CAPÍTULO 14 / TEMA 5

Medios de exploración del espacio

El universo ha sido desde siempre un misterio para la humanidad que, cautivada por la infinidad de astros y la profundidad del oscuro espacio, no ha dejado de investigar. Una forma de obtener información de estos cuerpos tan lejanos es a través de los satélites artificiales. En la actualidad hay miles de satélites que orbitan alrededor de la Tierra.

¿qué son los satélites artificiales?

Existen dos tipos de satélites: los naturales y los artificiales. Ambos se caracterizan por orbitar alrededor de un planeta, pero a diferencia de los primeros, los segundos han sido fabricados por el hombre. Para ello fueron necesarias diversas tecnologías, la comprensión de leyes físicas y la inspiración de los propios astros.

Un satélite artificial puede ser tripulado o automático.

Luego de ser construidos, son lanzados al espacio y puestos en órbita. Para ello, parten de la superficie terrestre impulsados por cohetes que les otorgan una velocidad tangencial, obligándolos a circular en torno a la Tierra, de modo que su atracción equilibre constantemente la fuerza centrífuga producida por el movimiento curvilíneo.

¿CUÁL ES EL OBJETIVO DE LOS SATÉLITES?

Su objetivo es captar y transmitir información, especialmente de nuestro planeta, pero también de otros astros. De esta manera, permiten pronosticar o dar información de sucesos, como por ejemplo, pronosticar las condiciones ambientales durante el día, determinar las zonas boscosas que están siendo destruidas por incendios o las aguas oceánicas contaminadas por un derrame de petróleo, así como transmitir a cualquier parte del planeta un acontecimiento deportivo o artístico en el momento en que se realiza.

¿Sabías qué?

El primer satélite artificial en llegar al espacio fue el Sputnik I, un diseño de la Unión de Repúblicas Socialistas Soviéticas (URSS) que se puso en órbita el 4 de octubre de 1957. Su misión era obtener información meteorológica, como contribución al Año Internacional Geofísico (1957-1958).

exploraciones AL ESPACIO

La exploración espacial es la investigación por medio de naves espaciales tripuladas y sin tripulación de los alcances del universo más allá de la atmósfera de la Tierra y el uso de la información obtenida para aumentar el conocimiento del cosmos y beneficiar a la humanidad.

Los humanos siempre han mirado los cielos y se han preguntado sobre la naturaleza de los objetos vistos. Con el desarrollo de cohetes y los avances en electrónica y otras tecnologías en el siglo XX, se hizo posible enviar máquinas y animales y luego personas por encima de la atmósfera de la Tierra al espacio exterior.

Agencias espaciales

Las agencias epaciales son las entidades que se ocupan de la exploración o la investigación del espacio. La más conocida es la NASA (Administración Nacional de Aeronáutica y del Espacio), pertenece a Estados Unidos y es la que emprendió la misión de la llegada a la Luna. Otra agencia espacial importante es la de Europa, se llama ESA (Agencia espacial europea) con su sede principal en París, Francia.

Estados unidos vs. la unión soviética

Durante la Guerra Fría, uno de los ejes principales de la rivalidad entre Estados Unidos y la Unión Soviética, fue la investigación espacial. La carrera espacial fue la “competencia” que surgió con el fin de ver quién lograba conquistar el espacio, tuvo lugar principalmente entre 1955 y 1975, aunque se extendió unos años más. La carrera espacial comenzó con satélites simples y luego continuó con vuelos espaciales humanos, y luego culminó en los viajes a la Luna.

La tecnología espacial fue muy importante durante este conflicto, por sus potenciales usos militares y los efectos que tendría en los ciudadanos.

Hechos importantes de la carrera espacial

  • 21 de agosto de 1957: primer misil balístico intercontinental (ICBM). Misión, R-7 Semyorka. País, URSS.
  • 4 de octubre de 1957: primer satélite artificial, Misión, Sputnik 1. País, URSS.
  • 3 de noviembre de 1957: primer animal en órbita (perra Laika). Misión, Sputnik 2. País, URSS.
  • 31 de enero de 1958: detección de los cinturones de Van Allen. Misión, Explorer 1. País: UU.-ABMA
  • 4 de enero de 1959: primer satélite artificial solar. Misión, Luna 1. País, URSS.
  • 17 de febrero de 1959: satélite meteorológico. Misión, Vanguard 2.  País, EE. UU.
  • 7 de agosto de 1959: fotografía de la Tierra desde el espacio. Misión, Explorer 6. País, EE. UU.
  • 13 de septiembre de 1959: primera sonda en impactar en la Luna. Misión. Luna 2. País, URSS
  • 19 de agosto de 1960: primeros animales en viajar al espacio y volver vivos (las perras Belka y Strelka). Misión, Sputnik 5. País, URSS.
  • 12 de abril de 1961: primer humano en órbita. Misión, Vostok 1. País, URSS.
  • 16 de junio de 1963: primera mujer en órbita. Misión, Vostok 6. País, URSS.
  • 15 de diciembre de 1965: primer rendezvous en órbita. Misión, Gemini 6A/Gemini 7. País, EE. UU.
  • 24 de diciembre de 1968: orbita lunar tripulada. Misión, Apolo 8. País, EE. UU.
  • 20 de julio de 1969: primer alunizaje tripulado en la Luna. Misión Apolo 11. EE. UU.
  • 17 de noviembre de 1970: primer vehículo-robot enviado a la Luna y al espacio. Misión, Lunojod 1. País, URSS.
  • 14 de noviembre de 1971: primer satélite en orbitar otro planeta (Marte). Misión, Mariner 9. País, EE. UU.
  • 27 de noviembre de 1971: primera sonda espacial en impactar en el planeta Marte. Misión, Mars 2. País, URSS.
  • 15 de julio de 1975: primera misión conjunta URSS-EE.UU.  Misión, Apolo-Soyuz. País,  URSS y EE. UU.

apolo 11: LLEGADA A LA LUNA

Apolo 11 fue el vuelo espacial de los Estados Unidos durante el cual el comandante Neil Armstrong y el piloto del módulo lunar Edwin Aldrin, Jr., el 20 de julio de 1969, se convirtieron en las primeras personas en aterrizar en la Luna y caminar por la superficie lunar. El Apolo 11 fue la culminación del programa Apolo y un compromiso nacional masivo por parte de los Estados Unidos para vencer a la Unión Soviética para llegar a la Luna.

