CAPÍTULO 1 / EJERCICIOS

LA MATERIA Y SUS PROPIEDADES | EJERCICIOS

El átomo y las moléculas

1. Dibuja cómo está compuesto un átomo y describe las características de cada parte:

 

 

 

 

 

 

 

 

2. Identifica cuáles de los siguientes enunciados son verdaderos (V) y cuáles son falsos (F). Justifica todas las respuestas.

Las moléculas de la materia en estado gaseoso tienen poca distancia de separación. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Los átomos están formados por partículas subatómicas llamadas aniones y cationes. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Las moléculas de un cuerpo sólido no tienen posiciones fijas, es decir, que pueden moverse libremente. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Según la teoría de Dalton, los átomos de un mismo elemento tienen las mismas propiedades. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

El número atómico está formado por la suma de los protones y los electrones, y éste se representa con la letra Z. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Las moléculas compuestas están formadas por átomos de un mismo elemento. (  )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Estados de agregación de la materia

1. Describe cuáles son los tipos de sólidos:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Establece cuatro diferencias entre los estados sólido, líquido y gaseoso:

Sólido Líquido Gaseoso

Características y estructura general de la atmósfera

1. Realiza un mapa conceptual sobre el ciclo del nitrógeno.

 

 

 

 

 

 

 

 

2. La atmósfera está compuesta por cinco subcapas atmosféricas. En el siguiente cuadro, agrega el nombre de la subcapa correspondiente a cada descripción.

Subcapa Descripción
También conocida como ionósfera, es aquella capa donde los rayos gamma, los rayos X y la radiación ultravioleta proveniente del espacio producen la ionización de átomos y moléculas, lo que su vez genera un aumento en la temperatura.
Es conocida por ser la capa donde se observan las estrellas fugaces, meteoroides que se desintegran al ingresar a nuestro planeta. También se caracteriza por presentar mayor formación de turbulencias producto de la baja densidad del aire.
Es la subcapa que está en contacto con la superficie terrestre. En ella ocurren los fenómenos meteorológicos como tormentas tropicales, lluvias, vientos y huracanes.
Por su composición es la capa más densa de la atmósfera, ya que contiene la mayor parte del oxigeno, además del vapor de agua.
Se ubica a 50 km de altitud y debe su nombre a su organización estratificada. La principal característica de esta subcapa es que contiene el 90 % del ozono presente en la atmósfera, este compuesto químico tiene la función de proteger al planeta de las radiaciones nocivas provenientes del espacio.
Es la capa de transición entre la atmósfera y el espacio. Debido a ello, los gases en esta capa pierden sus propiedades fisicoquímicas y se dispersan hasta alcanzar una composición similar a la del espacio.

Mezclas HETEROGÉNEAS

1. Menciona tres ejemplos de mezclas coloidales y tres ejemplos de suspensiones:

Mezclas coloidales Suspenciones

 

2. Explica en qué consiste el efecto Tyndall y cómo puede ayudar en el diagnóstico de la uveítis:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Mezclas homogéneas: relación soluto-solvente

1. Describe tres ejemplos de mezclas homogéneas que pueden ser útiles para la humanidad:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Investiga y describe cinco técnicas de separación de mezclas homogéneas:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

El agua como solvente universal

1. Explica por qué el agua es considerada un solvente universal:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Indica cuatro ejemplos de sustancias hidrofílicas, hidrofóbicas y anfipáticas:

Hidrofílicas

Hidrofóbicas

Anfipáticas

Separación de mezclas

1. Investiga y menciona un ejemplo para cada método de separación empleado en la industria:

EVAPORACIÓN: _______________________________________________________________________________________

SUBLIMACIÓN: ________________________________________________________________________________________

SEDIMENTACIÓN: ______________________________________________________________________________________

FLOTACIÓN: __________________________________________________________________________________________

DECANTACIÓN: ________________________________________________________________________________________

TAMIZACIÓN: _________________________________________________________________________________________

FILTRACIÓN: __________________________________________________________________________________________

CENTRIFUGACIÓN: _____________________________________________________________________________________

DESTILACIÓN: _________________________________________________________________________________________

CRISTALIZACIÓN: ______________________________________________________________________________________

PRECIPITACIÓN: _______________________________________________________________________________________

2. Identifica qué técnica de separación se está empleando en cada imagen.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Transformación de la materia

  1. Describe 5 reacciones químicas que ocurren en nuestro cuerpo:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Basándote en las reacciones químicas de nuestro cuerpo descritas en la pregunta anterior. Explica: ¿cuáles son endotérmicas y cuáles son exotérmicas? ¿Por qué?

