CAPÍTULO 5 / TEMA 2

Rapidez, velocidad y aceleración

La rapidez, la velocidad y la aceleración son magnitudes cinemáticas con propiedades diferentes. La rapidez y la aceleración varían de acuerdo al tipo de movimiento.

VER INFOGRAFÍA

Diferencia entre rapidez y velocidad

Cuando decimos que un vehículo se desplaza a 80 km por hora nos referimos a su rapidez, puesto que la misma nos indica la cantidad de distancia que logra recorrer en un intervalo de tiempo. En este caso, el vehículo recorre 80 km cada vez que pasa una hora. En el trascurso de dos horas duplicará la distancia recorrida a 160 km.

La tortuga puede ganarle a la liebre ya que su movimiento es rectilíneo uniforme.

Pero la rapidez nos brinda muy poca información de la posición del móvil. Si deseamos conocer en qué posición se encontrará un móvil en el futuro, se requiere que dispongamos de una información muy importante: la dirección que lleva el cuerpo.

Si no conocemos estos datos, no se logrará saber qué trayectoria puede seguir el móvil, debido a que existen infinitas a tomar. Por lo cual, para poder determinar con mayor exactitud la posición futura de un cuerpo se desarrolló el concepto de velocidad.

¿Sabías qué?
La rapidez en el sistema internacional se expresa en m/s, aunque también es común que se exprese en km/h.

La velocidad es un concepto más amplio que la rapidez, debido a que nos entrega la información que nos proporciona la rapidez y anexa también la dirección y el sentido en el cual se desplaza el móvil. A este tipo de medida se la conoce como vectorial, puesto que dispone de un valor escalar seguido de una dirección.

Regresemos al caso del vehículo que ya sabemos que se desplaza con una rapidez de 80 km por hora, pero además ahora diremos que se desplaza en la calle principal, que será su dirección, y con sentido hacia el norte, lo que convierte a toda la información en su velocidad. Con ella, podremos determinar qué posición tendrá al cabo de un tiempo.

Análisis vectorial de la velocidad

El análisis de la velocidad se divide en dos partes importantes: velocidad media y velocidad instantánea.

Velocidad media

La velocidad media de un móvil es la razón de su vector desplazamiento al intervalo de tiempo durante el cual se produce ese desplazamiento. Siendo el cociente de un vector por un escalar, la velocidad media es un vector cuya dirección y sentido son los mismos que los del vector desplazamiento. Si en el instante t0 el móvil está en el punto P0 y su vector de posición es r(t0), y en el instante t el móvil está en el punto P y su vector de posición es r(t), la velocidad media del móvil entre P0 y será:

Donde:

Δr = vector desplazamiento.

Δt = escalar tiempo.

Un concepto distinto es el de celeridad o velocidad media sobre la trayectoria, que es una magnitud escalar que se define como el cociente entre el espacio recorrido y el tiempo empleado en recorrerlo.

La velocidad media se puede definir como el desplazamiento dividido por el tiempo.

Velocidad instantánea

La velocidad instantánea es una magnitud vectorial que representa la velocidad que tiene el móvil en cierto instante o, lo que es lo mismo, en un punto determinado de su trayectoria. La velocidad instantánea debe representarse por un vector porque se trata de una magnitud que, además de ser cuantificable, tiene una orientación determinada. Veamos cómo se define.

Si en un instante t0 un móvil está en el punto P0 cuyo vector de posición es r(t0), una fracción de segundo más tarde, es decir, en el instante t0 + ∆t, estará en otro punto P cuyo vector de posición será r(t0 + ∆t).

Si consideramos cada vez fracciones de segundo más pequeñas, es decir, ∆t más pequeños, el punto P se va acercando al punto P0, y la dirección del vector desplazamiento r(t0 + ∆t) – r(t0) se va acercando a la recta tangente a la trayectoria en el punto P0.

