CAPÍTULO 7 / REVISIÓN

DIVERSIDAD Y CLASIFICACIÓN DE LOS SERES VIVOS | ¿qué aprendimos?

Clasificación de los seres vivos

La clasificación de los seres vivos comenzó como un sistema jerárquico que dividió a todos los organismos conocidos en plantas y animales. Este modelo fue reemplazado en el siglo XVIII por Carlos Linneo, quien realizó una división en reinos y los estructuró en cinco niveles: clase, orden, género, especie y variedad. Luego se empleó el sistema de clasificación binomial para nombrar a los organismos, pero fue Robert H. Whittaker quien postuló una clasificación de cinco reinos llamados Monera, Protista, Fungi, Plantae y Animalia. El sistema de cinco reinos no está en uso en la actualidad, en cambio, lo que ahora se emplea es un sistema de seis reinos: Animalia, Plantae, Fungi, Protista, Monera y Archaea.

La complejidad de la estructura celular fue uno de los criterios que Whittaker tuvo en cuenta para la clasificación.

Procariotas: dominio Bacteria, reino Monera

Las bacterias son los organismos procarióticos más simples, y presentan características como: ausencia de membrana nuclear, cromosoma único y circular, carencia de organelos celulares y reproducción por formación de esporas o fisión binaria. Inicialmente, las bacterias fueron consideradas animales, plantas y hongos. Se clasifican de varias maneras, pero la más importante consta de dos grupos principales: Archaebacteria y Eubacteria. Las primeras son organismos que viven en condiciones extremas y carecen de pared celular; las segundas son las llamadas bacterias verdaderas. Su rasgo característico es la presencia de pared celular rígida.

La bacteria que naturalmente forma parte de la flora intestinal es muy importante para una digestión adecuada.

Procariotas: dominio Archaea, reino Archaebacteria

Las arqueobacterias surgieron cuando la Tierra se encontraba en sus primeros años de existencia y las condiciones reinantes eran extremas. Tienen una estructura más parecida a la de los eucariotas que a la de las bacterias. Tienen un solo cromosoma redondo, como las bacterias, pero su transcripción genética es similar a la que ocurre en los núcleos de las células eucariotas. Hay tres tipos principales: Crenarchaeota, que son organismos extremadamente tolerantes al calor y a ambientes muy ácidos; Euryarchaeota, que son organismos que pueden sobrevivir ambientes con 10 veces la concentración de sal del mar y que reducen el CO2; y Korarchaeota, que es el linaje más antiguo pero menos comprendido, y que presenta genes diferentes a los de los grupos anteriores.

Organismos como Methanobacterium ruminantium están presentes en el sistema digestivo de los animales rumiantes y ayudan a la digestión de la celulosa.

Eucariotas: dominio Eukarya, reino Protista o Protoctista

El término protista fue introducido por Ernst Haeckel. Este reino forma un vínculo entre otros reinos de plantas, animales y hongos. Son generalmente organismos eucariotas simples, unicelulares, aunque algunos son coloniales y otros multicelulares. Principalmente son de naturaleza acuática y realizan el movimiento mediante flagelos o cilios. Algunos protistas son semejantes a los animales y se conocen como protozoos; otros, son similares a plantas, y tienen clorofila. Entre estos últimos se encuentran las algas verdes, rojas, pardas, doradas y fuego. Por último, los protistas con aspecto de hongos son unicelulares, saprófitos y viven en suelo húmedo, plantas y árboles en descomposición.

Por su condición de parásitos, algunos protistas pueden causar muchas enfermedades en plantas, en animales e incluso en el hombre.

Eucariotas: dominio Eukarya, reino Fungi

El Reino Fungi incluye un grupo diverso de seres que no pueden ser catalogados como animales ni como plantas. Se caracterizan por ser heterótrofos y descomponer la materia orgánica. Poseen una pared celular rígida y pueden ser unicelulares o pluricelulares. Los hongos pluricelulares presentan estructuras filamentosas llamadas hifas y viven en lugares húmedos y sombríos. Este reino contiene cinco filos principales: Chytridiomycota, Zygomycota, Ascomycota, Basidiomycota y Glomeromycota.

Los hongos producen naturalmente antibióticos que permiten inhibir el crecimiento de bacterias.

Eucariotas: dominio Eukarya, reino Animalia

El Reino Animalia está compuesto por todos los animales, vivos o extintos, del planeta. Son eucariotas, ya que el ADN se encuentra dentro del núcleo celular. No tienen paredes celulares. Son multicelulares, heterótrofos y tienen la capacidad de moverse y responder a su entorno. Todos los animales se pueden dividir en los grupos vertebrados e invertebrados. Además, cada reino se divide en categorías más pequeñas llamadas phylum (filo): Porifera, Coelenterata, Plathelminthes, Nematoda, Annelida, Arthropoda, Mollusca, Echinodermata, Protochordata y Vertebrata.