Desde el momento de su lanzamiento, el 16 de julio de 1969, hasta el regreso del 24 de julio, cientos de millones de personas en casi todas las partes del mundo presenciaron el evento por televisión.

El comandante Neil Armstrong fue la primera persona en pisar la luna en 1969. El 24 de julio del mismo año regresaron a la Tierra, dando como finalizada la misión.

A pesar de este suceso existen tanto opiniones a favor como en contra acerca de la veracidad del mismo, dentro de las opiniones positivas están:

  • La NASA desarrolló la misión con la colaboración de más de 35.000 personas; es imposible mantener el engaño a tantos profesionales. Además, otras 400.000 personas nucleadas en empresas y universidades colaboraron con la NASA.
  • Los astronautas trajeron 382 kilos de piedras lunares que los geólogos han autentificado.
  • La bandera estadounidense en realidad no ondea, tenía un mástil superior para mantenerla rígida. Las ondulaciones son consecuencia de haber estado plegada durante el viaje y sólo se mueve cuando la manipulan los astronautas.
  • Las sombras de las imágenes no se ven paralelas por el efecto de perspectiva que sucede también en la Tierra. A su vez hay que considerar que no tienen que ser paralelas en un terreno irregular, como es el caso de la Luna.

Algunas de las opiniones en contra son:

  • Es imposible que lo hayan logrado porque se carecía de la tecnología necesaria para llegar a la Luna. La computadora que llevaban tenía menos memoria que una lavadora moderna.
  • Todo fue un montaje, las imágenes mostradas fueron rodadas en un estudio. El director de cine Stanley Kubrick dirigió la “misión”.
  • En las fotos y videos que divulgó la NASA sobre el alunizaje, la bandera estadounidense ondea sin viento en la Luna.
  • Las sombras que se visualizan en las fotos no son paralelas.

¿Hay vida en otros planetas?

La búsqueda de respuesta a este interrogante ha tenido ocupados a muchos investigadores que estudian y evalúan las posibilidades de que exista vida extraterrestre. Este término no se aplica al concepto de extraterrestre que se ha divulgado en las películas o en internet, sino que implica cualquier tipo de vida, ya sean bacterias, plantas u otros seres vivos que puedan desarrollarse en ambientes distintos a los que se pueden hallar en la Tierra.

El descubrimiento de planetas con las condiciones adecuadas para la vida ha sido una gran revelación para el mundo científico. La NASA (Administración Nacional de la Aeronáutica y del Espacio) lanzó al espacio el telescopio Kepler, que ya ha logrado hallar aproximadamente 5.000 planetas. Durante las investigaciones se han descartado algunos que parecían cumplir con las condiciones y en determinados planetas aún se buscan señales de vida.

RECURSOS PARA DOCENTES

Artículo “Satélites artificiales” 

Este artículo contiene mayor información sobre cómo funcionan los satélites artificiales.

VER

Articulo “Búsqueda de vida en otros planetas”

Este artículo profundiza sobre las investigaciones que se han hecho acerca de la vida extraterrestre.

VER

Artículo “La Luna, satélite natural de la Tierra”

Este artículo contiene información de la Luna y la misión Apolo 11.

VER

CAPÍTULO 14 / TEMA 3

El sistema solar y sus planetas

En la diversidad del universo y sus galaxias se encuentra un complejo sistema formado por una estrella central y una serie de cuerpos que giran a su alrededor. El más destacado es nuestro sistema solar, que se compone por el Sol, ocho planetas y otros objetos astronómicos.

¿CÓMO ESTÁ FORMADO EL SISTEMA SOLAR?

VER INFOGRAFÍA

Se denomina sistema solar al sistema planetario en el que los planetas y demás objetos astronómicos giran alrededor de una única estrella denominada Sol. Nuestro planeta forma parte de este sistema y, en conjunto con Mercurio, Venus y Marte, forman los llamados planetas terrestres o interiores, que son los más cercanos al Sol y se encuentran constituidos por material rocoso y metal. También existen planetas denominados gigantes gaseosos o planetas exteriores, que tienen mayor masa que los planetas terrestres y están formados por hielo y gases.

¿Qué es un planeta?

Es un astro que se caracteriza por girar alrededor del una estrella y reflejar su luz. Los planetas del sistema solar se formaron hace más de 4.500 millones de años, cuando atraían toda la materia que tenían a su alrededor. Por este motivo se encuentran solos en las órbitas y no existen otros restos de materia que giren en las mismas.

¿Qué se encuentra en el sistema solar?

El sistema solar está formado por ocho planetas: 4 planetas terrestres que orbitan entre el Sol y el cinturón de asteroides (Mercurio, Venus, Tierra y Marte) y 4 planetas externos que orbitan más allá del cinturón de asteroides (Júpiter, Saturno, Urano y Neptuno). Además existen algunos satélites, cometas y meteoros.

¿De qué están hechos los planetas?

EL SOL

VER INFOGRAFÍA

El Sol es la estrella que se encuentra en el centro de un sistema complejo y perfectamente articulado; en torno a él giran ocho planetas, asteroides, meteoritos, cometas, polvo y gas interplanetario. Esta estrella logra dominar todo el sistema gracias a su fuerza de gravedad, que lo mantiene unido y a la vez provoca que giren a su alrededor los astros que lo forman. Se calcula que contiene combustible para 5.000 millones de años más.

El Sol juega un papel importante en la vida, porque además de proporcionar la energía que requiere también impone su ritmo.

Su luz tiene la capacidad de llegar a la Tierra en 8 minutos, es decir, en ese tiempo recorre más de 100 mil millones de kilómetros. Gracias a esa luz se sustentan distintas formas de vida en la Tierra, por lo que es esencial en el proceso de fotosíntesis que realizan la mayoría de las plantas para vivir. Por otro lado, la energía solar es la que determina el clima de la Tierra.