¿Sabías qué?
La velocidad tiene las dimensiones de una longitud dividida por un tiempo [L]·[T]-1. En el Sistema Internacional y en el técnico se expresa en metros por segundo (m/s), y en el Sistema Cegesimal de Unidades (CGS) en centímetros por segundo (cm/s).

Velocidad constante y velocidad variable

La velocidad constante es aquella donde el módulo y la dirección no cambian a través del tiempo. Solo aplica para Movimiento Rectilíneo Uniforme (MRU).

Su fórmula es la siguiente:

La velocidad variable es aquella donde la rapidez o la dirección (o ambas) cambian en el transcurso del tiempo.

Sus fórmulas son las siguientes:

a) Aceleración

b) Tiempo

c) Velocidad inicial

d) Velocidad final

Aceleración y velocidad

La aceleración es mayor si la velocidad de un cuerpo presenta variaciones bruscas y es pequeña si la velocidad presenta variaciones de a poco. En cambio, la aceleración es cero cuando la velocidad es constante y es negativa cuando disminuye.

La aceleración

Se define como el aumento de velocidad durante un intervalo de tiempo. Si un cuerpo se desplaza con una velocidad que no permanece constante, se define como un movimiento variado o acelerado.

Un carro acelera a medida que aumenta su velocidad.

Tomemos el ejemplo de un vehículo que arranca con una velocidad específica, la cual incrementa a una tasa de 3 kilómetros por hora cada segundo. Se puede decir que el vehículo experimenta variaciones iguales en tiempos iguales. Esto indica que su movimiento es uniformemente variado. Si la razón de cambio de velocidad siempre aumenta, el movimiento es propiamente acelerado, pero si la tasa decae, con el tiempo se considera un movimiento desacelerado.

Al igual que la velocidad, la aceleración es una magnitud vectorial. Esto nos indica que, además de poseer un valor escalar, también dispone de una dirección. Por lo tanto, un cuerpo que sube aceleradamente no es igual a otro que cae con la misma magnitud. Sus unidades son normalmente un cociente entre las unidades de longitud y las unidades del tiempo al cuadrado (m/s2, km/s2, km/h2, etc.).

La aceleración es una magnitud vectorial con un valor escalar.

Las aceleraciones son principalmente causadas por la presencia o interacción de una fuerza interna o externa con un cuerpo, y sus expresiones matemáticas pueden ser expresadas en función del cambio de velocidad con relación al tiempo (a= V/t), o en relación entre la fuerza y la masa del cuerpo (a= F/m ). En el caso de los cuerpos que caen libremente, la fuerza que actúa sobre ellos y produce su aceleración es la gravedad. Como esta fuerza es constante sobre la superficie de la Tierra, la aceleración gravitacional siempre se mantiene uniforme, y en promedio tiene un valor de 9,8 m/s2.

RECURSOS PARA DOCENTES

Artículo “Conceptos fundamentales de la cinemática: componentes de la aceleración”

Este artículo destacado presenta más información sobre la aceleración respecto al movimiento curvilíneo.

VER

Artículo “Concepto físico del tiempo”

Este articulo destacado específica lo que es el tiempo como magnitud de carácter físico.

VER

CAPÍTULO 4 / TEMA 4

Energía mecánica

A diario estamos en presencia de objetos que se mueven y cambian de posición. Esto se debe a la energía mecánica que poseen los cuerpos y que resulta de la suma de dos formas de energía: la cinética (movimiento) y la potencial (posición).

TRABAJO MECÁNICO

Aunque el concepto de trabajo se relaciona normalmente con actividades laborales e intelectuales, en física tiene una concepción diferente y más concreta.

El trabajo es un principio de la mecánica que comprende una fuerza y un desplazamiento; al trabajo (W) lo usamos para describir cuantitativamente lo que se obtiene cuando una fuerza hace mover a un cuerpo a lo largo de una distancia.