Los animales extintos también forman parte del reino Animalia.

Eucariotas: dominio Eukarya, reino Plantae

Este reino incluye a los diferentes tipos de plantas que se encuentran en el planeta. Cada grupo tiene características especiales y únicas, como la presencia de pared celular, nutrición autótrofa, clorofila, ausencia de sistema locomotor y reproducción sexual o asexual. Se clasifican en Briophyta, las cuales carecen de un sistema vascular y se desarrollan en dos fases, gametofito y esporofito; y Cormophyta, que es un grupo de plantas vasculares que tienen raíz, tallo y hojas. Éstas, a su vez se dividen en Pteridophyta y Spermatophyta. Además, éstas últimas se clasifican en gimnospermas y angiospermas.

La fotosíntesis de las plantas proporciona oxígeno a la atmósfera de nuestro planeta.

 

CAPÍTULO 6 / TEMA 5

FUNCIONES CELULARES DE REPRODUCCIÓN Y RELACIÓN

Recibimos de nuestros progenitores un bien fundamental: el material genético. El mecanismo de reproducción celular más difundido es la mitosis, proceso por el cual una célula da origen a 2 células hijas idénticas entre sí e idénticas a la célula que las originó. Este tipo de reproducción se da en células somáticas, sin embargo, para las células sexuales existe otro tipo de reproducción: la meiosis, que sólo sucede en organismos con reproducción sexual.

¿CÓMO SE DESARROLLA EL CICLO CELULAR?

El ciclo celular es un conjunto ordenado de sucesos que pueden producir crecimiento y división en células hijas. La duración del mismo dependerá del tipo celular en cuestión, algunas células lo pueden completar en una hora y otras pueden hacerlo en varios días. También dependerá de algunos factores externos y/o internos, como la presencia o falta de nutrientes y proteínas dentro de la célula, y la temperatura.

¿Sabías qué?
La creación constante de nuevas células permite que nuestro cuerpo se renueve, que exista un balance y que se eviten enfermedades.

Las células en el camino hacia la división celular avanzan a través de una serie de etapas de crecimiento, replicación de ADN y división que producen dos células idénticas o células con carga genética de ambos padres.

Algunas células en división celular se pueden observar fácilmente en el microscopio con ayuda de una tinción.

Interfase

Durante la interfase, la célula experimenta procesos de crecimiento normales mientras se prepara para la división celular. Para que una célula pase de la interfase a la fase mitótica, se deben cumplir muchas condiciones internas y externas. Las tres etapas de la interfase se llaman G1, S y G2.

G1 

La primera etapa de la interfase se denomina fase G1 (primer gap) porque, desde un aspecto microscópico, se ven pocos cambios. Sin embargo, durante la etapa G1, la célula es bastante activa a nivel bioquímico. La célula acumula los componentes básicos del ADN cromosómico y las proteínas asociadas, así como también suficientes reservas de energía para completar la tarea de replicar cada cromosoma en el núcleo.

G0

La fase G0 o fase de reposo es un período en el ciclo celular en el que las células existen en un estado inactivo. La fase G0 se ve como una fase G1 extendida, donde la célula no se divide ni se prepara para dividirse, o se ve como una etapa distinta que se produce fuera del ciclo celular. Algunos tipos de células, como las células nerviosas y musculares del corazón, se vuelven inactivas cuando alcanzan la madurez, pero continúan desempeñando sus funciones principales durante el resto de la vida del organismo.

Células en G0

 

Algunos tipos de células que entran en la fase G0 pueden salir de ese estado inactivo y entrar en la fase G1, mientras que otras células G0 no pueden hacerlo.

S

Es la segunda etapa de la interfase del ciclo en la que se produce la replicación o síntesis del ADN y como resultado el núcleo contiene el doble de proteínas nucleares y de ADN que al principio. Cada cromosoma tendrá dos cromátidas hermanas idénticas unidas por el centrómero. Las células que entran en esta fase del ciclo se dividen inevitablemente.

G2

Es la tercera fase de la interfase del ciclo celular en la que continúa la síntesis de proteínas y ARN. Al final de este período se observan con el microscopio cambios en la estructura celular que indican el principio de la división celular. Termina cuando la cromatina empieza a condensarse al inicio de la división.

Estado M o fase de división celular

Representa la división celular y agrupa a la mitosis y meiosis y citocinesis. Cuando una célula se divide debe transmitir a sus células hijas los requisitos esenciales para la vida, la información hereditaria para dirigir los procesos vitales, y la de los materiales en el citoplasma que necesitan las células hijas para sobrevivir y utilizar dicha información.

MITOSIS

Proceso de división celular mediante el cual una célula se divide y da origen a dos células hijas genéticamente idénticas a ella. En este proceso, el ADN de una célula se divide en dos conjuntos de cromosomas exactamente iguales.