El solsticio y el equinoccio son dos eventos que marcan el comienzo del verano y el comienzo del invierno, respectivamente. Se generan por la inclinación de la Tierra respecto al Sol. El eje de rotación de la Tierra presenta una inclinación de 23,5° y hace que a medida que gira alrededor del Sol, ciertas zonas reciban más iluminación que otras.
Eclipse solar

Un eclipse solar consiste en el oscurecimiento total o parcial del Sol que se origina cuando desde la Tierra se observa que la posición de la Luna se interpone entre el Sol y ella para proyectar su sombra en una parte de la superficie terrestre. De este modo, un determinado punto de la Tierra puede estar inmerso en el cono de sombra o en el cono de penumbra.

¿Qué es la magnetosfera?

Es una capa magnética invisible, la cual es producida por el campo magnético interno de la Tierra. Básicamente, su función es proteger al planeta de la radiación y el plasma.

 

VER INFOGRAFÍA

 

PLANETAS INTERNOS O ROCOSOS

Mercurio

VER INFOGRAFÍA

Es el planeta más cercano al Sol. Es un planeta rocoso que no posee satélites naturales, o mejor dicho, no se han observado. Como todo planeta o cuerpo celeste realiza movimientos de rotación (sobre su propio eje) y traslación (alrededor del Sol).

Datos básicos

Diámetro: 4.879 km

Densidad: 5.427 kg/m3

Velocidad media orbital: 47,4 km/s

Temperatura media en la superficie: 167 °C

Número de lunas: 0

Distancia al Sol: 57,9 millones de km

 

Comparación de tamaño del planeta Mercurio con el planeta Tierra.

Mercurio es tres veces más chico que la Tierra. Su superficie se compone principalmente de elementos metálicos pesados, y en menor cantidad, de silicatos livianos. Su núcleo es muy grande y parcialmente líquido, representa casi la totalidad de la masa del planeta y se compone de hierro. Su órbita es 2,6 veces más pequeña que la de la Tierra: Mercurio tarda 88 días en dar una órbita al Sol.

¿Sabías qué?
Mercurio hace su aparición indirectamente 13 veces cada siglo y los observadores desde la Tierra pueden verlo pasar en el disco del Sol, un evento conocido como tránsito.

Venus

VER INFOGRAFÍA

Es el segundo planeta más cercano al Sol y se ubica entre Mercurio y la Tierra. Los romanos le dieron el nombre de Venus en honor a la diosa del amor. Este planeta no tiene satélites naturales y es rocoso, similar a la Tierra en cuanto a su tamaño, masa y composición, aunque muy distinto en cuestiones térmicas y atmosféricas.

Datos básicos

Diámetro: 12.104 km

Densidad: 5.243 kg/m3

Velocidad media orbital: 35 km/s

Temperatura media en la superficie: 464 °C

Número de lunas: 0

Distancia al Sol: 108,2 millones de km

Las orbitas de los planetas que giran alrededor del Sol son elípticas. Sin embargo, la órbita de Venus es la que más se parece a una circunferencia. El periodo de rotación de Venus sobre su propio eje es muy lento y demora 243 días, mientras que su período de traslación alrededor del Sol es de 224 días y 17 horas.

Órbita de Venus.
¿Sabías qué?
Aunque el planeta Venus no está tan cerca del Sol como Mercurio, su atmósfera es más caliente porque atrapa mucho más calor del Sol al estar compuesta fundamentalmente por gases de invernadero, como el dióxido de carbono.
Comparación de tamaño del planeta Venus con el planeta Tierra.

Tierra

VER INFOGRAFÍA

Nuestro planeta Tierra es el tercero en orden de distancia al Sol. Es un planeta rocoso que cuenta con un único satélite: la Luna.

Datos básicos

Diámetro: 12.756 km

Densidad: 5.514 kg/m3

Velocidad media orbital: 29,8 km/s

Temperatura media en la superficie: 15 °C

Número de lunas: 1

Distancia al Sol: 149,6 millones de km

De los planetas que conforman nuestro sistema solar, sólo en la Tierra se comprobó que existe vida.

La corteza es la capa más externa de la Tierra y está compuesta por roca sólida. A continuación se localiza el manto, que está compuesto por rocas en estado sólido y líquido ricas en sílice. El manto es la capa más grande de la Tierra y constituye el 82 % del volumen terrestre. Por último, y en el centro de la Tierra, se encuentra el núcleo que está compuesto principalmente por hierro. Se diferencia en un núcleo externo en estado líquido y uno interno en estado sólido.

Estructura del planeta Tierra.

La atmósfera terrestre se localiza por encima de la corteza y se compone principalmente de nitrógeno (78 %), oxígeno (20 %), vapor de agua, anhídrido carbónico y gases nobles (2 %). Estructuralmente se divide en 5 capas. La tropósfera es la más cercana a la superficie y en ella ocurren los fenómenos meteorológicos más comunes (lluvias, vientos, etc.). La estratósfera está por encima de la troposfera y es el lugar donde se forma la capa de ozono. Luego sigue la mesósfera, y por arriba de ésta la ionósfera, también denominada termósfera, por la gran temperatura que tiene. Por último, se localiza la exósfera.

Movimientos del planeta Tierra

Rotación

Giro en torno a su propio eje.

Tiempo de rotación: 24 horas (1 día)

Traslación

Giro en torno al Sol.

Tiempo de traslación: 365,25 días

Luna: satélite natural

VER INFOGRAFÍA

La Luna es el único satélite natural de la Tierra, el quinto satélite más grande de nuestro sistema solar y el único que el hombre pudo pisar. Al igual que la Tierra y muchos de los astros, la Luna posee movimientos de rotación y traslación.

Cambios

La Tierra no siempre ha sido tan acogedora. Tiene aproximadamente 4.600 millones de años, lo cual representa un tercio de la edad del universo. A lo largo del tiempo ha cambiado mucho en apariencia, superficie y atmósfera.