Empujar un objeto es un ejemplo de trabajo. Al inicio el cuerpo está en reposo y, después de ejercer la fuerza paralela al suelo, se desplaza y se acelera en la dirección de la fuerza.
¿Sabías qué?
El valor del trabajo mecánico indica la energía que se transfiere en el empuje a la mesa.

El trabajo mecánico (W) puede expresarse matemáticamente de la siguiente forma:

Donde:

F = fuerza.

Δx = desplazamiento.

El trabajo mecánico es una magnitud escalar y su unidad, según el Sistema Internacional de Unidades, es el joule (J).

Energía mecánica

En un cuerpo, la energía mecánica será igual a la suma de las energía cinética, potencial gravitatoria y potencial elástica.

ENERGÍA CINÉTICA

Es la energía que poseen los cuerpos en movimiento. En otras palabras, es el trabajo que hace falta para que un cuerpo con una masa determinada se acelere desde el reposo hasta una velocidad señalada.

Además, la energía cinética forma parte de todos los materiales conocidos, ya que cada uno de ellos se encuentra constituido por un conjunto innumerable de moléculas en constante movimiento. La cantidad de energía cinética aumenta en proporción al tamaño y a la velocidad del cuerpo: cuanto más grande sea y más rápido se mueva, ésta será mayor.

Cuanto más rápido se mueve un cuerpo, mayor energía cinética posee.

La energía cinética se mide en joule (J) y puede representarse de la siguiente forma:

Donde:

m = masa (en kg).

v = velocidad (m/s).

Las olas del mar desplazan a un surfista porque el agua en movimiento (cuerpo con energía cinética) choca contra la tabla de surf y realiza trabajo al moverla.

Ejemplo práctico

  1. Un carro tiene una masa de 1.200 kg. Si se desplaza con una rapidez de 20 m/s, ¿cuál es su energía cinética?

Solución:

  1. ¿Cuál es la masa de un cuerpo si su energía cinética es de 250 J y se desplaza a 5 m/s?

Solución:

¿Sabías qué?
William Thomson, mejor conocido como Lord Kelvin, fue el primero en acuñar el término “energía cinética” en sus trabajos.

Trabajo y energía cinética

Al aplicar una fuerza neta sobre un cuerpo, cambia su velocidad, se acelera y por lo tanto también cambia su energía cinética.

Esta relación se denomina Teorema de trabajo y energía cinética, cuyo enunciado establece que:

El trabajo mecánico de la suma de todas las fuerzas aplicadas sobre un cuerpo es igual a la variación de la energía cinética que experimenta dicho cuerpo.

Matemáticamente se expresa:

El Teorema de trabajo y energía cinética se aplica, por ejemplo, en una pelota de fútbol al impactar sobre los guantes del arquero, que se mueven hacia atrás al recibirla.

ENERGÍA POTENCIAL GRAVITATORIA   

Es la energía que tienen los cuerpos que se encuentran a una altura cercana a la superficie terrestre, es decir que esta energía la poseen todos los cuerpos que se ubican en un campo gravitatorio. Éste es de intensidad constante cada vez que el cuerpo está cerca de la Tierra o de un cuerpo celeste.

¿Sabías qué?
La gravedad en la Tierra tiene un valor de 9,806 m/s2.
La gravedad

Es una de las fuerzas esenciales del universo: gracias a ella, por ejemplo, la Tierra orbita alrededor del Sol. Del mismo modo, permite que la atmósfera no se pierda en el espacio o incluso que simplemente podamos caminar.

 

VER INFOGRAFÍA

Los cuerpos que se ubican a una altura sobre la superficie de la Tierra tienen cierta cantidad de energía que usan como trabajo mecánico al caer. Esto se manifiesta si deforma el lugar donde cae.

La energía potencial gravitatoria se mide en joule (J) y se expresa matemáticamente como:

Donde:

g = aceleración gravitatoria (m/s2).

m = masa (en kg).

h = altura (en m) con respecto al cero de referencia escogido.

