojos para impedir el ingreso de luz. Cuando reposan regulan la altura de flotación mediante la vejiga natatoria y se mantienen en equilibrio con las aletas. De esta manera, disminuyen el ritmo cardíaco y entran en un período de descanso.

Decimos que simplemente reposan porque ponen en descanso la mitad de su cerebro ya que siempre están alertas para advertir depredadores. No todos los peces descansan de la misma forma, por ejemplo, algunos posan su aleta inferior o posterior en el fondo marino para asegurarse de que no son arrastrados por la corriente.

¿Necesitan beber agua los peces?

Los peces de río no beben agua porque ingresa a su cuerpo mediante la piel y las branquias. En cambio los peces de mar sí beben agua ya que si no lo hicieran, se deshidratarían porque pierden agua a través de su piel. Cuando se observa a un pez mover su boca, como si estuviera bebiendo, en realidad está respirando. Esa agua va hacia sus branquias y nunca llega al estómago.

¿Por qué los peces no se congelan en los Polos?

Las temperaturas de 1,8 grados centígrados bajo cero deberían ser lo bastante frías como para congelar a cualquier pez, ya que el punto de congelación de la sangre de estos animales es de alrededor de 0,9 grados centígrados bajo cero. El enigma de cómo los peces de los polos son capaces de seguir moviéndose sometidos a estas temperaturas tan gélidas ha intrigado desde hace mucho tiempo a la comunidad científica.

Hace 50 años, se descubrió en estos peces la presencia de proteínas especiales anticongelantes, capaces de protegerles de la congelación de la sangre. Estas proteínas anticongelantes funcionan mejor que cualquier anticongelante doméstico. Sin embargo, hasta ahora ha estado poco claro cómo actúan dentro de los peces.

Los acuíferos

Es habitual escuchar que las guerras del futuro serán por el agua; ocurre que los acuíferos son fuentes de riqueza bajo la tierra. Es necesario que toda la sociedad tome conciencia sobre su importancia para protegerlos y utilizarlos de manera sustentable.

Los acuíferos son formaciones geológicas en las cuales se encuentra agua; son permeables, pues permiten el almacenamiento y la circulación del agua subterránea. ¿Sabías que allí se puede encontrar líquido que ingresó hace más de 30 mil años?

Estos grandes reservorios de agua no se encuentran a disposición inmediata del ser humano, están bajo tierra y para obtener el agua hay que hacer grandes pozos y excavaciones. Se forman naturalmente cuando la superficie terrestre absorbe el agua de lluvia. Ésta va atravesando distintas capas hasta llegar a una zona no permeable debido a la composición de la roca.

Capas de los acuíferos

No confinada: el agua almacenada en esta capa puede ser utilizada por el ser humano a través de la excavación.
Confinada: es difícil obtener el agua de este sector porque se encuentra a mayor distancia y la roca es más difícil de excavar.

La UNESCO (Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura) define a los acuíferos como un recurso de agua fiable para el suministro de agua y para el riego de cultivos, con un coste razonable y que emplea tecnología disponible. Además sostiene que el agua subterránea es un recurso hídrico clave para el alivio de la pobreza, en la lucha contra la desnutrición y las hambrunas, y en la mejora de las condiciones de salubridad de la población.

El cuidado del agua es un tema que se encuentra en agenda internacional, el Consejo Intergubernamental del Programa Hidrológico Internacional (PHI) de la UNESCO celebró este año su 20ª reunión, entre el 4 y 7 de junio en la Sede de la UNESCO de París. Durante el encuentro se examinaron informes y resoluciones.

El problema del agua no es un asunto del siglo XXI, en 1992 se estableció el Día Mundial del Agua. Fue propuesto en la Conferencia de las Naciones Unidas para el Medio Ambiente y el Desarrollo efectuada en Rio de Janeiro (Brasil) del 3 al 14 de junio de 1992. Posteriormente, la Asamblea General de las Naciones Unidas adoptó el 22 de diciembre de 1992 la resolución que declaró el 22 de marzo de cada año como el Día Mundial del Agua.