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Cambios químicos: combustión y corrosión

1. Establece cuatro diferencias entre la combustión y la corrosión:

Combustión Corrosión

2. Describe tres métodos empleados por el hombre para reducir la combustión:

a)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

 

b)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

c)

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

 

CAPÍTULO 4 / TEMA 2

AGUA, AIRE Y SUELO

EN LA NATURALEZA EXISTEN RECURSOS NATURALES QUE PUEDEN SER UTILIZADOS POR LOS SERES HUMANOS PARA SATISFACER SUS NECESIDADES BÁSICAS. ALGUNOS SON MUY IMPORTANTES PARA LA VIDA EN NUESTRO PLANETA, COMO EL AGUA, EL AIRE, EL SUELO E INCLUSO EL SOL.

agua, aire y suelo ¿estos recursos se agotan?

SIN EL AGUA, EL AIRE, EL SUELO Y LA LUZ SOLAR, LA VIDA EN NUESTRO PLANETA NO SERÍA POSIBLE. CADA UNO DE ESTOS ELEMENTOS ES NECESARIO PARA EL DESARROLLO Y LA SUPERVIVENCIA DE LOS SERES VIVOS.

RECURSOS NATURALES

EL AGUA, EL AIRE Y EL SUELO SON RECURSOS QUE LA NATURALEZA NOS OFRECE Y NOSOTROS UTILIZAMOS PARA NUESTRO PROPIO BENEFICIO.

EL AGUA

EL AGUA ES UN RECURSO NATURAL DE GRAN IMPORTANCIA:

  • FORMA PARTE DE LA VIDA MISMA, PUESTO QUE TODOS LOS SERES VIVOS ESTAMOS FORMADOS POR UN ALTO CONTENIDO DE AGUA.
NUESTRO CUERPO ESTÁ COMPUESTO PRINCIPALMENTE POR AGUA.
  • LA USAMOS TODOS LOS DÍAS EN NUESTRA VIDA COTIDIANA PARA UNA GRAN CANTIDAD DE ACTIVIDADES.
¿CUÁNDO USAMOS EL AGUA?

HAZ UN LISTADO DE 5 ACTIVIDADES DE LA VIDA COTIDIANA EN LAS QUE UTILICES AGUA.

  1. ___________________________________________.
  2. ___________________________________________.
  3. ___________________________________________.
  4. ___________________________________________.
  5. ___________________________________________.
  • SIRVE COMO HÁBITAT PARA MUCHOS SERES VIVOS.
¿QUÉ ES EL HÁBITAT?

EL HÁBITAT ES EL LUGAR QUE TIENE LAS CONDICIONES NECESARIAS PARA QUE UN SER VIVO PUEDA DESARROLLARSE. UN SER VIVO PUEDE TENER VARIOS HÁBITATS, POR EJEMPLO, LOS ELEFANTES TIENEN SU HÁBITAT EN LOS BOSQUES, LAS PRADERAS Y LAS SABANAS.

EL AGUA ES UN RECURSO NATURAL QUE SE RENUEVA GRACIAS AL CICLO DEL AGUA, SIN EMBARGO, EL AGUA PARA EL CONSUMO ES LIMITADA, YA QUE NO TODA LA QUE EXISTE EN NUESTRO PLANETA ES APTA PARA CONSUMO DE TODOS LOS SERES VIVOS.

RECUERDA QUE EL CICLO DEL AGUA ES EL VIAJE QUE REALIZA EL AGUA DESDE LA TIERRA HASTA EL CIELO Y DE REGRESO, EN SUS DIFERENTES ESTADOS.

EL AGUA DULCE ES INDISPENSABLE PARA NUESTRA SUPERVIVENCIA, Y EN LA TIERRA SÓLO SE ENCUENTRA EN UNA PEQUEÑA PORCIÓN DEL TOTAL DE AGUA DISPONIBLE.