Durante la mitosis, el cuerpo produce nuevas células tanto para el crecimiento como para la reparación de tejidos dañados o envejecidos.

¿Qué células del cuerpo se dividen por mitosis?

 

Las células somáticas son las únicas que se dividen por mitosis y se definen como aquellas que forman la mayoría del cuerpo de cualquier ser pluricelular, están en los huesos, los órganos, los tejidos e incluso en la sangre. Son diploides, es decir, tienen doble carga cromosómica.

Por ejemplo, si nos caemos de nuestra bicicleta y nos raspamos la rodilla, el cuerpo se encarga de activar el proceso de mitosis para reparar el daño causado en nuestros tejidos. De igual manera, si nuestro hígado necesita crecer porque nosotros hemos crecido, las células hepáticas se dividen mediante la mitosis para así producir mayor cantidad.

Fases de la mitosis

Profase

 

Metafase

 

Anafase

 

Telofase

 

MEIOSIS

Es la forma especializada de división celular que se produce en las células sexuales, por ejemplo: las esporas de plantas, los espermatozoides y los óvulos.

Durante la meiosis, el ADN de una célula diploide (2n) se somete a un largo proceso de replicación que dará como resultado una célula tetraploide (4n), la cual se someterá posteriormente a dos divisiones celulares sucesivas que darán origen a cuatro células haploides (n) conocidas como gametos.

Estas células haploides luego se fusionan con las células haploides del sexo opuesto durante la reproducción y se genera así una nueva célula diploide o cigoto.

Durante este proceso se produce el entrecruzamiento, que no es más que la mezcla de cromosomas de ambos progenitores. A futuro, el entrecruzamiento produce variabilidad genética, ya que los descendientes no serán simples copias de uno de los padres.

¿Cómo se divide la meiosis?

 

La meiosis se divide en meiosis I y meiosis II, cada una cuenta con profase, metafase, anafase y telofase, y culmina con la citocinesis.

¿QUÉ ES LA CARIOCINESIS Y CITOCINESIS?

Es el proceso físico de la división celular que divide el citoplasma de una célula parental en dos células hijas. Ocurre simultáneamente con dos tipos de división nuclear llamados mitosis y meiosis, que se dan en las células animales. La mitosis y cada una de las dos divisiones meióticas dan como resultado dos núcleos separados contenidos dentro de una sola célula. La citocinesis realiza un proceso esencial para separar la célula por la mitad y garantizar que un núcleo termine en cada célula hija.

Por otro lado, la cariocinesis es la división celular en la que el material genético es dividido y transferido a las células hijas. Se da tanto en la mitosis como en la meiosis.

RECURSOS PARA DOCENTES

Ver infografía “Ciclo celular”

En esta infografía encontrará todo el proceso del ciclo celular.

VER

Ver artículo “Mitosis”

Este artículo contiene información sobre la mitosis y todas sus partes.

VER

Ver artículo “Meiosis”

Este artículo contiene información adicional sobre todo el proceso de la meiosis.

VER

Darwin, Lamarck y Mendel

Se conoce como evolución biológica a los cambios en la información genética de una población, que además serán legados a las siguientes generaciones. Varios científicos a lo largo de la historia humana han estado involucrados con este concepto, algunos de ellos son: Darwin,  Lamarck y Mendel.

Darwin Lamarck Mendel
Nombre completo Charles Robert Darwin. Jean-Baptiste Lamarck. Gregor Mendel.
Nacimiento Nació en Sherewsbury, Inglaterra, el 12 de febrero de 1809. Nació en Bazentin, Francia, el 1 de agosto de 1744. Nació en en Hyncice, actual República Checa, el 20 de Julio de 1822.
¿Quién fue? Fue un científico naturalista que sostuvo que las especies  evolucionaron a partir de un antepasado común, a través del proceso de selección natural. Fue un naturalista francés que formuló la primera teoría de la evolución de las especies. Conocido como el padre de la genética, fue un monje y naturalista que formuló los principios básicos de la herencia genética.
Teorías Teoría de la evolución. Teoría de la evolución. Leyes de la herencia genética o leyes de Mendel.
Postulados o leyes 1) Todos los seres vivos derivan de una forma de vida ancestral única y, a partir de ésta, la vida evolucionó a través de múltiples y sucesivas vías divergentes.

 

2) La evolución puede describirse como un proceso de descendencia en el cual se encuentran formas  ancestrales y formas derivadas.

 

3) El mecanismo fundamental, aunque no único, a través del cual los seres vivos evolucionaron es la selección natural.

 

4) La evolución es un proceso lento y gradual.

 

5) El nacimiento de nuevas especies es un proceso gradual y de larga duración.

 

6) Mientras mayor sea la similitud entre dos taxones, mas relacionados están entre sí.

