CAPÍTULO 3 / EJERCICIOS

mezclas y soluciones | Ejercicios

sistemas materiales

1. Completa la siguiente tabla con ejemplos de las propiedades intensivas y extensivas.

Propiedades intensivas Propiedades extensivas
 

 

 

 

 

 

 

 

2. Marca la opción correcta.

La fase sólida de un sistema material está representada por la letra:

(   ) M

(   ) T

(   ) S

La fase sólida es aquella donde los átomos y las moléculas…

(   ) no se encuentran unidos fuertemente.

(   ) se encuentran fuertemente unidos.

(   ) pueden o no estar unidas.

Un sistema abierto…

(   ) no permite el intercambio de masa con el medioambiente.

(   ) permite el intercambio de energía y masa con el medioambiente.

(   ) no permite ni la transferencia de energía, ni de masa con el medioambiente.

sistemas homogéneos

1. Responde las siguientes preguntas:

  • ¿Qué caracteriza a los sistemas homogéneos?

______________________________________________________________________________________________________

  • ¿El aire es un sistema homogéneo? ¿Por qué?

______________________________________________________________________________________________________

  • ¿Qué son las soluciones?

______________________________________________________________________________________________________

  • ¿Qué son el soluto y el solvente en una solución?

______________________________________________________________________________________________________

  • ¿Cómo se clasifican las soluciones?

______________________________________________________________________________________________________

2. ¿Cuál es el soluto y el solvente en las siguientes mezclas?

Agua de mar
Gaseosa
Jugo de naranja

3. ¿Cuáles son las técnicas de separación de las mezclas homogéneas? Describe 2.

 

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

 

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

sistemas heterogéneos

1. En las siguientes oraciones, indica con una V las verdaderas y con una F las falsas. Justifica las falsas.

  • Las mezclas heterogéneas se clasifican en soluto y solvente.  (   )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • El antiácido o leche magnesia es una suspensión.  (   )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Las mezclas groseras están formadas por una fase sólida con baja solubilidad que se encuentra dispersa en la fase liquida. (   )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • La leche con cereal es una mezcla heterogénea.  (   )

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Por medio de diferentes métodos se pueden separar las fases de una mezcla heterogénea. Relaciona cada técnica con su descripción.

Imantación Se utiliza para precipitar un sólido suspendido en un líquido.
Tamizado Se utiliza cuando en una mezcla hay componentes líquidos que no se disuelven entre sí, por lo que sus fases se pueden distinguir.
Levigación Se utiliza una barrera, que puede ser un material poroso, para separar un sólido suspendido en un líquido, como el agua y la arcilla.
Centrifugación Se utiliza para separar las partículas de una mezcla de sólidos que tienen distintos tamaños.
Filtración Se utiliza cuando una de las fases de la mezcla está compuesta por sustancias con propiedades magnéticas, con el fin de separarlo del resto.
Decantación Consiste en hacer pasar una corriente de agua por una mezcla de diferentes sólidos no solubles en ella, así, son arrastrados los componentes más livianos y quedan en el plato los de mayor peso.

agua: propiedades y usos

1. Indica el estado en que se encuentra el agua en las siguientes imágenes y describe el proceso que ocurrió.

2. Completa las siguientes oraciones:

  • El agua cuenta con diferentes propiedades que se clasifican en: ____________________ y ______________________.
  • El agua es ___________________, ____________________ e insípida.
  • El agua es _________________________ universal.
  • El ciclo del agua comienza con la ______________________.
  • El agua permite _____________________________________ necesarias para el metabolismo celular.
  • El agua regula ___________________________ del cuerpo.
  • El agua participa en el proceso de _________________________ de los organismos autótrofos.

contaminación del agua

1. Investiga sobre algunos de los lugares más contaminados del mundo, escoge uno y realiza un resumen. Luego describe algunas medidas que se puedan emplear para evitar la contaminación de ese lugar.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Realiza un mapa conceptual sobre el proceso de potabilización del agua.

 

 

 

 

 

 

 

 

 

 

Soluciones insaturadas, saturadas y sobresaturadas

Las soluciones son mezclas homogéneas compuestas esencialmente por solutos y solventes. Los solutos son las sustancias presentes en menor proporción, mientras que el solvente es la sustancia que está en mayor proporción. Según la solubilidad del soluto, las soluciones pueden clasificarse como saturadas, insaturadas o sobresaturadas.