LA MAYOR CANTIDAD DE AGUA DULCE DISPONIBLE SE ENCUENTRA EN FORMA DE HIELO Y NIEVE.
COMPLETA LAS FRASES

  1. EL AGUA ES _______________ PARA LOS SERES VIVOS.
  2. EL AGUA EN LA NATURALEZA SE ENCUENTRA EN ________ ESTADOS.
  3. EL AGUA ____________ SE ENCUENTRA MAYORMENTE EN FORMA DE HIELO Y NIEVE.
  4. LAS DIFERENTES ETAPAS POR LAS QUE PASA EL AGUA SE CONOCE COMO _______________________.

EL AIRE

OTRO RECURSO NATURAL ESENCIAL PARA LA SUPERVIVENCIA DE LOS SERES VIVOS ES EL AIRE.

  • EL AIRE ES UNA MEZCLA DE GASES QUE FORMA LO QUE LLAMAMOS ATMÓSFERA.
  • EL AIRE SE ENCUENTRA PRESENTE EN TODAS PARTES.
EL AIRE EN MOVIMIENTO SE LLAMA VIENTO, Y CUANDO EL VIENTO VIAJA A GRANDES VELOCIDADES SE FORMA UN TORNADO.
  • ES IMPORTANTE PORQUE CONTIENE UN ELEMENTO QUE TODOS LOS SERES VIVOS NECESITAMOS LLAMADO OXÍGENO.
  • CUANDO RESPIRAMOS ELIMINAMOS DIÓXIDO DE CARBONO, QUE ES UN ELEMENTO QUE NUESTRO CUERPO NO NECESITA, LO EXPULSA Y LAS PLANTAS LO UTILIZAN PARA SU RESPIRACIÓN.
¡TODO ES UN CICLO!

LAS PLANTAS TRANSFORMAN EL DIÓXIDO DE CARBONO Y LO CONVIERTEN EN EL OXÍGENO QUE LOS HUMANOS Y LOS ANIMALES UTILIZAMOS PARA PODER RESPIRAR. LUEGO DE QUE NUESTRO CUERPO Y EL DE LOS ANIMALES ABSORBE EL OXÍGENO, EXPULSA DIÓXIDO DE CARBONO QUE NUEVAMENTE ES ABSORBIDO POR LAS PLANTAS, Y ASÍ SUCESIVAMENTE OCURRE UNA Y OTRA VEZ.

  • LOS GASES QUE CONTIENE EL AIRE TAMBIÉN FUNCIONAN COMO UNA CAPA PROTECTORA QUE RODEA NUESTRO PLANETA Y NOS PROTEGE DE LOS RAYOS DAÑINOS DEL SOL.
EL AIRE ACTÚA COMO UN FILTRO QUE NOS PROTEGE DE LOS RAYOS DEL SOL.
¡ELIGE LA OPCIÓN CORRECTA!

¿QUÉ PASARÍA SI DESAPARECIERA EL OXÍGENO DEL AIRE? MARCA LA OPCIÓN CORRECTA.

(  ) NADA, LOS SERES HUMANOS Y LOS ANIMALES PODRÍAMOS RESPIRAR DIÓXIDO DE CARBONO.

(  ) EL AIRE ESTARÍA MÁS LIMPIO.

(  ) TODOS LOS SERES VIVOS DEJARÍAMOS DE RESPIRAR.

EL SUELO

EL SUELO ES LA CAPA MÁS SUPERFICIAL QUE CUBRE NUESTRO PLANETA, ESTÁ FORMADO POR UNA MEZCLA DE ROCAS DE DIFERENTES TAMAÑOS, MINERALES, RESTOS DE PLANTAS Y ANIMALES, ALGUNOS SERES VIVOS QUE MUCHAS VECES NO PODEMOS VER A SIMPLE VISTA, AGUA Y AIRE.

  • EN EL SUELO ES DONDE CRECEN LAS PLANTAS, VIVEN LOS ANIMALES TERRESTRES Y NOSOTROS LOS HUMANOS.
  • EL SUELO ES DE GRAN IMPORTANCIA PARA EL HOMBRE, PUESTO QUE DE ALLÍ OBTIENE ALIMENTOS Y OTROS MATERIALES QUE LE SIRVEN PARA SATISFACER SUS NECESIDADES.
DEBEMOS CUIDAR TODA LA VEGETACIÓN QUE CRECE SOBRE EL SUELO, SOBRE TODO LOS ÁRBOLES, YA QUE ESTOS EVITAN QUE LOS RAYOS DIRECTOS DEL SOL, EL VIENTO Y EL AGUA LO DESGASTEN.
¿Sabías qué?
LAS LOMBRICES ROJAS, TAMBIÉN LLAMADAS LOMBRICES DE TIERRA, AYUDAN A DESCOMPONER LOS RESTOS DE VEGETALES Y ANIMALES QUE SON UTILIZADOS PARA FORMAR UNA CAPA DE TIERRA FÉRTIL LLAMADA HUMUS.