 

VER INFOGRAFÍA

Marte

VER INFOGRAFÍA

Es el cuarto planeta de nuestro sistema solar en cercanía al Sol. También es conocido como el “planeta rojo” por sus colores. Los romanos atribuyeron su coloración con la sangre y lo llamaron como a su dios de la guerra.

Datos básicos

Diámetro: 6.792 km

Densidad: 3.933 kg/m3

Velocidad media orbital: 24,1 km/s

Temperatura media en la superficie: -65 °C

Número de lunas: 2

Distancia al Sol: 227,9 millones de km

La atmósfera de Marte está compuesta principalmente por dióxido de carbono y por una pequeña cantidad de nitrógeno. Su núcleo, al igual que el de los demás planetas rocosos, está compuesto de hierro, pero a diferencia de los anteriores, éste no se encuentra en estado líquido sino sólido.

Comparación de tamaño del planeta Marte con el planeta Tierra.
El hemisferio norte se caracteriza por la existencia de un gran abultamiento que contiene el complejo volcánico denominado Tharsis. Allí se encuentra el Monte Olimpo, el mayor del sistema solar.

PLANETAS EXTERNOS O GASEOSOS

Júpiter

VER INFOGRAFÍA

Es el planeta más grande del sistema solar, el quinto en cercanía al Sol y el primer planeta del grupo de los exteriores o gaseosos. Júpiter es once veces más grande que la Tierra. Los satélites naturales de Júpiter son más de 60, los más conocidos son Ganimedes, Calisto y Europa. Estos 4 satélites son los más grandes y fueron descubiertos por Galileo Galilei en 1610.

Datos básicos

Diámetro: 142.984 km

Densidad: 1.326 kg/m3

Velocidad media orbital: 13,1 km/s

Temperatura media en la superficie: -110 °C

Número de lunas: 67

Distancia al Sol: 778,6 millones de km

La composición de Júpiter es completamente gaseosa, a excepción del núcleo que es de hierro y rocas sólidas. La atmósfera de este planeta es similar a la del Sol, aunque su composición química es principalmente de hidrógeno y de helio.

Comparación de tamaño del planeta Júpiter con el planeta Tierra.
Anillos de Júpiter

A pesar de no ser tan notables como los anillos de Saturno, Júpiter cuenta con anillos que rodean el planeta y fueron descubiertos por la sonda estadounidense Voyager 1 en 1979. Los sistemas de anillos tienen tres estructuras distintas.

Gran Mancha Roja

La tempestad más distinguida de Júpiter es la que se conoce como la Gran Mancha Roja (del inglés Great Red Spot). La observación de este fenómeno meteorológico la realizó el científico inglés Robert Hooke en 1664 y fue descrita por el astrónomo y matemático italiano Giovanni Doménico Cassini en un periodo entre 1665 y 1713, quien la definió como una “mancha permanente”.

Saturno

VER INFOGRAFÍA

Es el sexto planeta del sistema solar y el segundo más grande, después de Júpiter. Es el único con un sistema de anillos que es visible desde nuestro planeta. Posee más de 60 satélites naturales; los más conocidos son Titán, Rea, Japeto, Dione, Tétis, Encélado, Mimas, Hyperion, Epimetéo y Jano.

Datos básicos

Diámetro: 120.536 km

Densidad: 687 kg/m3

Velocidad media orbital: 9,7 km/s

Temperatura media en la superficie: -140 °C

Número de lunas: 62

Distancia al Sol: 1.433,5 millones de km

La atmósfera de Saturno está compuesta principalmente de hidrógeno (93 %), helio (5 %) y metano (0,2 %). Su núcleo es de naturaleza rocosa, contiene, además, silicatos y metales como el hierro.

El período de rotación de Saturno es corto por su composición gaseosa y dura 10 horas y 40 minutos. Por otra parte, el período de traslación alrededor del Sol de este planeta es de 29 años y 167 días.

Comparación de tamaño del planeta Saturno con el planeta Tierra.
Anillos de Saturno

Fueron visualizados claramente por primera vez entre 1980 y 1981 gracias a las misiones Voyager 1 y 2 de la NASA. Cada uno recibió como nombre una letra del abecedario de acuerdo al orden de su descubrimiento. Los principales son el C, B y A. También se destaca una brecha que separa los anillos A y B, se llama División Cassini.

Urano

VER INFOGRAFÍA

Es el séptimo planeta del sistema solar y el tercero más grande. Es considerado un planeta “helado” ya que su temperatura media es de -195 °C. William Herschel descubrió Urano en 1781 con el uso del telescopio. Se caracteriza por presentar un color verde azulado.

Datos básicos

Diámetro: 51.118 km

Densidad: 1.271 kg/m3              

Velocidad media orbital: 6,8 km/s

Temperatura media en la superficie: -195 °C

Número de lunas: 27

Distancia al Sol: 2.872,5 millones de km

Urano es unas 4 veces más grande que nuestro planeta, lo que lo hace visible desde la Tierra. Sin embargo, por muchos años no se consideró un planeta debido a que tiene un brillo tenue y su movimiento es muy lento.

Comparación de tamaño del planeta Urano con el planeta Tierra.
Campo magnético de Urano

El campo magnético de Urano está inclinado. El eje magnético del planeta se encuentra inclinado casi 60° en relación al eje de rotación del planeta. También cuenta con un desplazamiento desde el centro en un tercio de radio del planeta.

El período de rotación de Urano es corto y dura 17 horas y 14 minutos. Mientras que el período de traslación alrededor del Sol es de 84 años, 7 días y 9 horas.
¿Sabías qué?
En 1977, los astrónomos y científicos en misiones espaciales descubrieron que Urano también presenta anillos. Hasta el momento se han identificado 13.

Neptuno

VER INFOGRAFÍA

Es el octavo planeta en distancia respecto al Sol. Neptuno es un planeta cuya composición es similar a la de Urano. Su atmósfera se compone de hidrógeno (84 %), helio (12 %) y metano (2 %). Su núcleo es rocoso, está compuesto por metales y silicatos, y recubierto por una costra helada.