1) Ley del uso y desuso: el uso frecuente y continuo de un órgano provoca que un ser vivo lo desarrolle de manera proporcional a la duración de su uso, mientras que la falta de uso provoca que este desaparezca gradualmente.

 

2) Herencia de caracteres adquiridos: las características que un ser vivo adquiere o pierde son pasadas a sus progenitores, siempre y cuando estas características sean adquiridas por ambos progenitores.

1) Ley de la uniformidad: si se cruzan 2 líneas puras para un determinado carácter, los descendientes tendrán el fenotipo de uno de los progenitores, el dominante, y todos tendrán el mismo genotipo y fenotipo.

 

2) Ley de la segregación de caracteres de la segunda generación: durante la formación de gametos, cada alelo se separa de su par para establecer el genotipo de la segunda generación.

 

3) Ley de la asociación independiente de caracteres: los caracteres diferentes son independientes unos de los otros y se transmiten a las siguientes generaciones sin verse controlados por el carácter diferente.

Leyes de Mendel: primera, segunda y tercera

La herencia mendeliana es un conjunto de principios relacionados con la transmisión de características hereditarias entre los organismos. Las leyes de la herencia fueron derivadas por Gregor Mendel, un monje del siglo XIX, mediante la realización de experimentos de hibridación en guisantes (Pisum sativum).

 

Primera ley Segunda ley Tercera ley
Nombre Ley de la uniformidad. Ley de la segregación de caracteres. Ley de la asociación independiente de caracteres.
Enunciado Si se cruzan 2 líneas puras homocigotas para un determinado carácter, los descendientes tendrán el fenotipo de uno de los progenitores y serán todos iguales en genotipo y fenotipo. Previo a la formación de gametos, cada alelo se separa de su par para establecer el genotipo de la segunda generación. La forma en que un par de alelos se segrega en dos células hijas durante la segunda división de la meiosis no tiene efecto sobre cómo se segrega cualquier otro par de alelos.
Resultado El gen que se exprese en la primera generación será el gen dominante. El carácter recesivo permanece oculto. Los caracteres que quedaron ocultos en la primera generación no desaparecieron. Con la ayuda de otros alelos se expresan en la segunda generación. Los rasgos heredados a través de un gen son independientes de los rasgos heredados a través de otro gen porque los genes residen en diferentes cromosomas.

 

Fenotipo y genotipo

De generación en generación, los padres o progenitores pasan la información genética a sus hijos, desde características visibles como la altura o el color de ojos, hasta características como el tipo de sangre. Aquellas que podemos ver se conocen como fenotipo, mientras que las no observables son el genotipo. 

Fenotipo Genotipo
Definición Manifestación física de la carga genética. Composición genética de un individuo.
¿Qué contiene? Todas las características físicas de un individuo. Toda la información genética de un individuo.
¿Son características observables? Sí. No.
Depende de Genotipo, nutrición y medio ambiente. La carga genética de los padres.
Medición de las características  A través de los sentidos. A través de pruebas genéticas.
Ejemplos  Color de cabello, color de ojos, altura y tono de piel, entre  otros. Susceptibilidad a las enfermedades, el grupo sanguíneo y el ADN.

 

Mitosis y meiosis

Al ser humano lo componen dos tipos principales de células, las somáticas y las sexuales, cuyas funciones y formas de división son muy distintas. Por un lado, las células somáticas se dividen a través de la mitosis, y por otro lado, las células sexuales a través de la meiosis. 

Mitosis Meiosis
Células implicadas  Somáticas Sexuales
Número de divisiones  Una Dos divisiones celulares sucesivas
Etapas  Profase, metafase, anafase y telofase. Profase I, metafase I, anafase I, telofase I, profase II, metafase II, anafase II y telofase II.
Recombinación genética  No
Aporte a la variabilidad genética  No
Carga genética de la célula madre 2n 2n
Carga genética de la célula hija 2n 1n
Características de las células hijas Copias exactas a la célula madre. Células genéticamente diferentes a los progenitores.
Duración  Corta Larga
Función  Crecimiento y renovación de las células para el mantenimiento de la vida del individuo. Reproducción.
Proceso

 

Las leyes de la herencia de Gregor Mendel

Las características físicas de todas las personas no son fruto del azar sino que vienen regidas por las leyes de la herencia, las cuales fueron descubiertas por Mendel a mediados del siglo XIX y luego olvidadas, y redescubiertas a comienzos del siglo XX.

Mendel, el padre de la genética

Hasta 1866 nadie había intentado explicar de modo científico algo tan evidente como la transmisión de caracteres de padres a hijos. Johann Gregor Mendel fue un religioso checo que vivió gran parte de su vida en un convento de la República Checa. Conocedor del cálculo de probabilidades, realizó multitud de cruzamientos entre plantas de guisantes. A partir de ellos observó cómo se distribuían caracteres o rasgos concretos para intentar descubrir las leyes que rigen su transmisión.

