Anabolismo y catabolismo

El metabolismo es un proceso bioquímico que permite que un organismo viva, crezca, se reproduzca, sane y se adapte a su entorno. El anabolismo y el catabolismo son dos procesos o fases metabólicas, uno construye moléculas que el cuerpo necesita y el otro transforma las moléculas complejas en moléculas más pequeñas mediante la liberación de energía.

Anabolismo Catabolismo
Definición Los procesos anabólicos usan moléculas simples dentro del organismo para crear compuestos más complejos y especializados. Los procesos catabólicos descomponen compuestos complejos y moléculas para liberar energía.
Moléculas Las construye. Transforma las moléculas más complejas en otras más pequeñas.
Energía Requiere energía. Libera energía.
Conversión de la energía La energía cinética se convierte en energía potencial. La energía potencial se transforma en energía cinética.
Hormonas Estrógeno, testosterona, insulina y la hormona del crecimiento. Adrenalina, cortisol, glucagón y citosinas.
Oxígeno No utiliza oxígeno. Utiliza oxígeno.
Importancia Apoya el crecimiento de nuevas células, el almacenamiento de energía y el mantenimiento de tejidos corporales. Proporciona energía para el anabolismo, calienta el cuerpo y permite la contracción muscular.
Efecto sobre el ejercicio Los ejercicios anabólicos generalmente desarrollan masa muscular. Los ejercicios catabólicos suelen ser buenos para quemar grasas y calorías.
Ejemplos Asimilación en los animales y fotosíntesis en las plantas. Respiración celular, digestión y excreción.

 

Energía cinética y energía potencial

Un sistema posee energía si tiene la capacidad de hacer el trabajo. El trabajo desplaza la energía de un sistema a otro. Hay muchos tipos diferentes de energía que se dividen en dos formas principales: cinética y potencial. Aunque puede transformarse de un tipo a otro, la energía nunca puede ser creada o destruida.

 

Energía cinética Energía potencial
Se asocia con:
El movimiento. La energía almacenada.
Depende de: La masa del objeto y su velocidad. La fuerza que actúa sobre dos objetos.
Se puede convertir en: Energía potencial Energía cinética
Unidad de medición Joule (J) Joule (J)
Formas de energía
Mecánica, térmica, eléctrica, radiante y sonora. Eléctrica, química y nuclear.
Fórmula Ek= ½ m. v2 EPg= m.g.h
Ejemplo Cualquier tipo de movimiento. Al separar dos imanes.

 

Conceptos de la dinámica del punto material: energía

La energía se define como la capacidad para realizar trabajo. La gasolina, por ejemplo, puede quemarse en un motor para realizar el trabajo de impulsar un pistón: la gasolina almacena energía química. En el lenguaje corriente se habla de energía eólica, nuclear, geotérmica, mareomotriz, etc., y aunque atendiendo a su origen estas distinciones son adecuadas, desde un punto de vista estrictamente físico esas energías no siempre constituyen formas particulares. Así, la energía eólica es energía cinética y la energía mareomotriz es energía potencial.

Tipos de energía mecánica

En mecánica, sólo existen dos formas de energía: la cinética y la potencial. La primera es una energía actual asociada con el movimiento, y la segunda es una energía en potencia asociada con la posición o con la forma. Un cuerpo en movimiento posee una energía cinética que depende de su masa y su velocidad. Si, por ejemplo, usamos un martillo para clavar un clavo, lo que hacemos es comunicar una energía cinética al martillo, con lo cual, cuando éste golpea el clavo, puede realizar el trabajo de hundirlo en la madera. Ese trabajo es igual al producto de la fuerza que opone la madera a ser penetrada por el hundimiento del clavo que se ha logrado.

Cuando definimos la energía como capacidad para realizar trabajo, usamos el término trabajo en sentido físico: si hubiéramos fallado y en lugar de golpear la cabeza del clavo golpeábamos la madera (o, peor aún, nos hubiésemos golpeado un dedo), no habríamos realizado ningún trabajo útil para nosotros, pero la energía cinética del martillo hubiera sido la misma.