EL SUELO DEMORA MILES Y MILES DE AÑOS EN FORMARSE, POR ESO ES TAN IMPORTANTE SU CONSERVACIÓN Y CUIDADO.

¡DESCUBRE AL INTRUSO!

EN ESTA LISTA DE SERES VIVOS (BIÓTICOS) Y ELEMENTOS NO VIVOS (ABIÓTICOS). DESCUBRE CUÁL NO PERTENECE O NO ESTÁ RELACIONADO AL SUELO Y TÁCHALO DE LA LISTA.

  • LOMBRIZ
  • ARENA
  • PEZ
  • ROCAS
  • MINERALES

 

RECURSOS PARA DOCENTES

Micrositio “El Agua”

En este micrositio encontrará numerosos recursos para enseñarles a los niños la importancia del agua.

VER

Artículo “La composición del aire”

Artículo que desarrolla y explica la composición del aire, los tipos de aire y la formación de los vientos.

VER

Artículo “El suelo, un recurso que debemos cuidar”

En este artículo encontrará más información sobre la importancia que tiene el suelo para el desarrollo de la vida.

VER

 

Metales, metaloides y no metales

La materia está formada por elementos cuya unidad fundamental es el átomo. Estos elementos se organizan en la tabla periódica y pueden clasificarse como metales, metaloides y no metales. Cada categoría presenta una química muy particular con propiedades características que permiten diferenciarlas.

 

Metales Metaloides No metales
Estado físico Sólidos a temperatura ambiente, excepto el mercurio (Hg) y el francio (Fr), que son líquidos. Sólidos a temperatura ambiente. Sólidos, como el carbono (C); líquidos, como el bromo (Br); y gaseosos, como el oxígeno (O).
Apariencia Tienen brillo metálico.La mayoría son plateados, excepto el cobre (Cu) que es rojizo y el oro (Au) que es amarillo. La mayoría tiene brillo metálico. No tienen brillo metálico. Se presentan de diversos colores: el bromo (Br) es rojo y el azufre (S) es amarillo.
Abundancia en la Tierra Baja. A pesar de que el

79 % de los elementos existentes son metales, en la Tierra éstos son los menos abundantes.

Algunos son abundantes en la corteza terrestre como el silicio (Si), y otros son muy raros de encontrar, como el polonio (Po). Alta. A pesar de que el 21 % de los elementos existentes son no metales, son los más abundantes en nuestro planeta.
Presentes en el cuerpo humano
  • Na y K: ayudan a transportar oxígeno.
  • Ca: fortalece los huesos.
  • Mg: ayuda a la coagulación de la sangre.
  • Fe: asimila el oxígeno en la sangre y produce hemoglobina.
  • Cu: combate la anemia.
  • Zn: ayuda a metabolizar carbohidratos y fortalece el sistema inmune.
Presentes en concentraciones mínimas.
  • O: indispensable para la respiración.
  • C: presente en todas la biomoléculas.
  • H: presente en casi todas las biomoléculas.
  • N: presente en las proteínas y en los ácidos nucleicos.
  • P: presente en los ácidos nucleicos, en el ATP de las moléculas. Forma dientes y huesos.
  • S: forma parte de diversas proteínas.
Propiedades mecánicas Son muy dúctiles y maleables. Son intermedios entre los metales y los no metales. No son dúctiles ni maleables. Gran parte de ellos son duros y quebradizos.
Conductividad  Son buenos conductores de electricidad y calor. Son semiconductores. Son malos conductores de electricidad y calor.
Punto de fusión y ebullición  Relativamente altos. Altos respecto a los no metales. Relativamente bajos.
Capa de valencia Átomos con capa de valencia ocupada con pocos electrones, generalmente dos o tres. Átomos con capa de valencia ocupada con tres electrones. Átomos con capa de valencia ocupada con cuatros o más electrones, excepto el helio y el hidrógeno.
Electronegatividad Baja Intermedia Alta
Reactividad Tiende a perder electrones cuando se combina con otros elementos. Se convierten en cationes. Reactividad química variada. Se pueden comportar como metales o no metales. Tienden a ganar electrones cuando se combinan con otros elementos. Se convierten en aniones.
Ubicación en la tabla periódica
Ejemplos Litio (Li), sodio (Na), cromo (Cr), cobre (Cu), plata (Ag), oro (Au), platino (Pt), calcio (Ca), mercurio (Hg), hierro (Fe) y aluminio (Al), entre otros. Boro (B), silicio (Si), germanio (Ge), arsénico (As), antimonio (Sb), polonio (Po), telurio (Te), astato (At) y selenio (Se). Hidrógeno (H), oxígeno (O), carbono (C), nitrógeno (N), azufre (S), fósforo (P), flúor (F), cloro (Cl), bromo (Br), yodo (I), neón (Ne) y Argón (Ar), entre otros.