A partir de los resultados de sus observaciones, Mendel formuló tres conclusiones conocidas con el nombre de leyes de Mendel y que constituyen la base de la genética actual.

A pesar de su importancia, los trabajos de Mendel no fueron tomados en consideración por la comunidad científica hasta transcurridos alrededor de 50 años.

Mendel formuló tres leyes que hoy en día constituyen la base de la genética actual

Algunos conceptos básicos

La información responsable de los caracteres hereditarios se encuentra en los genes. Un gen es un fragmento de ADN (o ARN en algunos virus) que lleva la información para un carácter. En la época de Mendel no se conocía la biología molecular; lo que en la actualidad se denomina gen es lo que Mendel en su día denominó factor hereditario: unidad en que se transmite el material genético.

Pueden existir distintas versiones de un mismo gen, llamadas alelos; por ejemplo, un cierto gen determina el color de la flor de guisante. Pero este gen presenta varias versiones o alelos, lo que significa que uno determinará la aparición del color rojo en la flor, y otro, la del color blanco.

Los organismos diploides tienen los cromosomas ordenados por parejas, y por ello presentan también dos versiones de un mismo gen, es decir, dos alelos para un mismo carácter.

Para llegar a sus conclusiones, Mendel debió realizar una multitud de experimentos con plantas guisantes.

Si los dos alelos son iguales, el individuo es homocigótico; si son distintos, heterocigótico.

En los individuos homocigóticos para un gen está claro que se expresará el carácter determinado por el alelo que posee. Siguiendo con el ejemplo de la flor del guisante, un individuo que presenta dos alelos iguales que significan color rojo (homocigótico) va a presentar todas sus flores únicamente de color rojo.

¿Qué ocurre en un individuo heterocigótico, es decir, con dos versiones distintas de un mismo gen?

Pueden ocurrir dos cosas:

a) Uno de los alelos “anula” el efecto del otro. Al primero se le denomina alelo dominante; al segundo, alelo recesivo. Los alelos dominantes se suelen expresar con letras mayúsculas; los recesivos, con las correspondientes minúsculas.

Existen muchos caracteres dominantes, es decir, que se manifiestan también en los individuos heterocigóticos: el color blanco de la lana del borrego, los ojos rojos de la mosca Drosophila, el pelo corto en los conejos, la textura de pelo de alambre en los perros, etcétera.

En el caso del hombre son dominantes caracteres tales como la piel oscura, el pelo rizado, la capacidad de enrollar la lengua…

Algunas enfermedades están determinadas por un alelo dominante, como la calvicie prematura en el sexo masculino o la acondroplasia que supone un menor desarrollo de los huesos largos de las extremidades.

Sin embargo, la mayoría de las enfermedades humanas son debidas a un alelo recesivo. Las más conocidas son el albinismo, que consiste en la falta de pigmentación tanto en la piel como en el pelo, y la galactosemia: los niños que la padecen son incapaces de digerir el azúcar presente en la leche, por lo que acumulan sustancias tóxicas que darán lugar, entre otros síntomas, a retraso mental y cataratas. Estos efectos son, sin embargo, fáciles de prevenir si la enfermedad se detecta a tiempo y se les suministra una dieta carente de leche y de todos los derivados de ésta que posean lactosa.

Los estudios de Mendel permiten la prevención de muchas enfermedades de trasmisión genética

b) Ambos alelos se expresan simultáneamente dando lugar a un carácter intermedio. Entonces se dice que son codominantes.

Otros casos que se han detectado en la naturaleza de codominancia son:

  • El color de la piel en los cobayas puede ser amarillo, crema o blanco. Los heterocigóticos, que presentan un alelo de cada tipo, son de color crema.
  • La forma del rábano puede ser larga, redonda u oval (este último caso es el heterocigótico).
  • En el caballo palomino, el color dorado se debe a la presencia de un par de alelos codominantes. Los correspondientes homocigóticos presentan colores castaño rojizo y crema, respectivamente.

En la reproducción sexual, dos gametos o células, una procedente del padre y otra de la madre, se fusionan para dar lugar a una célula huevo, a partir de la cual se desarrollará un nuevo individuo.

Estos gametos son haploides y, por tanto, sólo van a tener una versión de cada gen. Todos los gametos de un individuo homocigótico para un determinado gen son completamente iguales.

Ahora bien, en un individuo heterocigótico se pueden originar dos tipos distintos de gametos según el alelo concreto que porten.

Por último, cuando decimos que un individuo es BB (por ejemplo) estamos hablando de su genotipo (dotación genética concreta). Sin embargo, si nos referimos al carácter observable que ese genotipo determina, por ejemplo “color blanco”, estamos aludiendo a su fenotipo.