Solución insaturada Solución saturada Solución sobresaturada
Cantidad de soluto Menor cantidad de soluto que la que es capaz de disolver un solvente en particular. Máxima cantidad del soluto que se disuelve en un solvente en particular, a una temperatura y presión específica. Mayor cantidad de soluto que el que puede haber en una disolución saturada.
Punto de saturación No alcanza el punto de saturación. Alcanza el punto de saturación. Sobrepasa el punto de saturación.
¿Qué sucede al añadir más soluto? El soluto añadido se disuelve. El soluto añadido no se disuelve. Precipita. El soluto añadido no se disuelve. Precipita.
Efecto de la temperatura A mayor temperatura mayor solubilidad. A mayor temperatura mayor solubilidad. A mayor temperatura mayor solubilidad.
Representación

Formas físicas en que se presenta la materia

La materia puede presentarse en dos formas distintas: homogénea y heterogénea, según que sus propiedades y su composición sean las mismas en cualquier punto o cambien al pasar de un punto a otro. La homogeneidad, tal como se entiende en química, es, pues, homogeneidad respecto a la subdivisión.

En cambio, un material heterogéneo es una mezcla en la que cada porción homogénea de la misma constituye lo que se denomina una fase. Una roca de granito, por ejemplo, es un material heterogéneo en el que se pueden observar a simple vista distintos componentes: partículas pequeñas y oscuras de mica, cristales de cuarzo duros y transparentes, y cristales oblongos y grises de feldespato. Cada fase de una mezcla presenta distintas propiedades y la separación de las mismas puede en general realizarse por medios mecánicos.

Sustancia pura y disolución

Una sustancia pura o especie química es una fase homogénea de composición constante. Si la composición de una fase homogénea puede variar se habla de disoluciones. Las disoluciones pueden ser de distintos tipos, pero las más comunes son de un sólido en un líquido; por ejemplo, de sal común en agua.

La composición de una sustancia o cuerpo puro no varía con los cambios de estado. Así, el agua tiene la misma composición en forma de hielo, de agua líquida o de vapor. Si se varía la presión, la temperatura de fusión (o solidificación) de una sustancia pura también varía, pero tampoco en este caso cambia la composición del líquido (o sólido) que se obtiene. En cambio, la composición de una disolución sí varía con los cambios de estado o con los cambios de presión y temperatura. Por ejemplo, si se enfría una disolución en agua caliente de sal común, parte de la sal precipita, ya que la sal es más soluble en agua caliente que en agua fría.

 

Una disolución puede variar su composición luego de un cambio de estado.

Elementos y compuesto químicos

El agua y el azufre, por ejemplo, son sustancias puras, pero la primera es un compuesto y la segunda es un elemento o, en otras palabras, la molécula de agua está formada por dos átomos de distinto tipo (hidrógeno y oxígeno), mientras que la molécula de azufre está formada únicamente por átomos de azufre. Si sometemos el agua a cambios de estado, su composición no varía (es una sustancia pura), pero por medios químicos podemos descomponerla en hidrógeno y oxígeno, sus elementos constituyentes. Esto puede lograrse, por ejemplo, haciendo pasar vapor de agua sobre hierro calentado al rojo: el hierro extraerá el oxígeno de las moléculas de agua dando origen a la formación de un óxido de hierro, mientras que el hidrógeno quedará libre.

Con el azufre es imposible hacer algo así: podemos calentarlo y su molécula pasará de una forma (alotrópica) a otra, pero seguirá estando formada únicamente por átomos de azufre. También podemos intentar hacerlo reaccionar con otro elemento o con un compuesto, pero siempre tendremos lo mismo: azufre que no ha entrado en combinación o bien azufre que se ha combinado con otros elementos, nunca dos componentes distintos de esa sustancia que a la que llamamos azufre, por la simple razón de que se trata realmente de un elemento químico y, por lo tanto, está constituido por un único tipo de átomos.

Disoluciones

Las disoluciones o soluciones son sistemas formados de dos componentes: el disolvente y el soluto.

Se llama disolvente al componente más abundante, y soluto al que se halla en menor cantidad; sin embargo, en la práctica, en muchos casos no queda claramente delimitado cuál de los componentes es el soluto y cuál el disolvente.

En el lenguaje corriente, cuando se habla de disoluciones se suele hacer referencia a disoluciones de un soluto sólido en un disolvente líquido (casi siempre agua, con mucho el más común de los disolventes de sustancias inorgánicas), pero de hecho hay otros ocho tipos de disoluciones, ya que tanto el soluto como el disolvente pueden estar en estado sólido, líquido o gaseoso.

En una solución solo se distingue una fase de la materia.

La mayoría de las reacciones químicas se producen con las sustancias reaccionantes disueltas, y para el reconocimiento de una sustancia o la determinación de algunas de sus características a menudo es conveniente recurrir a su disolución. De ahí la gran importancia que posee su estudio. Por ahora sólo indicaremos que conviene distinguir entre disoluciones diluidas (poco soluto), concentradas (bastante cantidad de soluto) y saturadas (aquellas en que el disolvente no puede admitir más soluto). En disolución acuosa muchos compuestos se ionizan y entonces estas disoluciones son conductoras de la electricidad.

Disolventes fundamentales para el químico son: el agua, el agua destilada, los ácidos y bases inorgánicos, la bencina, el alcohol ordinario, la acetona, el éter, el sulfuro de carbono, etcétera.