 

Euglena: ¿planta o animal?

Este género de más de 1.000 especies está compuesto de microorganismos flagelados unicelulares que presentan características tanto de plantas como de animales. Estos organismos han sido considerados en algunas ocasiones algas y en otras protozoos.

clasificación

Reino: Protista

Filo: Euglenophycota

Clase: Euglenophyceae

Orden: Euglenales

Familia: Euglenaceae

Género: Euglena (Ehrenberg, 1838)

La euglenas se identifican, entre otras cosas, por la presencia de una mancha ocular formada por pigmentos que absorben la luz.

características

Presenta una célula alargada de 15–500 micrómetros y un núcleo celular. Dentro de ella también se encuentran numerosos cloroplastos que contienen clorofila, una vacuola contráctil, una mancha ocular y uno o dos flagelos.

A diferencia de las células vegetales, la euglena carece de una pared de celulosa rígida y tiene una envoltura protéica flexible que le permite cambiar de forma y le da protección.

Aunque la mayoría de las especies realizan la fotosíntesis, también se alimentan de otros organismos a través de un proceso llamado fagocitosis.

La euglena se reproduce asexualmente a través de un proceso conocido como fisión binaria.

Bajo el microscopio

Por ser un organismo unicelular, no puede verse a simple vista. Por esta razón se debe utilizar un microscopio compuesto para observarla y estudiarla.

La euglena se puede encontrar en estanques y superficies de aguas poco profundas que contienen material orgánico. Por lo tanto, se pueden recoger y preparar fácilmente para su visualización.

La especie más observada en las demostraciones de laboratorio es la Euglena gracilis.

Forma y flagelos

Bajo el microscopio la euglena aparece como un organismo unicelular alargado que se mueve rápidamente a través de la superficie del campo. El cuerpo de este organismo generalmente tiene un extremo redondeado y uno puntiagudo.

El extremo redondeado es a menudo la parte principal de la cual surge la llamada cola en forma de látigo que se conoce como flagelo.

Aunque a menudo se ve un flagelo, las euglenas tienen dos flagelos y uno de estos generalmente se oculta en una parte conocida como reservorio.

El flagelo más largo y visible que se encuentra ubicado en el extremo anterior se mueve rápidamente, lo que hace posible que estos organismos se desplacen a través de la superficie del agua.

Membrana

A diferencia de la mayoría de las células vegetales, este organismo no tiene una pared celular. Los orgánulos y el citoplasma están unidos por una membrana plasmática que facilita el movimiento.

La observación de la euglena bajo un microscopio electrónico ha revelado la presencia de una película compuesta por una capa protéica debajo de la membrana plasmática.

La presencia de esta delgada capa protege la membrana celular y también ayuda a mantener su forma. Además, debido a su naturaleza flexible, facilita el movimiento.

Mancha ocular

Una observación más cercana del organismo revela a través del microscopio una mancha rojiza en la parte anterior. Este es un orgánulo compuesto de gránulos de carotenoides que le permiten sentir y moverse hacia la luz solar.

La mancha ocular también ayuda a filtrar la longitud de onda de la luz que llega al cuerpo paraflagelar, que es la estructura de detección de luz que se encuentra en la base del flagelo.

El movimiento corporal del organismo hacia la fuente de luz donde ocurre la fotosíntesis se conoce comúnmente como fototaxis positiva.

