CAPÍTULO 6 / EJERCICIOS

LOS SERES VIVOS Y LA CÉlULA | EJERCICIOS

TEORÍA CELULAR Y CARACTERÍSTICAS DE LOS SERES VIVOS

1. Describe 5 características que tengan en común todos los seres vivos.

  1. ______________________________________________________________________________________________.
  2. ______________________________________________________________________________________________.
  3. ______________________________________________________________________________________________.
  4. ______________________________________________________________________________________________.
  5. ______________________________________________________________________________________________.

2. Realiza un texto que englobe los postulados de la teoría celular.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

3. Responde las siguientes consignas:

  • ¿Los virus son seres vivos? ¿Por qué?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • ¿En qué año se realizaron los primeros estudios sobre los virus? ¿Cómo se llamaban los científicos que participaron en esos estudios?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • ¿Qué nombre le dieron los científicos al primer virus encontrado?

______________________________________________________________________________________________________

la célula: unidad estructural y funcional

1. Completa las siguientes oraciones:

  1. Las células participan en una gran cantidad de funciones vitales como ______________, respiración, nutrición y ________________.
  2. Los organelos que se heredan únicamente de la madre y son responsable de la respiración celular se llaman __________________.
  3. La _______________________ es la capa externa compuesta por una mezcla de lípidos y proteínas.
  4. El modelo de mosaico fluido describe la estructura de _______________________________.

2. Indica con una V si es verdadero o con una F si es falso. En caso de ser falso, justifica la respuesta.

  • El modelo del mosaico fluido fue descrito por Isaac Newton en 1972.  (   )

______________________________________________________________________________________________________

  • Unos de los componentes de la membrana plasmática es el colesterol.  (   )

______________________________________________________________________________________________________

  • Ósmosis es el mecanismo que permite el paso de pequeñas moléculas hidrofóbicas desde una región de concentración más alta a una de concentración más baja.  (   )

______________________________________________________________________________________________________

  • El citoesqueleto es una red de estructuras proteicas filamentosas dentro del citoplasma. (   )

______________________________________________________________________________________________________

  • El núcleo está presente en todas las células.  (   )

______________________________________________________________________________________________________

Célula animal vs. célula vegetal

1. Coloca las partes de cada tipo de célula e indica cuál es la célula animal y cuál es la célula vegetal, justifica la respuesta.

Ésta es una célula ______________ porque ___________________________________________________________.

Ésta es una célula ______________ porque ___________________________________________________________.

2. Explica brevemente con tus propias palabras:

  • ¿Cómo está formada la pared celular vegetal?

_______________________________________________________________________________________________

_______________________________________________________________________________________________

_______________________________________________________________________________________________.

  • ¿En qué consiste la teoría endosimbiótica?

_______________________________________________________________________________________________

_______________________________________________________________________________________________

_______________________________________________________________________________________________.

nutrición y respiración celular

1. Realiza un mapa conceptual de cómo obtienen energía las células.

 

 

 

 

 

 

 

 

 

2. Describe brevemente los pasos de la respiración celular que se presentan a continuación e indica lo que sucede con la molécula de ATP.

 

  • Glucólisis

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

  • Ciclo de Krebs

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

  • Cadena transportadora de electrones

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

funciones celulares de reproducción y relación

1. Explica brevemente la fase de preparación para la división celular o interfase. No olvides describir las etapas de la interfase (G1, S, G2).

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Indica las fases de la mitosis en la siguiente ilustración y escribe una breve explicación de lo que sucede con la célula en esta etapa.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

3. Realiza un diagrama con las diferentes etapas de la meiosis.

 

 

 

 

 

 

 

 

 

producción celular

1. Responde brevemente:

  • ¿De qué se componen las proteínas?

______________________________________________________________________________________________________

  • ¿Qué dermina el ADN en la formación de las proteínas?

______________________________________________________________________________________________________

  • ¿A partir de cuántos aminoácidos se forman nuevas proteínas?