“A menos que aumentemos nuestra capacidad para utilizar el agua de manera sensata en la agricultura, no podremos acabar con el hambre y abriremos la puerta a una serie de problemas, entre ellos la sequía, la hambruna y la inestabilidad política”

Ban Ki-moon, Secretario General de las Naciones Unidas

Día Mundial del Agua, 22 de diciembre.
¿Sabías qué...?
La “Fosa de las Marianas”, ubicada en el fondo del Pacifico norte-occidental, es el lugar más profundo de la corteza terrestre.
Corte transversal de una aldea árabe junto al muelle oasis formado alrededor del acuífero.
Los acuíferos más grandes del mundo

Algunos de los acuíferos transfronterizos más grandes del mundo se localizan en América del Sur y África del Norte, tales como el acuífero Guaraní y el de piedra arenisca del Nubia. Aquellos ubicados en África son los menos explotados. Como los acuíferos generalmente se extienden a través de varias fronteras estatales, su explotación presupone la existencia de acuerdos de gestión conjunta que busquen prevenir la polución o la sobreexplotación por parte de algunos Estados en particular. Mecanismos de este tipo ya han empezado a surgir. Por ejemplo, en los años noventa, Chad, Egipto, Libia y Sudán establecieron una autoridad conjunta para administrar de manera concertada el Sistema Acuífero de piedra arenisca del Nubia.

• Areniscas de Nubia en África – 2.500.000 Km3 de agua.
• Gran Cuenca Artesiana en Australia – 1.750.000 Km3
• Acuífero Guaraní en Argentina, Brasil, Uruguay y Paraguay 1.200.000 Km3
• Norte del Sahara en África – 1.030.000 Km3
• Cuenca de Taoudeni en África – 800.000 Km3
• Cuenca de Murzuk en África – 800.000 Km3
• Cuenca de Illurmeden en África – 525.000 Km3
• Acuífero Ogallala en USA – 450.000 Km3
• CanningOfficer en Australia – 400.000 Km3
• Acuífero Saudí en Asia – 160.000 Km3
• Acuíferos Africanos: Sahara Septentrional, Nubia, Sahel, Chad.

Contaminación del agua subterránea

Las aguas subterráneas son menos proclives a la contaminación que las superficiales (ríos, lagunas, mares); sin embargo, cuando se produce contaminación en un acuífero es más difícil de eliminar. Esto es así porque las aguas subterráneas tienen un ritmo de renovación más lento: en los ríos el agua permanece días y en un acuífero cientos de años.

Existen grandes diferencias entre la contaminación de las aguas subterráneas y las superficiales:

Contaminación de acuíferos

La contaminación puede ser detectada luego de varios años.
Se necesita mucho tiempo para que se renueve toda el agua contenida en él. Por más que se anule el origen de la polución quedarán sustancias absorbidas en el acuífero.

Contaminación de aguas superficiales

La contaminación es perceptible de inmediato y se pueden tomar medidas de inmediato.
Las aguas se renuevan con rapidez, por lo que una vez anulado el origen de la polución, en un plazo breve el cauce vuelve a la normalidad.

LOS ACUÍFEROS EN NÚMEROS

Los acuíferos albergan casi el 96% del total de agua dulce del planeta. Globalmente, se consagra un 65% de los recursos hídricos subterráneos a la irrigación, un 25% al suministro de agua potable y un 10% a la industria en general. Ellos representan más de un 70% de los recursos hídricos consumidos en la Unión Europea y son a menudo una de las únicas fuentes, si no la única, en las zonas áridas y semiáridas: 100% en Arabia Saudita y Malta, 95% en Túnez y 75% en Marruecos. Los sistemas de la irrigación en muchos países dependen sustancialmente de los recursos hídricos subterráneos: 90% en Libia, 89% en India, 84% en Suráfrica y 80% en España.

Fuente: UNESCO

Se detectan varias actividades que pueden generar contaminación en las aguas subterráneas. Además se distinguen diferentes vías por las cuales las sustancias contaminantes pueden penetrar hasta llegar a los acuíferos.

Principales vías de contaminación

• Infiltración de sustancias depositadas en la superficie, o de la lluvia a través de ellas. Ejemplo: ocurre esto en los sectores donde se acumula basura o se arrojan pesticidas.
• Filtración de sustancias almacenadas bajo tierra. Ejemplo: cuando se entierran depósitos.
• Filtración desde un río.
• Derrames accidentales provenientes de depósitos superficiales o subterráneos.
• Desde otro acuífero.