Trabajo y energía potencial gravitatoria

Por lo general se considera la superficie terrestre como el nivel cero. De este modo, si dos cuerpos se ubican a la misma altura, el cuerpo con mayor masa tendrá la mayor energía potencial gravitatoria. Caso contrario, si ambos cuerpos tienen la misma masa, pero se encuentran en diferentes alturas, el cuerpo con altura mayor tendrá la mayor energía potencial gravitatoria.

Para que un cuerpo llegue a una posición elevada hace falta que realice un trabajo contra la gravedad y puede expresarse simbólicamente así:

Donde:

W = trabajo mecánico.

F = fuerza necesaria para equilibrar el peso.

Δy = desplazamiento vertical.

 

Ejemplo práctico

  1. Si la energía potencial en el suelo es 0, ¿cuál sería la energía potencial gravitatoria que tiene un ascensor con una masa de 1.000 kg ubicado a 400 m sobre esta superficie?

Solución:

  1. Si se coloca una bola de madera y una de acero, ambas del mismo tamaño, a la misma altura sobre el suelo, ¿cuál de la dos bolas tendrá mayor energía potencial gravitatoria?

Solución:

Los valores de la gravedad y de altura son iguales para ambas bolas. Sin embargo, la masa no. A pesar de tener el mismo tamaño, la bola de acero tendrá más masa que la bola de madera y, por lo tanto, más densidad. Así, la bola de acero es la que tiene mayor energía potencial gravitatoria.

ENERGÍA POTENCIAL ELÁSTICA

Este tipo de energía la poseen los cuerpos que sufren deformaciones. Esto sucede por una fuerza que le permite estirarse, acortarse, achatarse, sufrir una pequeña deformación o cambiar completamente su forma.

¿Qué es la deformación?

Es el cambio en la forma de un objeto cuando se encuentra sometido a una o varias fuerzas. Por ejemplo, al aplastar un pedazo de plastilina se aplica una fuerza y se puede ver que su forma cambia, es decir, se deforma como resultado de dicha fuerza.

 

Un resorte tiene energía potencial elástica cuando se estira y se comprime.

La energía potencial elástica se mide en joule (J) y puede representarse matemáticamente como:

Donde:

k = constante elástica (en N/m).

Δx = elongación del resorte (en m).

Cuando se estira una goma elástica, almacena energía potencial elástica. Al soltarla, recuperará su posición y liberará la energía.

Trabajo y energía potencial elástica

El trabajo mecánico que realiza la fuerza elástica ejercida por un resorte sobre un cuerpo es igual a la diferencia entre la energía potencial de los puntos entre los cuales actúa. Se expresa de la siguiente manera:

Donde:

W = trabajo mecánico.

Fe = fuerza elástica.

A y B = puntos entre los cuales actúa el trabajo.

Epe = energía potencial elástica.

La intensidad de la fuerza elástica se expresa matemáticamente así:

Donde:

k = constante elástica (en N/m).

Δx = elongación del resorte (en m).

Ejemplo práctico

A un resorte se le aplica una fuerza de 18 N, lo que hace que se comprima 6 cm. ¿Cuál es la energía potencial elástica del resorte en esa posición?

Solución:

a) Calcular constante de elasticidad.

b) Calcular valor de energía potencial elástica.

RECURSOS PARA DOCENTES

Artículo “Movimiento y trabajo mecánico”

Este artículo explica los conceptos de trabajo desde el punto de vista físico, así como las unidades y fórmulas.

VER

 

Video “Energía de un oscilador mecánico”

Este recurso audiovisual le permitirá comprender los parámetros de movimiento oscilatorio armónico.

VER

 

 

 

 

Punto de fusión y punto de ebullición

La materia tiene propiedades características y no características. Las primeras son particulares para cada sustancia ya que dependen de la naturaleza del átomo que la constituye, por lo que permiten identificar sustancias. Entre las propiedades características de la materia están el punto de fusión y el punto de ebullición.