______________________________________________________________________________________________________

  • ¿Cómo se llama el primer proceso de la expresión genética?

______________________________________________________________________________________________________

  • ¿Cómo se llaman las 3 polimerasas de ARN que se encuentran en las células eucariotas?

______________________________________________________________________________________________________

2. Completa la siguiente tabla indicando lo que ocurre en cada etapa de la transcripción y la traducción.

Transcripción Traducción
 

 

Iniciación

 

 

 

 

 

 

 

 

Elongación

 

 

 

 

 

 

 

Terminación

 

 

 

 

 

 

3. Realiza un dibujo del ribosoma y explica brevemente su función.

 

 

 

 

 

 

 

 

 

 

Función: _____________________________________________________________________________________.

Respiración aerobia y respiración anaerobia

Se define como respiración al conjunto de procesos bioquímicas mediante los se obtiene oxígeno energía a partir de sustancias alimenticias, como por ejemplo, la glucosa. Existen dos tipos de respiración: la aerobia o aeróbica y la anaerobia o anaeróbica. 

Respiración aerobia  Respiración anaerobia
Definición Tipo de respiración celular en la que se necesita oxígeno para extraer energía de los alimentos. Tipo de respiración celular en la cual no es necesario el oxígeno para degradar la glucosa.
¿Dónde se lleva a cabo? Mitocondria. Citoplasma.
¿Cómo es el proceso? Entra oxígeno a través del torrente sanguíneo y se libera CO2, H2O y ATP. Todo el proceso engloba las siguientes etapas: glucolisis, descarboxilación oxidativa del piruvato, ciclo de Krebs, cadena transportadora de electrones y fosforilazión oxidativa. Se lleva a cabo el proceso de glucólisis y las reacciones en una cadena transportadora de electrones similar a la de los organismos aerobios.
Aceptor final de electrones Oxígeno. Nitrato, sulfato  y dióxido de carbono, entre otros.
Fórmula  C6H12O6 + 6O2 → 6CO2 + 6H2O + energía (ATP) Depende del tipo de aceptor de electrones.
¿Cuántos ATP se forman? 2 36
¿Qué organismos la realizan? Microorganismos como bacterias y levaduras. La mayoría de los organismos eucariotas.

 

Anabolismo y catabolismo

El metabolismo es un proceso bioquímico que permite que un organismo viva, crezca, se reproduzca, sane y se adapte a su entorno. El anabolismo y el catabolismo son dos procesos o fases metabólicas, uno construye moléculas que el cuerpo necesita y el otro transforma las moléculas complejas en moléculas más pequeñas mediante la liberación de energía.

Anabolismo Catabolismo
Definición Los procesos anabólicos usan moléculas simples dentro del organismo para crear compuestos más complejos y especializados. Los procesos catabólicos descomponen compuestos complejos y moléculas para liberar energía.
Moléculas Las construye. Transforma las moléculas más complejas en otras más pequeñas.
Energía Requiere energía. Libera energía.
Conversión de la energía La energía cinética se convierte en energía potencial. La energía potencial se transforma en energía cinética.
Hormonas Estrógeno, testosterona, insulina y la hormona del crecimiento. Adrenalina, cortisol, glucagón y citosinas.
Oxígeno No utiliza oxígeno. Utiliza oxígeno.
Importancia Apoya el crecimiento de nuevas células, el almacenamiento de energía y el mantenimiento de tejidos corporales. Proporciona energía para el anabolismo, calienta el cuerpo y permite la contracción muscular.
Efecto sobre el ejercicio Los ejercicios anabólicos generalmente desarrollan masa muscular. Los ejercicios catabólicos suelen ser buenos para quemar grasas y calorías.
Ejemplos Asimilación en los animales y fotosíntesis en las plantas. Respiración celular, digestión y excreción.

 

Transporte activo y transporte pasivo

El transporte celular es el movimiento a través del cual las sustancias entran o salen de las células. La estructura encargada de regular este transporte es la membrana plasmática y, de acuerdo con el gasto o no de energía, se puede dividir en dos tipos: transporte pasivo y transporte activo.  