Clorofila

Además de la mancha ocular, también se logra notar bajo el microscopio unas manchas oscuras y verdosas en todo el cuerpo del organismo.

Algunos de estos puntos son cloroplastos que contienen clorofila, lo que produce el tono verde y es responsable de la fotosíntesis. Esto generalmente se conoce como clorofila A.


¿Sabías qué...?
Algunas euglenas tienen clorofila A y B. La clorofila B produce un color verde azulado y mejora la absorción de luz requerida para la fotosíntesis.

El cloroplasto en el organismo atrapa la luz solar que se utiliza para fabricar su alimento a través de la fotosíntesis. Este proceso se puede resumir de la siguiente manera:

Dióxido de carbono + agua, glucosa y oxígeno (en presencia de luz solar)

Aunque son capaces de fabricar su propio alimento, también se alimentan de otros organismos al envolverlos en sus membranas celulares a través de un proceso conocido como fagocitosis. 

Fagocitosis

En este proceso, el organismo envuelve la partícula de alimento en una vacuola para ser digerida a través de la liberación de ciertas enzimas. Las euglenas también tiene una vacuola contráctil que ayuda a recolectar y eliminar el exceso de líquidos de la célula. Esto evita que la célula ingiera demasiada agua, para evitar que la misma colapse y se rompa.

Reproducción

Este organismo se reproduce de forma asexual a través de un proceso conocido como fisión binaria. Este proceso comienza cuando la euglena replica su ADN y se expande en tamaño. Luego se divide por la mitad y crea dos organismos completos, cada uno con ADN idéntico.

La parte más importante de la fisión binaria es la división del núcleo donde se encuentra el material genético, que se produce a través de la mitosis que consta de cuatro etapas.

Corteza terrestre

El planeta se compone de tres capas principales: la corteza, el manto y el núcleo. El núcleo representa sólo el 15 % del volumen de la Tierra, mientras que el manto ocupa el 84 %y la corteza compone el 1 % restante.

¿Qué es la corteza terrestre?

La corteza de la Tierra es una capa extremadamente fina de roca que forma la más externa cubierta sólida de nuestro planeta. En términos comparativos, su espesor es como el de la piel de una manzana. Supone menos de la mitad del 1 % de la masa total del planeta, pero desempeña un papel vital en la mayoría de los ciclos naturales de la Tierra.

La corteza puede tener un grosor de más de 80 kilómetros en algunos lugares y menos de un kilómetro de grosor en otros.
La corteza puede tener un grosor de más de 80 kilómetros en algunos lugares y menos de un kilómetro de grosor en otros.

Aquí en tierra firme, en las plataformas continentales, la corteza tiene unos 30 kilómetros de espesor, mientras que en el medio del océano es de aproximadamente 5 kilómetros.

¿Cómo sabemos que la Tierra tiene una corteza?

No se supo que la Tierra tenía una corteza hasta principios del siglo XX. Hasta entonces, todo lo que sabíamos era que nuestro planeta se tambaleaba en relación con el cielo como si tuviera un núcleo grande y denso. Luego vino la sismología, que trajo un nuevo tipo de evidencia desde abajo, la velocidad sísmica.

La velocidad sísmica mide la velocidad en la que las ondas sísmicas se propagan a través de los diferentes materiales por debajo de la superficie. Con algunas excepciones importantes, la velocidad sísmica dentro de la Tierra tiende a aumentar con la profundidad.

En 1909, un documento del sismólogo Andrija Mohorovicic estableció un cambio repentino en la velocidad sísmica a unos 50 kilómetros de profundidad en la Tierra. Las ondas sísmicas rebotan de él (reflejan) y doblan (refractan) mientras que lo atraviesan, de la misma manera que la luz se comporta en la discontinuidad entre el agua y el aire.

Esa discontinuidad, llamada discontinuidad de Mohorovicic o “Moho”, es el límite aceptado entre la corteza y el manto.

Composición de la corteza

La corteza se compone de muchos tipos diferentes de rocas que caen dentro de tres categorías principales: ígneas (más del 90 % en volumen), metamórficas y sedimentarias. Sin embargo, la mayoría de estas rocas se originaron como granito o basalto. El manto debajo está hecho de peridotita. Bridgmanita, el mineral más común en la Tierra, se encuentra en el manto profundo.