Según la OMS (Organización Mundial de la Salud) el agua está contaminada cuando su composición se haya alterado de modo que no reúna las condiciones necesarias para ser utilizada beneficiosamente en el consumo del hombre y de los animales.

Fuentes de contaminación

Residuos sólidos urbanos
Generalmente se arrojan sobre la superficie, se descomponen y los contaminantes orgánicos e inorgánicos comienzan a penetrar (infiltración) la tierra ayudados por el agua de lluvia y los líquidos procedentes de los mismos residuos.

Aguas residuales
Se llama de este modo a las aguas que se han utilizado en las actividades diarias: limpieza de hogares, aseo, actividades industriales, etc. Entre otros contaminantes contienen nitratos, bacterias y virus.
Habitualmente son arrojadas en cauces superficiales o fosas sépticas. En otros casos, tras una depuración, suelen esparcirse para aprovechar el poder filtrante del suelo. Los lodos que resultan de la depuración representan, luego de una segunda fase, el mismo problema.

Actividades agrícolas
En los sectores de sequía se acude habitualmente a la explotación de las aguas subterráneas para regar las siembras. Este uso se transforma en abuso cuando se quita mayor cantidad de agua de la que ingresa en el acuífero. Las fuentes que surgían se secan, desaparecen humedales y, si están cerca del mar, el agua salada va penetrando en el acuífero salinizándolo hasta convertirlo en no apto para el consumo humano.

Por otro lado, en la actividad agrícola se utilizan fertilizantes y plaguicidas que generan sustancias contaminantes; en ocasiones se infiltran en la tierra hasta llegar a la profundidad de la cuenca y generar contaminación.

Ganadería
Si bien esta actividad no es la principal contaminante, las grandes instalaciones y las granjas porcinas generan polución. Esto es debido a que de los residuos de los animales proceden compuestos nitrogenados, fosfatos, bacterias, cloruros y, en algunos casos, metales pesados.

Actividad industrial
Las industrias emiten sustancias nocivas, tóxicas o peligrosas que luego vierten a las redes públicas de saneamiento, directamente al suelo o en cauces de aguas superficiales.

Actividad minera
Se genera contaminación por las tareas de tratamiento mineral o por la infiltración de la lluvia a través de escombreras.

SATÉLITES QUE DETECTAN ACUÍFEROS

De la misma manera que una esponja se expande al absorber agua, la Tierra también experimenta pequeños incrementos de volumen donde se encuentran acuíferos. Los científicos usarán información obtenida vía satélite, basada en este principio, para localizar los recursos hídricos subterráneos del planeta.

Esto será especialmente útil en zonas remotas, donde el acceso es difícil. Para conseguirlo, los científicos emplean un radar de apertura sintética (SAR) instalado en los satélites de teledetección europeos ERS-1 y 2, y pronto en el Envisat, ya en órbita. El radar produce imágenes llamadas interferogramas, que muestran diferencias en la estructura de una zona vista en momentos diferentes.

Utilizando como laboratorio de pruebas el bien conocido acuífero de San Bernardino, en California, los investigadores descubrieron diferencias de altura de hasta 7 centímetros producidas durante la primera mitad de 1993. Dicho período coincidió con una descarga inusualmente alta de agua procedente de las montañas circundantes, lo que incrementó el volumen de la masa de agua, tanto subterránea como superficial. La diferencia de altura demuestra la expansión del terreno debido a la absorción de agua por parte de los acuíferos.

Usando la técnica InSAR, que puede resolver cambios verticales de pocos centímetros gracias a la alta resolución del radar, y comparando las imágenes resultantes procedentes de diversas épocas del año, se puede levantar un mapa de la posición de los acuíferos en muchos lugares del mundo.

Los satélites ERS y Envisat giran alrededor de la Tierra usando una órbita polar, de modo que su trayectoria pasa sobre cualquier punto de la superficie de nuestro planeta.

La interpretación de los patrones interferométricos, sin embargo, debe ser muy precisa, ya que no se debe confundir una variación de altura producida por la expansión de un acuífero con la deformación ocasionada por un movimiento tectónico, como un terremoto. Existen diferencias claras entre ambos tipos de patrones, de modo que ello no debería ser un problema para efectuar una correcta identificación.