Transporte activo Transporte pasivo
Definición Proceso de intercambio de sustancias en el que es necesario el uso de energía en forma de adenosin trifosfato (ATP). Proceso de intercambio de sustancia sin gasto energético.
Gradiente de concentración En contra. A favor.
Proteínas involucradas Bombas y proteínas transportadoras. Proteínas transportadoras y canales transportadores.
Gasto de ATP Sí. No.
Tipos  Primario y secundario. Difusión simple, difusión facilitada y ósmosis.
Ejemplo Acción de la bomba sodio potasio. Transporte de agua a favor de un gradiente de concentración de solutos.

 

 

Fotosíntesis y respiración celular

Existe una estrecha relación entre la fotosíntesis y la respiración celular ya que, los productos de un sistema son los reactivos del otro. Ambos consumen y crean las mismas sustancias como agua, glucosa, oxígeno y dióxido de carbono, pero de diferentes maneras. Juntos, permiten que la vida en la Tierra reúna energía para su uso en otras reacciones.

 

Fotosíntesis Respiración celular
Utiliza Luz solar, agua y dióxido de carbono. Glucosa y oxígeno.
Producto Glucosa y oxígeno. Dióxido de carbono y agua.
Ocurre en: Plantas y otros organismos fotosintéticos. Todos los seres vivos.
Propósito Capturar, convertir y almacenar la energía. Liberar energía.
Función en común Sintetizar y usar ATP Sintetizar y usar ATP
Proceso metabólico Anabólico Catabólico
Ubicación Cloroplasto Citoplasma y mitocondrias
Fuente de energía Luz solar Glucosa
Portadores de electrones NADPH NADH y FADH2
Etapas Reacciones de luz y ciclo de Calvin. Glucólisis, oxidación del piruvato, ciclo de Krebs y cadena de transporte de electrones.

 

Roger Federer

Roger Federer, gran estrella del tenis mundial de la década de 2000, nació en Binningen, localidad del cantón de Basilea-Campiña (Suiza), el 8 de agosto de 1981.

Se inició en el tenis con apenas tres años y destacó ya en su etapa júnior. Como profesional debutó a los 17 años, en 1998, y al año siguiente conquistó sus primeros torneos, de modo que acabó la temporada en el puesto 64 de la clasificación de la Asociación de Tenistas Profesionales (ATP).

A partir de 2001, una progresión espectacular lo encaramó a las cimas del tenis mundial, hasta alcanzar su cénit deportivo en febrero de 2004, cuando se convirtió en número uno de la ATP. Durante 237 semanas mantuvo su supremacía deportiva, temporalmente arrebatada por el español Rafael Nadal en agosto de 2008. Sin embargo, Federer recuperó el primer puesto mundial en julio de 2009, clasificación que mantenía en septiembre del mismo año, cuando era el único jugador en activo que había ganado los cuatro trofeos del Grand Slam (Roland Garros, Wimbledon, Abierto de Australia y Abierto de Estados Unidos). En total eran 69 los torneos ganados por el suizo (entre ellos, 15 del Gran Slam), triunfos a los que se sumaba la medalla de oro en dobles masculinos de los Juegos Olímpicos de Pekín 2008, obtenida junto con Stanislas Wawrinka.

Numerosos comentaristas y aficionados consideran a Federer como el mejor tenista de todos los tiempos, no solo por la efectividad de su juego, sino también por la elegancia y ductilidad con la que se desenvuelve dentro de la pista, sea cual sea la superficie sobre la que juegue.

Cabe indicar también que se le debe la creación (2003) de la Fundación Roger Federer, que patrocina proyectos de ayuda humanitaria cuyos principales destinatarios son los niños de Sudáfrica, país del que es originaria la madre del tenista. Con ocasión del maremoto que asoló las costas del Sudeste Asiático en 2004, Federer participó activamente en las campañas de ayuda a las víctimas. También ha colaborado en iniciativas contra la propagación del SIDA y desde 2006 ejerce como Embajador de Buena Voluntad de UNICEF.