Datos básicos

Diámetro: 49.528 km

Densidad: 1.638 kg/m3

Velocidad media orbital: 5,4 km/s

Temperatura media en la superficie: -200 °C

Número de lunas: 14

Distancia al Sol: 4.495,1 millones de km

Se han detectado hasta el momento 13 satélites naturales de Neptuno. Los más conocidos son Tritón, Larissa, Proteo y Galatea.

El período de rotación de Neptuno es de 16 horas y 7 minutos, y su período de traslación de 164 años, 280 días y 7 horas. Este planeta fue descubierto en 1846 y recién en el año 2011 completó una vuelta alrededor del Sol (un año) desde que fue hallado.

Comparación de tamaño del planeta Neptuno con el planeta Tierra.
Anillos de Neptuno

Neptuno tiene 5 anillos más oscuros que los de Urano y Júpiter, pero todavía no se conoce su composición. Algunos de estos anillos tienen nombre: el más externo es Adams y el más débil, pero más ancho, es Galle.

PLANETAS ENANOS

VER INFOGRAFÍA

Son cuerpos celestes que están en órbita alrededor del Sol. Tienen bastante masa para tener gravedad propia y superar las fuerzas rígidas de un cuerpo y así asumir una forma equilibrada hidrostática, es decir, redonda.

¿Planeta o planeta enano?: Diferencias

La diferencia entre un planeta y un planeta enano radica en que este último es incapaz de mantener su órbita libre de otros cuerpos celestes. Además, dicha órbita frecuentemente se cruza con la de otros elementos del sistema solar.

Plutón: planeta degradado

Plutón fue descubierto en 1930 por el astrónomo estadounidense Clyde Tombaugh (1906 – 1997). Su diámetro es mucho más pequeño que la Tierra (12.750 km) e incluso que la Luna (3.480 km). Además, cuenta con una forma poco ortodoxa de su órbita, cuya inclinación no es paralela a la de nuestro planeta, ni tampoco a los otros siete planetas del Sistema Solar.

¿Sabías qué?
La clasificación de planetas enanos fue creada en 2006 por la Unión Astronómica Internacional (IAU).

CINTURÓN DE ASTEROIDES

Los asteroides son una serie de cuerpos celestes de dimensiones reducidas que se mueven en órbitas de tipo planetario alrededor del Sol. El primero de ellos, Ceres, fue descubierto por el astrónomo italiano Giuseppe Piazzi en enero de 1801 y desde 2006 fue considerado un planeta enano. Hoy se conocen varios miles de asteroides, pero con seguridad existen centenares de miles.

El cinturón de asteroides se ubica entre los planetas Marte y Júpiter.

En general, estos cuerpos celestes describen órbitas ligeramente alargadas y estables que están situadas entre Marte y Júpiter: el conocido cinturón de asteroides.

¿Sabías qué?
Palas, el más grande del cinturón de asteroides (532 km), fue encontrado por Heinrich Wilhelm Olbers en marzo de 1802.
Los asteroides se ubican únicamente en el cinturón de asteroides.
A causa de sus pequeños tamaños (entre 500 km y 50 metros de diámetro aproximadamente), las fuerzas de gravitación internas son demasiado débiles para proporcionarles forma esférica, por lo que se cree que la mayoría de los asteroides tienen estructuras irregulares.
RECURSOS PARA DOCENTES

Artículo destacado “El Sol y sus explosiones”

Este artículo revela las características de las explosiones o erupciones del Sol en las que se libera una enorme cantidad de energía.

VER

Artículo destacado “Derivados de la investigación espacial”

Recurso descriptivo sobre algunos productos que se inventaron para llevar a cabo investigaciones espaciales y luego se adaptaron para la vida en la Tierra.

VER

Artículo destacado “Movimientos de la Tierra”

Este apartado da respuesta al por qué ocurren las estaciones del año y otros fenómenos a partir de los movimientos del planeta Tierra.

VER

Video “¿Cuál es la montaña más alta del sistema solar?”

Recurso audiovisual con datos de interés sobre grandes relieves en nuestro planeta y nuestro sistema solar.

VER

 

CAPÍTULO 5 / TEMA 5

EL SOL, LA TIERRA Y LA LUNA

EL LUGAR DONDE VIVIMOS, NUESTRO PLANETA, SE LLAMA LA TIERRA. EL SOL ES LA ESTRELLA MÁS CERCANA, QUE NOS DA LUZ Y CALOR TODOS LOS DÍAS. LA LUNA ES LA QUE GIRA ALREDEDOR DE LA TIERRA Y SALE DE NOCHE, A VECES VEMOS SÓLO UNA PARTE Y OTRAS VECES LA VEMOS LLENA. ¿LISTO PARA APRENDER MÁS SOBRE LA TIERRA, EL SOL Y LA LUNA?

UNA ESTRELLA MUY BRILLANTE

SABEMOS QUE ES DE DÍA “CUANDO SALE EL SOL”, PERO ALGUNA VEZ TE HAS PREGUNTADO ¿QUÉ ES EL SOL?. EL SOL ES UNA ESTRELLA BRILLANTE Y ENORME, LLENA DE GAS CALIENTE, QUE PODEMOS VER EN EL CIELO. ES LA QUE NOS PROVEE DE LUZ SOLAR O LUZ ULTRAVIOLETA Y AYUDA A QUE PODAMOS VIVIR EN NUESTRO PLANETA.

¿Sabías qué?

EL SOL BRILLA DESDE HACE APROXIMADAMENTE 4 BILLONES Y MEDIO DE AÑOS, UN NÚMERO QUE ES TAN GRANDE QUE ES DIFÍCIL DE IMAGINAR. Y PUEDE SEGUIR ASÍ POR MUCHOS BILLONES DE AÑOS MÁS.

¿QUÉ ES EL SISTEMA SOLAR? ES UN GRUPO DE PLANETAS QUE GIRAN ALREDEDOR DEL SOL, ENTRE ELLOS SE ENCUENTRA LA TIERRA, NUESTRO HOGAR.