Dispersiones coloidales

La distinción entre mezcla y disolución a partir de su homogeneidad o heterogeneidad es muy precisa en el ejemplo del granito y puede asimismo ser suficientemente precisa en el caso de las suspensiones. Un ejemplo de suspensión puede ser la de arena muy finamente pulverizada mezclada en agua: a diferencia de lo que ocurriría si se tratase de una disolución, la arena acaba por depositarse, aunque lo hará tanto más lentamente cuanto menores sean las partículas. La explicación de este diferente comportamiento estriba en que en una suspensión las partículas están constituidas por agrupaciones de un número muy grande de moléculas, mientras que en una disolución las partículas son moleculares.

Un caso menos evidente es el de las dispersiones coloidales, en las que las partículas tienen un tamaño que, aun siendo considerablemente superior al de las partículas en disolución, es muy inferior al de las partículas de las suspensiones, hasta el punto de que las partículas coloidales pasan a través de todos los filtros corrientes y no se depositan ni siquiera después de un período de reposo prolongado. Para fijar ideas, se puede afirmar que si el tamaño de las partículas es mayor que 0,2 (micras, siendo 1 = 10-3 mm) nos hallamos ante una suspensión; cuando está comprendido entre 0,2 y 1 m (milimicra, 10-6 mm), se trata de una dispersión coloidal, y si es menor que 1 m, se puede hablar propiamente de disolución. En el caso de las dispersiones coloidales, se habla de fase dispersa y de medio de dispersión, conceptos equivalentes a los de soluto y disolvente usados en el caso de las disoluciones. Como en el caso de las disoluciones, existen nueve tipos distintos de dispersiones coloidales, correspondientes a los tres posibles estados de la fase dispersa y del medio dispersante.

Separación de mezclas heterogéneas

En muchas ocasiones, tanto en el laboratorio como en la industria, se plantea la necesidad de separar los distintos componentes de una mezcla. Entre las distintas técnicas que se emplean con este fin cabe mencionar las siguientes:

  • Para separar sólidos de líquidos:
  • Separación por decantación, que consiste en dejar que el sólido acabe por depositarse en el fondo de un recipiente (en ocasiones, la decantación puede acelerarse por centrifugación);
  • Separación por filtración, en la que se utiliza un material (papel de filtro, porcelana porosa, etc.) que por el tamaño de sus poros permite el paso del líquido pero no el de las partículas sólidas;
  • Separación por centrifugación, basada en que las partículas en suspensión o en dispersión resultan afectadas por la fuerza centrífuga, con lo que tienden a escapar de la masa del líquido (esta técnica se emplea, por ejemplo, en la industria azucarera).
  • Para separar sólidos de sólidos:
  • Separación magnética, utilizable para extraer, por ejemplo, partículas de hierro o de otro metal ferromagnético de una mezcla;
  • Separación por levigación, que se basa en someter la mezcla a un chorro de agua, que arrastra con mucha mayor facilidad las partículas menos densas (se usa, por ejemplo, para separar una mezcla de arena y oro, aprovechando que este último es mucho más denso);
  • Separación por disolución, que puede usarse, por ejemplo, para extraer la sal de una mezcla de arena y sal: se añade agua, con lo que la sal se disuelve, y después, tras filtrar la disolución, el agua se evapora, con lo que la sal precipita.
  • Para separar líquidos inmiscibles:
  • Separación por centrifugación, según el principio ya explicado (también se emplea para la separación de emulsiones);
  • Separación por decantación, que en este caso suele hacerse usando un embudo de decantación, el cual, al abrir su llave, permite la salida del líquido de mayor densidad.

Separación de disoluciones

La separación de los diversos componentes de una disolución es más difícil que la de los componentes de una mezcla, ya que en este caso los medios puramente mecánicos no son efectivos y es preciso recurrir al calentamiento de la disolución para llevar a cabo la separación a partir del vapor:

  • Disolución de un sólido en un líquido: separación por evaporación, que se realiza calentando la disolución en una vasija abierta y poco profunda, con lo que, al irse evaporando el líquido, la disolución se va concentrando y, si se prosigue hasta la total evaporación del líquido, se obtiene el soluto precipitado.
  • Disolución de un líquido en otro: separación por destilación simple, aplicable cuando los puntos de ebullición de los dos líquidos son notablemente diferentes y en la que se procede calentando la disolución hasta una temperatura algo superior al punto de ebullición del líquido más volátil y condensando por enfriamiento el vapor recogido.
  • Disolución de varios líquidos en otro líquido: separación por destilación fraccionada, que se basa en que cada líquido tiene un punto de ebullición distinto; puede realizarse en una sola operación mediante las llamadas columnas de fraccionamiento, tal como se hace en el caso del petróleo crudo.
Proceso de destilación simple.