La capa externa de la Tierra está formada por dos grandes categorías de rocas: basálticas y graníticas.
La capa externa de la Tierra está formada por dos grandes categorías de rocas: basálticas y graníticas.

Tipos de corteza

En general, hay dos tipos de corteza: corteza oceánica (basáltica) y corteza continental (granítica).

Corteza oceánica

La corteza oceánica cubre aproximadamente el 60 % de la superficie de la Tierra. La corteza oceánica es delgada y joven, no tiene más de 20 km de espesor ni más de 180 millones de años. Todo lo anterior ha sido arrastrado debajo de los continentes por subducción. La corteza oceánica nace en las crestas donde las placas del océano se separan. Cuando esto sucede, la presión sobre el manto subyacente se libera y la peridotita comienza a derretirse. La fracción que se funde se convierte en lava basáltica, que se eleva y entra en erupción mientras que el resto de la peridotita se agota.

Las rocas basálticas contienen más silicio y aluminio que la peridotita dejada atrás, que tiene más hierro y magnesio.

Las rocas basálticas son también menos densas.

La corteza oceánica es una fracción muy pequeña de la Tierra, pero su ciclo de vida sirve para separar el contenido del manto superior en un residuo pesado y un conjunto más ligero de rocas basálticas.

Corteza continental

La corteza continental es gruesa y más antigua, en promedio tiene unos 50 km de espesor y alrededor de 2 mil millones de años. Cubre alrededor del 40 % del planeta.

Los continentes crecen lentamente a lo largo del tiempo geológico a medida que la corteza oceánica y los sedimentos del fondo marino son arrastrados debajo de ellos por subducción. Los basaltos descendentes tienen el agua y los elementos incompatibles que estos expulsan, este material se eleva para provocar más fusión en la llamada fábrica de subducción.

La corteza continental está hecha de rocas graníticas, que tienen aún más silicio y aluminio que la corteza oceánica basáltica. También tienen más oxígeno gracias a la atmósfera. Las rocas graníticas son aún menos densas que el basalto.

La corteza continental representa menos del 0,4 % de la Tierra, pero representa el producto de un doble proceso de refinación, primero en las crestas de los océanos y la segunda en las zonas de subducción.

Los elementos incompatibles que terminan en los continentes son importantes porque incluyen los principales elementos radiactivos uranio, torio y potasio. Estos crean calor, lo que hace que la corteza continental actúe como una manta eléctrica en la parte superior del manto. El calor también suaviza lugares gruesos en la corteza, como la meseta tibetana y los hace extenderse lateralmente.

Los continentes son rasgos verdaderamente permanentes y autosustentables de la superficie de la Tierra.
¿Sabías qué...?
La temperatura de la corteza es diferente en cada parte, comienzan en unos 200 °C y pueden elevarse hasta 400 ° C.

Corteza y placas

La corteza y las placas tectónicas no son lo mismo. Las placas son más gruesas que la corteza y consisten en la combinación de la corteza más el manto que está justo debajo de ella. Esta dura y frágil combinación de dos capas se llama litósfera. Las placas litosféricas se encuentran sobre una capa de roca de manto más blanda y más plástica llamada astenósfera que permite que las placas se muevan lentamente sobre ella como una balsa en barro grueso.

Estructuras de Lewis

Estudiar cómo se combinan los elementos químicos en la naturaleza es primordial para la química aplicada, es por ello que a lo largo de los años se han planteados diversas teorías y formas de representación que facilitan el entendimiento de los compuestos químicos.

Los átomos se combinan entre sí para formar diversos compuestos o sustancias químicas, esto implica la formación de enlaces químicos entre los átomos involucrados en las reacciones químicas. En función de la naturaleza química se conocen tres tipos de enlace:

  • Enlace iónico: se forma como resultado de las fuerzas electrostáticas existentes entre iones de carga opuesta. Este tipo de enlace implica la transferencia de electrones de un átomo a otro.
  • Enlace covalente: es aquel donde dos átomos comparten electrones, en función del número de electrones compartidos se distinguen tres tipos de enlaces covalente: simple (2 e), doble (4 e) y triple (6 e).
  • Enlace metálico: en este tipo de enlaces los electrones se mueven dentro de la red tridimensional del metal, lo que le confiere al mismo su propiedad característica, la conductividad eléctrica.