Membrana plasmática: transporte activo

La membrana celular o membrana plasmática es una delgada capa semipermeable que rodea el citoplasma celular. Su función es proteger la integridad del interior de la célula y regular el paso de las sustancias.

¿Qué es el transporte celular?

Se define como transporte celular al movimiento a través del cual las sustancias entran o salen de las células, este movimiento es regulado por la membrana plasmática. Al ser la membrana una estructura semipermeable, tiene un control sobre todo aquello que puede entrar o salir de las células.

La membrana plasmática es una estructura semipermeable.

La membrana plasmática de cualquier célula contiene una variedad de estructuras que le ayudan a mantener el equilibrio interno de las mismas, estas estructuras participan en alguno de los dos tipos de transporte celular, sean el pasivo o el activo.

El transporte celular es un mecanismo sumamente importante para la célula porque le permite expulsar de su interior todas las sustancias de desecho provenientes del metabolismo o incorporar aquellas que sean necesarias para la nutrición.

¿Cuáles son los tipos de transporte celular?

Son dos los mecanismos principales que le permiten a la célula mover sustancias a través de la membrana plasmática: el transporte pasivo y el transporte activo. La diferencia principal entre ambos procesos radica en el gasto de energía, mientras que en uno es necesario el gasto de moléculas de ATP, en el otro no hacen falta.

En el transporte activo es necesario el gasto de moléculas de ATP.

¿Qué es el transporte activo?

Definimos el transporte activo como aquel proceso de intercambio de sustancias a través de la membrana celular en el que es necesario el uso de energía en forma de adenosin trifosfato (ATP). El gasto de energía es necesario ya que, a diferencia del transporte pasivo, este se realiza en contra de un gradiente de concentración, es decir, la concentración de la sustancia dentro de la célula es mayor que en el medio extracelular o viceversa.

¿Sabías qué...?
Cuando las moléculas son muy grandes y de alto peso molecular, las células crean vesículas membranosas que les permiten englobar las sustancias nutritivas o de desecho, para incluirlas o eliminarlas, este mecanismo también requiere el uso de energía y se divide en dos: endocitosis y exocitosis.

A través de la membrana y en contra del gradiente de concentración, se pueden mover desde pequeños iones y moléculas, hasta grandes sustancias de desecho que necesitan ser eliminadas. Algunas células son incluso capaces de engullir microorganismos unicelulares enteros.

¿Qué es un gradiente electroquímico?

Un gradiente electroquímico es una diferencia eléctrica entre el medio intracelular y extracelular. Se produce a causa de que las células contienen proteínas, en su mayoría cargadas negativamente e iones que entran y salen, lo que provoca que haya una diferencia de carga entre ambas zonas.

Movimiento a través de un gradiente: tipos de transporte activo

Para mover sustancias en contra de un gradiente electroquímico, la célula debe usar energía en forma de ATP y complejos enzimáticos encargados de realizar dichos procesos, dentro de ellos se encuentran las bombas sodio potasio y las proteínas transportadoras.

El transporte activo mantiene equilibrada las concentraciones de iones y otras sustancias necesarias para la supervivencia de las células.

Transporte activo primario

  • Bomba Na+/K+: es un conjunto de proteínas situadas en la membrana que se encargan de transportar iones en contra de un gradiente de concentración. En el interior de las células la concentración de sodio (Na+) es baja en comparación con el medio extracelular, y la concentración de potasio (K+) es más alta que en el medio extracelular.

Lo que hace la bomba de Na+/K+ es regular estos iones y permite el intercambio entre el medio extracelular e intracelular, es decir, bombea Na+ al medio extracelular y K+ al medio intracelular, el número de iones que bombea es tres iones de sodio por cada dos de potasio.