EL SOL ES EL CENTRO DE NUESTRO SISTEMA SOLAR, TODOS LOS PLANETAS GIRAN ALREDEDOR DE ÉL. EXISTEN OTRAS ESTRELLAS MÁS GRANDES QUE EL SOL, PERO LAS VEMOS MÁS PEQUEÑAS PORQUE ESTAMOS MUY ALEJADOS DE ELLAS.

¡IDENTIFICA EL SOL!

TE PRESENTAMOS NUESTRO SISTEMA SOLAR, ¿CUÁL CREES QUE ES EL SOL?

DATOS CURIOSOS DEL SOL

  • TIENE MUCHA ENERGÍA, ESTO HACE QUE TENGA UNA TEMPERATURA DE MILES Y MILES DE GRADOS.
  • EL SOL ES TAN GRANDE QUE DENTRO DE EL PODRÍAMOS GUARDAR MAS DE MIL PLANETAS TIERRA.
  • LA LUZ QUE SALE DEL SOL LLEGA A NUESTRO PLANETA EN 8 MINUTOS, A PESAR DE QUE SE ENCUENTRA TAN LEJOS DE NOSOTROS.
LAS PLANTAS NECESITAN LA LUZ DEL SOL PARA PODER NUTRIRSE Y CRECER.

¿CÓMO PODEMOS VER LAS ESTRELLAS?

A PESAR DE QUE LAS ESTRELLAS SE ENCUENTRAN A UNA DISTANCIA MUY GRANDE DE NOSOTROS, EXISTE UN INSTRUMENTO QUE NOS PERMITE VERLAS CON MÁS DETALLE: EL TELESCOPIO.

UN PLANETA LLENO DE VIDA

LA TIERRA PERTENECE AL SISTEMA SOLAR Y ESTÁ UBICADO EN UN LUGAR MUY ESPECIAL DONDE LA TEMPERATURA Y LOS RAYOS SOLARES SON ADECUADOS PARA QUE PODAMOS VIVIR, NO ESTÁ NI MUY LEJOS NI MUY CERCA DEL SOL. ES EL ÚNICO PLANETA CONOCIDO DONDE EXISTE VIDA, POR ESO ES TAN IMPORTANTE PROTEGERLO.

¿DÓNDE ESTÁ LA TIERRA?

VISUALIZA ESTA IMAGEN E INDICA EN QUÉ LUGAR SE ENCUENTRA LA TIERRA.

LA TIERRA ES EL ÚNICO PLANETA CONOCIDO EN EL QUE EXISTE VIDA, ES TERCER PLANETA DEL SISTEMA SOLAR, ANTES DE ELLA SE ENCUENTRA VENUS Y LUEGO DE ELLA SE ENCUENTRA EL PLANETA ROJO: MARTE.

¿CUÁLES SON LOS PLANETAS DEL SISTEMA SOLAR?

COMPLETA LOS NOMBRES DE LOS PLANETAS QUE FALTAN.

1.- ______________ 5.- JÚPITER
2.- VENUS 6.- ______________
3.- ______________ 7.- ______________
4.- MARTE 8.- NEPTUNO

DATOS SOBRE LA TIERRA

  • HACE MUCHOS AÑOS SE PENSABA QUE LA TIERRA ERA PLANA, SIN EMBARGO, AHORA SABEMOS QUE TIENE FORMA DE ESFERA.
  • LA TIERRA REALIZA UN MOVIMIENTO EN EL QUE GIRA SOBRE SÍ MISMA, SE CONOCE COMO ROTACIÓN, Y GRACIAS A ESTO ES QUE PODEMOS DISTINGUIR EL DÍA Y LA NOCHE. EL MOVIMIENTO DE ROTACIÓN DURA 24 HORAS.
  • LA TIERRA REALIZA UN MOVIMIENTO EN EL QUE GIRA ALREDEDOR DEL SOL, ESTE SE CONOCE COMO TRASLACIÓN. TARDA 365 DÍAS EN HACERLO. GRACIAS A ESTO PODEMOS DISTINGUIR LAS ESTACIONES.

¿CUÁLES SON LOS MOVIMIENTOS DE LA TIERRA?

INDICA EL MOVIMIENTO DE LA TIERRA QUE CORRESPONDE CON LA IMAGEN.

EN ESTE MOVIMIENTO LA TIERRA GIRA ALREDEDOR DEL SOL: _______________________________
EN ESTE MOVIMIENTO LA TIERRA GIRA SOBRE SÍ MISMA: _______________________________

EL SATÉLITE NATURAL DE LA TIERRA

SI MIRAMOS AL CIELO EN LAS NOCHES PODEMOS VER LA LUNA, A VECES SE VE COMPLETA, COMO UNA ESFERA Y OTRAS VECES NO. LA LUNA ES EL ÚNICO SATÉLITE NATURAL QUE TIENE LA TIERRA, GIRA ALREDEDOR DE ELLA Y TARDA 28 DÍAS EN DAR UNA VUELTA.

A MEDIDA QUE GIRA VEMOS LAS DISTINTAS FASES DE LA LUNA.

DATOS SOBRE LA LUNA

  • LA LUNA, AL IGUAL QUE LA TIERRA REALIZA EL MOVIMIENTO DE ROTACIÓN, ES DECIR, GIRA SOBRE SÍ MISMA; Y UN MOVIMIENTO DE TRASLACIÓN, ES DECIR, GIRA ALREDEDOR DE LA TIERRA. TARDA 28 DÍAS EN REALIZAR AMBOS MOVIMIENTOS.
  • LA LUNA ES CAPAZ DE REFLEJAR LA LUZ DEL SOL COMO SI FUERA UN ESPEJO.
  • ALGUNAS VECES CUANDO OBSERVAMOS LA LUNA SE VE DISTINTA, ESTOS CAMBIOS SON CONOCIDOS COMO FASES LUNARES.
  • LA LUNA NO TIENE UNA SUPERFICIE LISA, TIENE MUCHOS HUECOS Y ELEVACIONES.
RECURSOS PARA DOCENTES

Infografía “La Luna”

Esta infografía contiene información sobre las características de la Luna.