Fenotipo y genotipo de un organismo

El genotipo de un organismo es el conjunto de genes que presenta. El fenotipo, en cambio, es el conjunto de características observables, por ejemplo, ser rubio o moreno, etc. El genotipo no cambia durante la vida del individuo, mientras que el fenotipo sí: al crecer cambia la apariencia, la exposición al sol hace que la piel se vuelva más oscura, etc. El fenotipo depende del genotipo y de la acción ambiental que soporte cada individuo.

A veces el genotipo no basta para determinar un fenotipo concreto, sino que tienen también que coincidir circunstancias ambientales concretas. Por ejemplo, hay enfermedades que parecen presentar una cierta predisposición a aparecer, pero exigen que se dé además alguna circunstancia ambiental como ciertos abusos alimentarios, contacto con determinados agentes infecciosos, etcétera.

Francis Galton (1822-1911) empleó los términos naturaleza y crianza para referirse a los papeles desempeñados por la herencia y el ambiente en la aparición de un determinado carácter.

Para expresar esta interacción entre los genes y el medio ambiente nace el concepto de heredabilidad. Por ejemplo, según este criterio, la heredabilidad del peso del huevo de las gallinas es del 60%, mientras que el número de huevos sólo presenta una heredabilidad del 20%. Otro ejemplo sería en la especie humana, donde la estatura tendría un 80% de heredabilidad, mientras que la aptitud aritmética, un 12%.

Por otra parte, cabe destacar que determinados fenotipos resultan de la interacción de varios genes distintos. Muchas veces estos genes tienen efectos aditivos: la diferencia en la pigmentación de la piel entre blancos se debe a la acción de varios genes cuyos efectos se suman. Es un caso de herencia poligénica.

Se habla de alelos múltiples cuando, para un solo gen, existen más de dos alelos distintos. Lógicamente, cualquier organismo diploide sólo podrá llevar dos alelos. En los seres humanos uno de los casos más típicos es el del grupo sanguíneo (sistema ABO), para el cual existen tres versiones distintas de un gen: i, IA, IB; según las distintas combinaciones posibles entre ellos, aparecen individuos del grupo O, A, B y AB.

¿Lo sabías? Los estudios realizados por Mendel no fueron reconocidos sino hasta 50 años después de su publicación.

Mutación

Las mutaciones provocan cambios en el ADN, los cuales pueden provocar desórdenes genéticos devastadores o adaptaciones beneficiosas, razón por la cual es de suma importancia estudiarlas.

¿Qué son las mutaciones?

Las mutaciones son cambios en las secuencias del ADN o ARN y son una de las causas principales de la diversidad biológica. Se producen en muchos niveles diferentes, desde un bloque del ADN hasta un segmento de algún cromosoma, y tienen consecuencias diferentes en cada organismo.

A pesar de que existen varios tipos de cambios moleculares, la mutación se refiere típicamente a los cambios en los ácidos nucleicos.
A pesar de que existen varios tipos de cambios moleculares, la mutación se refiere típicamente a los cambios en los ácidos nucleicos.

En los sistemas biológicos capaces de reproducirse, los cambios pueden ser o no heredables. Por ejemplo, algunas mutaciones afectan a un solo individuo, el que la porta, mientras que otras a todos los descendientes del organismo portador y por lo tanto a futuras generaciones.

Mutaciones hereditarias vs. mutaciones somáticas o adquiridas

Las mutaciones hereditarias son aquellas que pasan de padres a hijos, generalmente están presentes en toda la vida de la persona y ocupan prácticamente todas las células de su cuerpo. Estas mutaciones también se conocen como mutaciones de línea germinal, porque se pueden hallarse en las células germinales del padre o de la madre, es decir, en el óvulo o los espermatozoides.

Las mutaciones hereditarias se producen en las células sexuales.
Las mutaciones hereditarias se producen en las células sexuales.

Por otro lado, las mutaciones adquiridas o somáticas pueden producirse en algún momento de la vida de la persona, pero sólo estarán presentes en ciertas células del cuerpo. Estas no son pasadas a las siguientes generaciones porque no se producen en las células germinales, ocurren en las somáticas.

Las mutaciones adquiridas se pueden generar por factores ambientales o errores durante la división celular de las células somáticas.

Tipos de mutaciones

Existen muchas formas diferentes en las que el ADN puede cambiar, lo que da como resultado diversos tipos de mutaciones, las cuales se diferencias entre sí de acuerdo al lugar donde se producen, dividiéndose en:

  • Mutaciones génicas o moleculares.
  • Mutaciones cromosómicas.
  • Mutaciones genómicas.

Mutaciones genéticas

Son aquellas que ocurren cuando se producen cambios en la secuencia de nucleótidos del ARN, lo que puede traer como consecuencia que se formen las proteínas incorrectas. Dentro de este tipo se encuentran:

  • Sustituciones: son aquellas en las que hay un intercambio entre dos bases nitrogenadas, ejemplo, un cambio entre una timina (T) y una citosina (C). Dicha sustitución podría cambiar el codón y generar un aminoácido diferente, lo que provocará a su vez un cambio en la proteína producida.