Punto de fusión Punto de ebullición
¿Qué es? Temperatura a la cual una sustancia cambia de estado sólido a líquido. Temperatura a la cual una sustancia cambia de estado líquido a gaseoso.
Condición Presión = 1 atm. Presión = 1 atm.
Tipo de magnitud Constante física. Constante física.
Fases en equilibrio Sólida y líquida. Líquido y gaseoso.
¿Qué sucede durante el equilibrio? La temperatura permanece constante a pesar de que el tiempo de calentamiento aumenta. La temperatura permanece constante a pesar de que el tiempo de calentamiento aumenta.
¿De qué depende? Tipo de enlace químico, polaridad e intensidad de las fuerzas de atracción intermolecualres. Principalmente de la presión atmosférica. También influye el tipo de enlace, polaridad e intensidad de las fuerzas de atracción intermolecualres.
En sustancias covalentes Bajo. Bajo.
En sustancias iónicas Muy alto. Muy alto.
¿Cómo determinarlo? Los aparatos más usados son:

  • Tubo de Thiele.
  • Aparato Fisher-Jhons.
  • Aparato Melt-Temp.
Los métodos más usados son:

  • Método por destilación.
  • Método de Siwoloboff.

 

Representación gráfica temperatura/tiempo
Ejemplo del proceso
  • Derretimiento de un hielo.
  • Derretimiento de una vela.
  • Fundición del hierro.
  • Hervir agua para espagueti.
  • Cocinar una sopa.
  • Hacer café.
En algunas sustancias Agua: 0 °C

Mercurio: – 38,87 °C

Etanol: – 117,3 °C

Cobre: 1.083 °C

Hierro: 1.535 °C

Agua: 100 °C

Mercurio: 356,58 °C

Etanol: 64,96 °C

Cobre: 2.595 °C

Hierro: 3.000 °C

 

Ley de Coulomb y ley de gravitación universal

La ley de Coulomb y la ley de gravitación universal son de gran importancia para entender el comportamiento de dos de las fuerzas fundamentales en la naturaleza: la eléctrica y la gravitacional. Ambas leyes se representan por medio de expresiones matemáticas muy similares, sin embargo sus diferencias son notorias.

Ley de Coulomb Ley Gravitacional universal
Enunciado La fuerza eléctrica de atracción y repulsión entre dos cargas es directamente proporcional al producto de las mismas e inversamente proporcional al cuadrado de la distancia que los separa. La fuerza gravitacional de atracción entre dos masas es directamente proporcional al producto de las mismas e inversamente proporcional al cuadrado de la distancia que los separa.
Interacción Fuerza entre cargas. Puede ser atractiva o repulsiva. Fuerza entre masas. Siempre es atractiva.
Efectos Más evidente en cuerpos pequeños: los átomos. Más evidente en cuerpos grandes: galaxias, planetas y estrellas.
Expresión matemática F_{E} = K \frac{q_{1}q_{2}}{r^{^{2}}} F_{G} = G \frac{m_{1}m_{2}}{r^{2}}
Cuerpos implicados Cargas: q_{1}q_{2} Masas: m_{1}m_{2}
La distancia entre: Los centros de las cargas es r Los centros de las masas es r
Constante K = 9 . 10^{9} N.m^{2}/C^{2} G = 6,67 . 10^{-11} N.m^{2}/kg^{2}
Fuerza sobre el átomo de hidrógeno Carga del electrón del átomo de H

q_{1} = - 1,6 . 10^{-19} C

 

Carga del protón del átomo de H

q_{2} = 1,6 . 10^{-19} C

Masa del electrón del átomo de H

m_{1} = 9,1 . 10^{-31} kg

 

Masa del protón del átomo de H

m_{2} = 1,67 . 10^{-27} kg