La energía potencial es la que adquiere un cuerpo cuando lo llevamos a una determinada posición en contra de una fuerza. Normalmente, cuando se habla de energía potencial esa fuerza es la atracción gravitatoria. Para elevar un cuerpo tenemos que realizar un trabajo; ese trabajo se almacena en el cuerpo en forma de energía potencial. Si después de elevarlo lo dejamos caer, el cuerpo adquirirá energía cinética y llegará al suelo con capacidad para realizar un trabajo.

Existen otras fuerzas que permiten almacenar energía potencial; así, si estiramos un muelle realizamos un trabajo contra la fuerza que opone el muelle a dejarse estirar: “cargamos” el muelle de energía elástica, que es una forma de energía potencial. Pero cuando hablamos de energía potencial nos referiremos a la que tiene un cuerpo por hallarse a cierta altura sobre el suelo.

De acuerdo con la definición, la energía tiene las mismas dimensiones que el trabajo y se medirá en las mismas unidades que éste.

Energía cinética

Para deducir la expresión de la energía cinética, suponemos que a un cuerpo de masa m que está en reposo le aplicamos una fuerza F hasta que adquiera una velocidad v: la energía cinética del cuerpo será el trabajo realizado por la fuerza F.

Se tratará de un movimiento rectilíneo uniformemente acelerado, por lo tanto:

Podemos expresar e en función de v y de a:

Si en la ecuación del trabajo sustituimos e por esta expresión:

y como por la ecuación fundamental de la dinámica es F = m·a, tendremos que:

Podemos llegar a esta misma expresión planteando el problema al revés, esto es, suponiendo que tenemos un cuerpo de masa m que se está moviendo a una velocidad v y tiene una energía cinética E c, igualamos E c al trabajo que tiene que hacer una fuerza F para frenar al cuerpo hasta que se pare. En este caso el movimiento es uniformemente retardado:

A partir de estas dos igualdades podemos expresar e en función de v y de a:

Si en la ecuación del trabajo sustituimos e por esta expresión:

y, por ser F = m·a, será:

Energía potencial

La energía potencial es el trabajo realizado por una fuerza mediante la cual elevamos un cuerpo de masa m desde el suelo a una altura h mediante una fuerza F.

Elevamos el cuerpo con movimiento uniforme, por lo que ejercemos una fuerza de la misma intensidad al peso del cuerpo:

F = m·g

El trabajo realizado será:

Ep = W = F·h = m·g·h

Supongamos que tenemos un cuerpo de masa m situado a una altura del suelo h y lo soltamos: el cuerpo caerá bajo la acción de su peso y, evaluando el trabajo de la fuerza peso hasta el momento en que el cuerpo llega al suelo, hallamos la misma expresión, E p = W = m·g·h.

Hemos hablado del “suelo” pero sin especificar si se trataba del suelo de la habitación o de otro nivel: es indiferente, la expresión hallada es en cualquier caso válida. Para elevar un cuerpo desde el suelo hasta una altura h podemos elevarlo primero hasta una altura h 1 y después desde ahí a una altura h 2, siendo h 1 + h 2h. La energía potencial que adquiere el cuerpo es la misma que si lo elevamos directamente desde el suelo hasta la altura h, ya que:

Ep = m·g·h = m·g·(h1 + h2) = m·g·h1 + m·g·h2

Ejemplo

Cuando se mueve un cuerpo paralelamente al suelo no se realiza trabajo contra la fuerza gravitatoria ya que, como dijimos, el trabajo es nulo si la fuerza es normal al desplazamiento. Por esta razón, la energía potencial que adquiere un cuerpo cuando lo elevamos a una altura h no depende de la trayectoria que sigamos, ya que es posible considerar ésta dividida en la suma de un número muy grande de elementos muy pequeños tangentes a la misma y cada uno de estos elementos se puede descomponer en la suma de un elemento vertical y uno horizontal, siendo nulo el trabajo en los desplazamientos horizontales.