VER

Infografía “El Sol”

En esta infografía encontrará mayor información sobre el Sol.

VER

Artículo “Planeta Tierra”

Este artículo contiene información sobre las principales características del planeta Tierra.

VER

 

CAPÍTULO 14 / TEMA 2

Componentes del universo

Por definición, el universo es todo lo que existe como materia y energía. En consecuencia, el espacio es casi tan basto como su diversidad. Esto incluye una complejidad de componentes que resultaron del Big Bang: punto de partida a la expansión espacio-tiempo del universo.

MATERIA Y MATERIA OSCURA

La materia es todo aquello que tiene masa, ocupa un volumen en el espacio y tiene cierta cantidad de energía asociada. También es llamada materia ordinaria porque conforma todos los cuerpos con vida y todo lo que los rodea. Está constituida internamente de átomos que en su estructura tienen protones, neutrones y electrones.

¿Sabías qué?
Las propiedades de la materia pueden ser extensivas cuando dependen de la cantidad de materia, o intensivas cuando no dependen de su cantidad.
Aunque la materia ordinaria compone el gas, las nubes, las estrellas y las radiaciones del universo, también existe un tipo de materia que no emite luz: la materia oscura.

La materia oscura es llamada de ese modo porque no emite radiación electromagnética y por el momento no se ha podido ver ni registrar. No obstante, los efectos gravitatorios de este tipo de materia que ocupa casi el 25 % del universo sí han podido demostrarse.

Composición del universo.
¿Qué es la antimateria?

 

Es la materia formada por antipartículas. Se cree que en durante el origen del universo la materia y la antimateria estaban en iguales proporciones.

NEBULOSAS

VER INFOGRAFÍA

Las nebulosas son nubes de materia constituidas principalmente por hidrógeno que se distribuyen por todo el plano galáctico y se hacen visibles únicamente cuando las alcanza la luz de las estrellas cercanas o contenidas en su interior.

¿Sabías qué?
Las nebulosas no emiten luz propia, sino que absorben o reflejan la luz que emiten las estrellas más cercanas.

CLASIFICACIÓN DE LAS NEBULOSAS

Nebulosas planetarias

 

De forma generalmente circular con una estrella en el centro.

Nebulosas difusas

 

De forma irregular.

Nebulosas de reflexión

 

Reflejan la luz de las estrellas próximas.

ESTRELLAS

VER INFOGRAFÍA

Son masas de gases que producen calor, luz, rayos ultravioletas, rayos X y otras formas de radiación electromagnética como consecuencia de las reacciones nucleares que ocurren en su interior. Al igual que los seres vivos, nacen, crecen y mueren.

¿Sabías qué?
Durante la evolución de todas las estrellas, los núcleos de hidrógeno se fusionan y forman núcleos de helio, como en el caso del Sol.
¿Cómo se forma una estrella?

 

  1. La estrella comienza muy pequeña, como simples partículas de polvo y gas.
  2. A causa de algunas perturbaciones, las partículas empiezan a chocar y formar grumos, los cuales adquieren mayor masa y atraen más partículas.
  3. A medida de que el grupo de partículas adquiere masa se vuelve más denso y caliente. Comienza la formación de una protoestrella.
  4. Cuando la protoestrella se calienta lo suficiente, sus átomos de hidrógeno comienzan a fundirse y se produce helio, esto se conoce como fusión nuclear.
  5. Después de millones de años, en la protoestrella se produce un flujo bipolar que expulsa lejos de su superficie ardiente el gas y el polvo remanente.
  6. La estrella se estabiliza y se conoce ahora como estrella de secuencia principal o enana. La estrella continuará con la transformación de hidrogeno en helio y será una estrella de secuencia principal el 90 % de su vida.

Características de una estrella

Brillo

 

Cantidad de luz que percibimos. Depende de la distancia en la que se ubique.

Color

 

Según su temperatura puede ser azul, blanca, amarilla, naranja o roja.

Tamaño

 

En relación al tamaño del Sol pueden ser supergigantes, gigantes, medianas o enanas.

GALAXIAS

VER INFOGRAFÍA

Las galaxias son conjuntos o agrupaciones de estrellas, gas y polvo. Se las conoce también como universos islas. Contienen más de mil estrellas y el diámetro varía de los 1.500 a 3.000 años luz. Las galaxias tienen un movimiento de rotación en torno a su eje.

La Vía Láctea: nuestra galaxia

 

Es una galaxia grande con forma de espiral donde se concentran entre 200 mil y 400 mil millones de estrellas, entre ellas, el Sol. También dentro de esta galaxia se encuentra la Tierra. La Vía Láctea tiene un diámetro aproximado de 100 mil años luz y cuenta con más de 300 mil millones de estrellas.

En buenas condiciones de cielo nocturno, dentro de la constelación de Pegaso podemos ver a simple vista la galaxia de Andrómeda.

Clasificación de las galaxias

Galaxias elípticas

Son las que tienen forma ovalada o de esfera achatada. Aproximadamente el 17 % de las galaxias son así, en su mayoría se conforman de estrellas viejas.

Galaxias espirales

El 80 % de las galaxias tienen esta forma, similar a un disco achatado; se distingue un núcleo que es atravesado por varios brazos. Se constituye por estrellas viejas, jóvenes, gas y polvo.

Galaxias irregulares

No tienen un formato específico porque los agregados están revueltos y rodeados por nebulosas. Están constituidas de gas, polvo y estrellas jóvenes. Representan el 3 % de las galaxias.

Galaxias lenticulares

Tienen forma de disco, sin embargo, son una clasificación intermedia entre las galaxias espirales y elípticas. Tienen en su centro una zona condensada y en su exterior una envoltura.

CONSTELACIONES

Son figuras en el cielo que los antiguos astrónomos formaron con las estrellas más brillantes de cielo nocturno a partir de su imaginación. Diferentes culturas han concebido ideas sobre diversas constelaciones.

¿Qué son las constelaciones zodiacales?