CTGGAG

CTGGTG

La anemia falciforme es causada por una mutación de sustitución, en esta el codón GAG muta a GTG, y conduce al cambio del aminoácido glutamato a valina.

En algunos casos las sustituciones pueden no afectar la estructura de la proteína, a éstas se las conoce como mutaciones silenciosas.

Mutaciones cromosómicas

Son aquellas que afectan a los cromosomas mediante las supresiones o duplicaciones de algún segmento del cromosoma. Dentro de este tipo se encuentran:

  • Inserciones: son aquellas mutaciones en las que pares de bases extra se insertan en el ADN. Este número de bases puede variar entre uno y miles. La enfermedad de Huntington y el síndrome de X frágil son ejemplos de este tipo de mutaciones.
Mutación de tipo inversión.
Mutación de tipo inversión.
  • Deleciones: son aquellas en las que se suprime o se pierde una sección del ADN. El número de bases suprimidas puede variar de uno a miles.

El síndrome de deleción 22q11.2 es un ejemplo de mutación por deleción, en éste se suprimen algunos pares de bases del cromosoma 22, lo que trae como consecuencias, trastornos autoinmunes y defectos cardíacos.

Mutación de tipo deleción.
Mutación de tipo deleción.
  • Translocaciones: son aquellas mutaciones en las que una porción del ADN es pasada de un cromosoma a otro no homólogo. Algunos tipos de leucemia son provocados por translocaciones.
Mutación de tipo translocación.
Mutación de tipo translocación.

Mutaciones genómicas

También conocidas como mutaciones numéricas, son aquellas que afectan el número total de cromosomas de un individuo. Dentro de este tipo se pueden destacar:

  • Poliploidía: es aquella condición en la que un organismo diploide adquiere uno o más juegos de cromosomas adicionales. La poliploidía se produce como consecuencia de la no separación o separación incompleta de los cromosomas durante la mitosis o meiosis.
  • Aneuploidía: en este caso la mutación se produce en uno o varios cromosomas pero no afecta el juego completo, como en el caso de la poliploidía. La aneuploidía genera un número anormal de algún cromosoma. De acuerdo a esto, las aneuploidias pueden ser de tipo, monosomías, trisomías y tetrasomías, entre otras, de acuerdo al número de cromosomas que se dupliquen.
El síndrome de Down se produce porque hay 3 cromosomas del tipo 21, por eso también se conoce como trisomía 21.
El síndrome de Down se produce porque hay 3 cromosomas del tipo 21, por eso también se conoce como trisomía 21.
  • Haploidía: son aquellas en las que se produce una disminución en el juego total de cromosomas de un individuo.

Efectos de las mutaciones

Los efectos de las mutaciones pueden ser beneficiosos, perjudiciales o neutrales, todo depende del contexto y de la ubicación donde ocurra la misma.

La mayoría de las mutaciones no neutrales son deletéreas, es decir, afectan la capacidad de un individuo sin causarle la muerte. Generalmente, cuanto mayor es el número de bases afectadas por una mutación, mayor será el efecto de la misma sobre el individuo.

Las mutaciones pueden variar en efecto, algunas pueden tener efectos enormes, mientras que otras, tienen efectos pequeños que pueden generar cambios evolutivos.

La mayoría de las veces en las que ocurre una mutación, se logra invertir por los procesos de reparación del ADN, los cuales están en constante trabajo para evitar cualquier error. Sin embargo, algunos cambios pueden permanecer y son los potencialmente generaran una enfermedad.

Genética de poblaciones

La genética es la disciplina de la biología que se encarga del estudio de la herencia, es decir, de la manera en que los padres pasan los genes a los hijos. La genética a su vez está dividida en diversas ramas, una de ellas es la genética de poblaciones.

¿Qué es la genética de poblaciones?

La genética de poblaciones es el estudio de la variación genética que existe dentro de las poblaciones, es decir, en los grupos de organismos que pertenecen a la misma especie.

La genética de poblaciones implica el examen y modelación de los cambios en las frecuencias de genes y alelos en las poblaciones en el espacio y tiempo.

La colección de todos los genes encontrados dentro de una población se conoce como pool genético o acervo genético y contabiliza todos los alelos únicos que tienen los miembros de cualquier población. Cada miembro de la población recibe sus genes de otros miembros (los padres) y los pasa a la siguiente generación (la descendencia). La genética de poblaciones estudia la variación de esos genes y cómo dicha variación pasa y cambia de generación en generación.

Existen varios factores que influyen en la diversidad genética dentro de las poblaciones, algunos de ellos son: el tamaño de la población, la mutación, la deriva genética, la selección natural, la diversidad ambiental, la migración y los patrones de apareamiento no aleatorios.