Conservación de la energía mecánica

Este principio constituye una aplicación restringida a la energía mecánica del primer principio de la termodinámica. Entendiendo por energía mecánica de un punto material la suma de sus energías cinética y potencial, este principio dice que la energía mecánica de un punto material sobre el que la única fuerza que actúa es la atracción gravitatoria permanece constante:

Ec + Ep = cte.

El principio puede tomarse como demostrado por la experiencia, aunque es fácil ver que es matemáticamente cierto.

En el estudio de la cinemática llegamos a la expresión:

Para la velocidad con que llega al suelo un cuerpo que cae desde una altura h, podemos llegar a esta fórmula a partir del principio de la conservación de la energía.

En efecto, igualando la energía potencial que el cuerpo ha perdido al caer con la energía cinética que ha ganado:

de donde, al simplificar y despejar:

Si sobre el punto material actúa una fuerza que hace variar la energía mecánica del móvil al realizar un trabajo W, será:

W = (Ec + Ep) = Ec + Ep

Esta expresión, muy útil en la resolución de problemas, nos dice que el trabajo realizado por un punto material (o por un sistema de puntos materiales), o bien el trabajo realizado sobre el punto material, se traduce en una variación de su energía cinética y/o su energía potencial.

Ejemplo:

Un automóvil viaja a 30 km/h subiendo por una pendiente recta de 30°. El conductor acelera y en 5 segundos dobla su velocidad. Calcular el trabajo realizado si la masa total del vehículo es de 900 kg.

Solución:

Aplicaremos la fórmula:

W = Ec + Ep

La variación de E c habrá sido:

Sustituyendo valores, con la velocidad expresada en m/s, será:

Para calcular la altura h que ha subido el coche en 5 s, calcularemos primero el espacio que ha recorrido. El movimiento del coche es uniformemente acelerado, por tanto:

siendo, a·t = v – v0.

Sustituyendo valores en esas fórmulas, tendremos:

Por trigonometría, la altura será:

h = e·sen 30

Sustituyendo valores:

h = 254,16·0,5 = 127,08 m

El incremento de E p será:

Ep = m.g. h

Ep = 900.9,8.127,08 = 1120845,6J

Por tanto, el trabajo realizado en esos 5 s por el motor del automóvil será la suma de los incrementos de la energía cinética y de la energía potencial del vehículo (más la energía disipada en forma de calor a causa de los rozamientos, que aquí no se tiene en cuenta):

W = 93750 + 1120845,6 = 1214595,6 julios

Noria

Este antiguo ingenio debe su nombre a los árabes, quienes la inventaron, y significa rueda hidráulica. La noria es una máquina que cuenta con dos grandes ruedas giratorias, una horizontal movida por una palanca que es tirada habitualmente por una caballería, y otra vertical, cuyos engranajes se unen a los de la primera para así ser puesta en movimiento y para posibilitar que los arcaduces destinados a recoger agua cumplan esta función.

Teoría Cinético Molecular

Todas las partículas tienen energía que varía de acuerdo a la temperatura de la muestra, lo que determina si la sustancia es un sólido, un líquido o un gas. Las partículas sólidas tienen la menor cantidad de energía, mientras que las partículas de gas poseen la mayor cantidad.

¿En qué consiste esta teoría?

La teoría cinética de la materia afirma que ésta se compone de un gran número de pequeñas partículas o moléculas individuales que están en constante movimiento. Ayuda a explicar el flujo o transferencia de calor y la relación entre la presión, la temperatura y las propiedades del volumen.

¿Sabías qué...?
La teoría cinética de la materia también es ilustrada por el proceso de difusión, donde se da el movimiento de partículas desde una alta concentración a una baja concentración.