Los electrones que participan en un enlace químico se denominan electrones de valencia y son aquellos que se encuentran en la capa más externa de los átomos.

 

Átomo de nitrógeno.

Estructuras de Lewis

Lewis fue un químico estadounidense que propuso simbolizar los electrones de valencia mediante el uso de puntos que se ubican arriba, abajo y a los lados del símbolo químico de cada elemento, esta forma de representación se conoce como símbolos de Lewis.


Los símbolos punto-electrón para construir las denominadas estructuras de Lewis de diversas moléculas o compuestos son una herramienta útil al momento de estudiar los enlaces químicos, formación y tipos.

Regla del octeto

Cuando se forma un enlace químico los átomos pierden, ganan o comparten electrones con la finalidad de emular la configuración electrónica del gas noble más cercano a ellos, los cuales deben su estabilidad al número de electrones que contienen en su capa de valencia.

Símbolos de Lewis de los gases nobles.

 

Con excepción del helio, todos los gases nobles poseen ocho electrones en la capa de valencia, hecho en el que se fundamenta la denominada regla del octeto: los átomos tienden a ganar, perder o compartir electrones hasta estar rodeados por ocho electrones de valencia.

A continuación se muestran algunos ejemplos de estructuras de Lewis:

  • Metano
    • Fórmula química: CH4
    • Tipo de enlace: covalente
    • Configuración electrónica:


  • Estructura de Lewis:


  • Dióxido de carbono
    • Fórmula química: CO2
    • Tipo de enlace: covalente
    • Configuración electrónica:


  • Estructura de Lewis:


  • Agua
    • Fórmula química: H2O
    • Tipo de enlace: covalente
    • Configuración electrónica:


  • Estructura de Lewis:


Estructura de Lewis en compuestos iónicos

Uno de los compuestos iónicos más utilizados es la sal de mesa, compuesta por cloruro de sodio dibujar su estructura de Lewis sigue el siguiente procedimiento:

  1. Escribir la formula química: NaCl
  2. Conocer el tipo de enlace: iónico.
  3. Realizar la configuración electrónica, considerando el efecto de las cargas en el anión y catión.

 

  1. Realizar la estructura de Lewis.


Excepciones de la regla del octeto

La regla del octeto no se cumple para todos los compuestos químicos, las excepciones se pueden resumir en tres casos:

  • Moléculas que tienen un número impar de electrones

La presencia de un número de electrones impar hace imposible que los mismos se apareen totalmente y por tanto al menos uno de los átomos involucrados no alcanza el octeto. Por ejemplo el monóxido de nitrógeno (NO).

Estructura de Lewis del monóxido de nitrógeno.

 

  • Moléculas con menos de ocho electrones

Son aquellas moléculas donde un átomo o ion de la misma no puede alcanzar el octeto, un caso emblemático es el trifloruro de boro (BF3).

Estructura de Lewis del trifloruro de boro.

 

  • Moléculas con más de ocho electrones

Son compuestos químicos donde al menos uno de los átomos o iones sobrepasa los ocho electrones en la capa de valencia. Algunos ejemplos representativos son el pentacloruro de fosforo (PCl5).

Estructura de Lewis del pentacloruro de fosforo.

¿Qué debes saber para dibujar estructuras de Lewis?

Para dibujar una estructura de Lewis es necesario dominar los conceptos básicos de la química y sus elementos. Algunas de las consideraciones a tener en cuenta son:

  1. Determinar los electrones de valencia de los elementos involucrados, para ello se puede usar una tabla periódica. También es importante recordar que en el caso de los iones se deben sumar o restar electrones en la capa de valencia; para los aniones cada carga negativa significa que se debe sumar un electrón, en tanto, para los cationes una carga positiva implica que se debe restar un electrón.
  2. Escribir los símbolos químicos e indicar que tipo de enlace los une. Por lo general, las fórmulas químicas indican el orden de unión de los átomos mientras que la naturaleza del enlace está determinada por la diferencia de electronegatividad que existe entre los mismos.
  3. Completar primero los octetos de los elementos unidos al átomo central.
  4. Colocar los electrones faltantes en el átomo central aun si no cumplen con la regla del octeto.
  5. Cuando el átomo central no cumple con el octeto es recomendable probar con enlaces múltiples.
  6. Conocer las excepciones de la regla del octeto.