Bomba sodio potasio en acción.
  • Bomba Ca+: es un conjunto de proteínas que se encarga de transportar los iones de Ca2+ hacia el exterior de la célula con el fin de mantener el medio intracelular con una concentración baja.

Transporte activo secundario

Se conoce también como cotransporte, para llevar a cabo el transporte las proteínas utilizan la energía proveniente del potencial electroquímico creado por las bombas de iones con el fin de intercambiar una molécula de un lado a otro, es decir, una molécula entra y arrastra consigo una molécula hacia afuera. Los cotransportadores son:

  • Antiporte: es una proteína de membrana integral que se encarga de mover un ión o molécula en una dirección mientras mueve otra en dirección contraria. El “anti” en antiporte significa “en contra”, y de manera práctica sería como una puerta de admisión que sólo permite entrar a unos pocos si algunos salen al mismo tiempo.
Transporte activo de tipo antiporte.
  • Simporte: Es una proteína de membrana integral que mueve dos iones en la misma dirección. “Sim” de simporte significa “lo mismo”, es decir, dos sustancias que se mueven en la misma dirección. En sentido práctico, sería como una puerta de admisión que permite la entrada de dos al mismo tiempo.
Transporte activo de tipo simporte.
ATPasa

Son un complejo multienzimático que se localiza en la membrana plasmática y que tiene como función principal la formación del ATP. Pueden ser muy diversas y se clasifican según su función, sea catabólica, anabólica o de ósmosis, un ejemplo común de estas enzimas es la bomba Na+/ K+.

Ciclo de Krebs: respiración celular

Después de la glucólisis, sigue otro mecanismo de la respiración celular que consta de múltiples etapas: el ciclo de Krebs, también conocido como el ciclo del ácido cítrico o el ciclo de ácido tricarboxílico.

¿Qué es el ciclo de Krebs?

Ciclo de ácido tricarboxílico, también conocido como ciclo de Krebs o ciclo de ácido cítrico, es la segunda etapa del proceso de respiración celular, mecanismo mediante el cual las células vivas descomponen moléculas de combustible orgánico en presencia de oxígeno para recoger la energía que necesitan para crecer y dividirse.

 

Se lleva a cabo en las mitocondrias, específicamente en la matriz, a excepción de las bacterias.

El ciclo de Krebs desempeña un papel central en la descomposición o catabolismo de moléculas de combustible orgánico, es decir, la glucosa, los ácidos grasos y algunos aminoácidos. Antes de que estas moléculas puedan entrar en el ciclo, deben ser degradadas en un compuesto de dos carbonos llamado acetil coenzima A (acetil CoA).

El ciclo de Krebs se produce en la mayoría de los organismos, tanto animales como vegetales.

¿Qué es el acetil CoA?

Es una molécula sintetizada a partir del piruvato e imprescindible para la síntesis de sustancias como: ácidos grasos, colesterol acetilcolina. Está formado por un grupo acetil unido a la coenzima A, el cual finalmente es degradado en CO2 H2O a través del ciclo de Krebs, la síntesis de ácidos grados o la fosforilación oxidativa.

El acetil CoA, es una molécula sumamente energética.

Etapas del ciclo de Krebs

El ciclo de Krebs consiste en ocho etapas catalizadas por ocho enzimas diferentes. Se inicia cuando el acetil CoA reacciona con un compuesto denominado oxaloacetato para formar citrato y liberar coenzima A (CoA-SH).

¿Sabías qué...?
El ciclo de Krebs en total forma 1 molécula de GTP, NADH y FADH2, las cuales en su paso por la cadena transportadora de electrones, realizada en la mitocondria, serán transformadas por ATP sumamente energética. 

Luego, el citrato se reordena para formar isocitrato; el cual posteriormente pierde una molécula de dióxido de carbono y sufre oxidación para formar alfa-cetoglutarato; seguidamente éste pierde una molécula de dióxido de carbono y se oxida para formar succinil CoA; el succinil-CoA se convierte en succinato y se oxida a fumarato, el cual se hidrata para producir malato, finalmente el malato se oxida a oxaloacetato.