Es un modelo utilizado para explicar el comportamiento de la materia y se basa en una serie de postulados:

  • La materia está hecha de partículas en constantemente movimiento.
  • La energía en movimiento se llama energía cinética y la cantidad en una sustancia está relacionada con su temperatura.
La materia puede existir en las fases sólida, líquida y gaseosa.
  • Hay espacio entre las partículas. El tamaño de este espacio está relacionado con el estado de la sustancia.
  • Los cambios de fase ocurren cuando la temperatura de la sustancia cambia lo suficiente.
  • Hay fuerzas de atracción entre las partículas llamadas fuerzas intermoleculares que aumentan a medida que dichas partículas se acercan.

 

Si hay un aumento de temperatura, los átomos y moléculas ganarán más energía y se moverán aún más rápido.

Propiedades de los líquidos

Una de las propiedades más notables de los líquidos es que son fluidos, es decir, pueden fluir. Los líquidos tienen un volumen definido, pero no una forma definida. El movimiento de las partículas está restringido en gran medida por el volumen del líquido.

Hay menos espacio entre las partículas que en los gases, pero hay más que en los sólidos. Las partículas líquidas también tienen relativamente más energía que las partículas sólidas, es lo que permite que los líquidos fluyan.

Las fuerzas intermoleculares en un líquido dependen de la composición química del propio líquido.

La fuerza intermolecular se ve afectada por la cantidad de energía cinética en la sustancia; cuanta más energía cinética exista, más débil es la fuerza entre las moléculas. Los líquidos tienen más de esta energía que los sólidos, por lo que las fuerzas entre sus partículas tienden a ser más débiles.

Propiedades de los sólidos

Las sustancias sólidas tienen formas y volúmenes definidos. Las partículas sólidas tienen relativamente poca energía cinética y vibran en su lugar. Debido a esto, no pueden fluir como los líquidos. En los sólidos, el movimiento de partículas está completamente restringido dentro de un área pequeña, lo que ayuda al sólido a mantener su forma.

La energía cinética está determinada básicamente por la velocidad de cada partícula participante.

La mayoría de los sólidos están dispuestos en una estructura apretada, de manera ordenada y repetitiva de partículas llamada red cristalina. La forma del cristal muestra la disposición de éstas en el sólido.

Algunos sólidos no tienen forma cristalina y son llamados sólidos amorfos porque no tienen estructuras internas ordenadas. Ejemplos de sólidos amorfos son el caucho, el plástico, la cera y el vidrio.

Los sólidos se pueden moldear en cualquier forma.

Propiedades de los gases

La teoría cinética explica la temperatura, la presión y el volumen de un gas en términos del movimiento de moléculas.

Según esta teoría, los gases están formados por partículas diminutas que se encuentran en movimiento aleatorio y además experimentan colisiones entre sí y con las paredes del contenedor, pero de lo contrario no interactúan.

En un medio gaseoso el espacio entre las partículas es muy grande, esto da como resultado la ausencia de fuerzas atractivas o repulsivas entre las moléculas.

En la teoría cinética se hacen las siguientes suposiciones acerca de los gases ideales:

  • El gas contiene un gran número de moléculas idénticas.
  • Las colisiones entre moléculas son perfectamente elásticas, al igual que las moléculas y las paredes del contenedor.
  • El tiempo de colisión es insignificante en comparación con el tiempo transcurrido entre las colisiones.
  • Las moléculas no se atraen entre sí si no hay fuerzas intermoleculares.
  • Las moléculas están en constante movimiento al azar.
  • El volumen de las moléculas es despreciable en comparación con el volumen del gas o el recipiente.
  • Las leyes del movimiento de Newton pueden aplicarse a las moléculas
  • La energía cinética media de una colección de partículas de gas depende de la temperatura del gas y nada más.
Plasma

Los plasmas son gases ionizados que en su forma natural son poco comunes en la Tierra. Se pueden observar en cosas artificiales, como letreros de neón y bombillas fluorescentes. Pero en el resto del universo el plasma es la fase más común de la materia. La mayoría de las estrellas son de plasma, al igual que las luces del norte que se ven alrededor de las regiones polares.