Procesos que intervienen en la genética de poblaciones

Existen muchos científicos que han abarcado el tema de la genética de poblaciones a lo largo del tiempo, dos de ellos son: G.H. Hardy y W. Weinberg, quienes en 1908 propusieron uno de los más simples y más importantes modelos en la genética de poblaciones.

El modelo de Hardy–Weinberg describe y predice el equilibrio en las frecuencias de alelos y genotipos de las poblaciones libremente cruzadas, y asume que las poblaciones son grandes, que no existe deriva genética ni selección natural, ni el flujo genético entre las poblaciones cercanas, sin embargo, todos estos factores influyen en la variabilidad poblacional de la siguiente manera:

Mutaciones

Las mutaciones son la fuente máxima de variación genética dentro de las poblaciones, ya que evitan que estas se vuelvan genéticamente homogéneas.

Las mutaciones permiten a la larga la adaptación de los seres vivos.

 

Las mutaciones son cambios que se producen en la secuencia genética de las especies, por lo tanto son una de las principales causas de diversidad biológica. Estos cambios pueden ocurrir en diversos puntos de los cromosomas y tienen consecuencias muy diversas, algunas positivas, y otras pueden traer consigo daños graves para los individuos.

En las poblaciones, para que las mutaciones puedan pasarse de generación en generación, deben ocurrir en las células germinales (gametos) y afectar el material hereditario, esta última es la que genera la diversidad entre las especies.

Charles Darwin

fue naturalista inglés que estudió la variación en plantas y animales durante un durante más de 30 años. En base a esto, en 1858 propuso su teoría de la evolución por selección natural.

Deriva genética

La deriva genética es el cambio en las frecuencias alélicas que se produce como resultado de las fluctuaciones aleatorias en la transferencia de alelo de una generación a otra, especialmente en las poblaciones pequeñas como resultado de condiciones ambientales o de separación por barreras geográficas.

Una de las consecuencias o resultados directos de la deriva genética es el aumento en la separación entre poblaciones. Si dos poblaciones de una especie se vuelven genéticamente muy distintas, ya no podrán reproducirse y se consideran nuevas especies, esto es lo que se conoce como especiación y la deriva genética lo influencia.

Las barreras geográficas contribuyen en la especiación.

Flujo genético

Se conoce como flujo genético al intercambio de genes entre dos poblaciones separadas. Esto se logra con mayor frecuencia cuando los organismos pertenecientes a las poblaciones migran a nuevas áreas, o cuando las esporas de plantas viajan por acción del viento. Cada vez que un gen se introduce en una población donde no existía, se ha producido el flujo genético.

Las migraciones son las responsables de los cambios en las frecuencias de los alelo, la migración resulta en la adición de nuevas varias genéticas al grupo de genes establecidos de una especie o población en particular.

Las migraciones son las principales responsables del flujo genético.

Existe una serie de factores que afectan el flujo genético entre las diferentes poblaciones, uno de los más significativos es: la movilidad, mientras mayor movilidad, mayor potencial migratorio tendrá un individuo. Los animales tienden a ser más móviles que las plantas, sin embargo, el polen y las semillas pueden ser transportadas a grandes distancias por acción de los animales o a causa del viento.

Selección natural

La selección natural es el mecanismo mediante el cual las poblaciones se adaptan y evolucionan a lo largo del tiempo. En esencia, los organismos individuales que resultan más adecuados para un medio ambiente sobreviven y se reproducen con más éxito y producen muchos descendientes igualmente bien adaptados, mientras que aquellos no adaptados o beneficiados, con el tiempo tienden a desaparecer. Después de numerosos ciclos de cría, los mejor adaptados dominan.

La naturaleza ha filtrado a individuos inadecuados y ha permitido a las poblaciones evolucionar.
¿Sabías qué...?
La variación genética es el mecanismo evolutivo que nos hace únicos, ya sea en términos de color de cabello, color de piel e incluso la forma de nuestro rostro. La variación genética hace referencia a los cambios en las secuencias del ADN.

GRUPO SANGUÍNEO – SISTEMA ABO – SISTEMA RHESUS

A pesar de que la sangre cumple las mismas funciones en todos los individuos, no es idéntica en todos. Existen diferentes “tipos” de sangre. Esta característica es genética, es decir, nacemos con una sangre que pertenece a determinado grupo. Por lo tanto, nuestro organismo acepta sólo la sangre del mismo grupo (la sangre compatible) y rechaza la de los otros grupos, con reacciones que pueden llegar a ser muy graves.

Los sistemas de grupos sanguíneos más conocidos son el Sistema ABO (grupo A, grupo B, grupo AB y grupo O) y el Sistema Rhesus, conocido como Factor Rh, (Positivo o Negativo). Estos Sistemas están presentes simultáneamente en todos los individuos. Cuando se habla de Grupo y Factor nos referimos al Sistema ABO y Rh.