Reacciones del ciclo de Krebs.

Reacción 1: citrato sintasa

La primera reacción del ciclo de Krebs es catalizada por la enzima citrato sintasa, durante esta etapa, el oxaloacetato, un intermediario metabólico, se une con el acetil-CoA para formar ácido cítrico. Una vez unidas las dos moléculas, una de agua ataca al acetilo para provocar la liberación de la coenzima A.

Reacción 2: acontinasa

La siguiente reacción del ciclo del ácido cítrico es catalizada por la enzima acontinasa. En esta reacción, una molécula de agua se retira del ácido cítrico y se coloca en otra ubicación. El efecto de esta conversión es que el grupo -OH se mueve de la posición 3′ a la posición 4′ sobre la molécula, esto trae como consecuencia la transformación de citrato a isocitrato.

Reacción 3: Isocitrato deshidrogenasa

En esta etapa ocurren dos eventos dependientes de la enzima isocitrato deshidrogenasa, localizada en la mitocondria. En la primera fase dicha enzima cataliza la oxidación del isocitrato, el cual se transforma en oxalsuccinato (un intermediario), lo que libera una molécula de NADH formada a partir de NAD.

Seguidamente, se produce la descarboxilación (liberación del CO2) del oxalsuccinato, lo que conlleva a la formación de alfa-cetoglutarato, una molécula compuesta por dos grupos carboxilos en los extremos y una cetona en posición alfa a uno de los carboxilos.

Reacción 4: alfa-cetoglutarato deshidrogenasa

Durante esta reacción se produce otra descarboxilación, el alfa-cetoglutarato es quien pierde la molécula de dióxido de carbono y en su lugar se añade la coenzima A. Esta descarboxilación se produce con la ayuda de NAD, quien es transformado durante el proceso en NADH.

La enzima catalizadora de esta reacción es la alfa-cetoglutarato deshidrogenasa u oxoglutarato deshidrogenasa, como resultado de esta etapa se forma la molécula succinil CoA.

Reacción 5: succinil CoA sintetasa

La enzima succinil-CoA sintetasa es la protagonista de esta reacción y se encarga de catalizar la síntesis de trifosfato de guanosina o GTP. El GTP es una molécula muy similar en estructura y propiedades energéticas al ATP, por lo que puede ser utilizado por las células de la misma manera.

El GTP es formado por la adición de un grupo fosfato libre a una molécula de GDP. En esta reacción, el grupo fosfato libre ataca primero a la molécula de succinil-CoA lo que provoca la liberación de la coenzima A. Después de que el fosfato se une a la molécula, se transfiere al GDP para formar GTP, el producto final es una molécula denominada succinato.

Reacción 6: succinato deshidrogenasa

La enzima succinato deshidrogenasa cataliza la eliminación de dos hidrógenos del succinato en la sexta reacción del ciclo del ácido cítrico. En esta etapa, una molécula de FAD, se reduce a FADH2 debido a que recibe los hidrógenos provenientes del succinato, de esta reacción se genera el fumarato.

Reacción 7: fumarasa

Esta reacción se produce gracias a la catálisis de la enzima fumarasa, la cual genera la adición de una molécula de agua en forma de OH al fumarato para dar lugar a la molécula L-malato.

Reacción 8: malato deshidrogenasa

Es la reacción final del ciclo, en ella es regenerado el oxaloacetato mediante la oxidación del L-malato, se utiliza otra molécula de NAD como aceptor de hidrógeno y se forma un NADH.

Energía en los alimentos

La mayor parte de nuestra energía la obtenemos de nuestros alimentos, los cuales por varias reacciones metabólicas nos permiten obtener moléculas energéticas como el ATP, FADH2 y el NADH, por ejemplo, el ciclo de Krebs logra aprovechas el 62 % de la energía contenida en la glucosa.