 

El zodiaco está basado en la división de 12 partes iguales de la banda zodiacal, cada división alberga una constelación de la que deriva el nombre; al mismo tiempo, definen que el recorrido del Sol por cada una de las divisiones se realiza en un mes exacto, por lo cual cada mes del año tiene una constelación del zodiaco asociada.

 

VER INFOGRAFÍA

 

SATÉLITES NATURALES

VER INFOGRAFÍA

Los satélites naturales son objetos que orbitan un planeta u otro cuerpo más grande. El término se usa generalmente para identificar satélites no artificiales de planetas o planetas enanos.

Nuestra Luna fue el primer satélite natural conocido.

Dentro del sistema solar hay 240 lunas: 163 orbitan los planetas, 4 orbitan los planetas enanos y docenas más que orbitan cuerpos pequeños del sistema solar.

¿Sabías qué?
La Red de Vigilancia Espacial detectó más de 26.000 objetos que orbitan la Tierra. Unos pocos son satélites en funcionamiento y el resto son diversos objetos, muchos de ellos convertidos en chatarra espacial.
¿Qué son los satélites artificiales?

 

Son satélites fabricados por el hombre y para ello fueron necesarias diversas tecnologías, la comprensión de leyes físicas y la inspiración de los propios astros. Pueden ser tripulados o automáticos. Luego de ser construidos, son lanzados al espacio y puestos en órbita.

AGUJEROS NEGROS

Los núcleos de las estrellas de mayor masa colapsan ya que consumen su combustible de hidrógeno relativamente rápido. Este proceso da lugar a una violenta explosión de supernova, mientras que sus capas externas son expulsadas al espacio. Si un núcleo es lo suficientemente masivo, la gravedad hará que colapse sobre sí mismo hasta convertirlo en un objeto extremadamente denso y compacto, con un campo gravitacional tan fuerte que ni siquiera la luz puede escapar de él: un agujero negro.

Cualquier tipo de material que sea capturado por la fuerte gravedad que poseen los agujeros negros se precipitará en una trayectoria en espiral sobre ellos para ser asimilado sin remedio.
¿Cuáles son las partes de un agujero negro?
¿Sabías qué?
Los materiales capturados por el agujero negro pueden alcanzar velocidades de hasta la mitad de la velocidad de la luz y transformar una parte de la inmensa energía gravitatoria que experimenta en emisiones de rayos X.

SISTEMAS PLANETARIOS

Los planetas son cuerpos celestes de forma casi esférica y aplanada en los polos. Se caracterizan porque:

  • Orbitan alrededor de una estrella.
  • Tienen cierta dominación de su órbita, por lo que no existen otros cuerpos que se ocupen o invadan su recorrido.
  • Su masa permite mantener el equilibrio hidrostático y la gravedad en su atmósfera.

Todo sistema planetario se conforma de una o varias estrellas centrales con objetos que giran alrededor. Se asume que estos sistemas se originan de la misma forma que se forman las estrellas.

Nuestro sistema solar está constituido por el Sol, los planetas y otros cuerpos celestes.
Sistema solar

 

Se denomina sistema solar al sistema planetario en el que los planetas y demás objetos astronómicos giran alrededor de una única estrella denominada Sol. Nuestro planeta forma parte de este sistema y, en conjunto con Mercurio, Venus y Marte, forman los llamados planetas terrestres y se encuentran constituidos por material rocoso y metal.

 

VER INFOGRAFÍA

Plutón fue descubierto en el año 1930 y se lo consideró un planeta del sistema solar hasta el año 2006, fecha en la que fue reasignado en la categoría de planeta enano.

ASTEROIDES, COMETAS Y METEOROS

Un asteroide es un cuerpo celeste conformado por trozos de roca, metal o una mezcla de ambos que orbita alrededor del Sol. Hay asteroides de roca sólida y otros de roca fragmentada; y la mayoría de ellos gira alrededor del Sol en una agrupación que se conoce con el nombre de cinturón de asteroides que se encuentra entre Marte y Júpiter. De ellos, Ceres, el más grande, fue clasificado como planeta enano en el 2006.

Clasificación de los asteroides

Tipo C         

Composición carbonosa. Refleja poca luz. Color gris. Corresponden al 75 % de los asteroides.

Tipo S

Composición de silicatos. Refleja luz. Color rojizo. Corresponden al 17 % de los asteroides.

Tipo M

Composición metálica. Hay escasos registros de este tipo de asteroides.

Se estima que la Tierra está en una trayectoria que podría colocarla en la ruta de colisión con varios asteroides de más de un kilómetro de diámetro.
Extinción de los dinosaurios

 

Un equipo internacional de 41 científicos confirmó que la extinción masiva producida hace 65,5 millones de años, que acabó con la era de los dinosaurios, fue provocada por el impacto de un asteroide de 12 kilómetros de diámetro en la península de Yucatán (México).

Los cometas son cuerpos celestes de formas irregulares que se encuentran formados por una mezcla de granos no volátiles y gases congelados con apariencia nebulosa. Sus órbitas son elípticas, y esto los lleva muy cerca del Sol y los devuelve al espacio profundo.

Un rasgo distintivo de los cometas es la cola larga y luminosa que se produce cuando está en las cercanías del Sol.

Los cometas tienen estructuras diversas y dinámicas, pero todos desarrollan una nube de material difuso que los rodea. Esa nube se denomina cabellera, y su tamaño y su brillo crecen con la aproximación al Sol. Por lo general, lo que se ve es el pequeño núcleo brillante que tiene menos de 10 kilómetros de diámetro.

Cometa Halley

 

El cometa Halley es probablemente el más famoso de todos los cometas. Edmund Halley fue el primero en calcular que la aparición de tres cometas distintos a lo largo de los años constituía en realidad, el retorno de un solo cometa cada 76 años.

Los planetas y satélites naturales del sistema solar suelen ser bombardeados por rocas o minerales de diversos tamaños. Son fragmentos de planetas, satélites, asteroides y cometas que son atraídos hacia los cuerpos celestes de mayor tamaño. Cuando el objeto se encuentra en el espacio fuera de la atmósfera de la Tierra se denomina meteroide, por su parte, si entra en la atmósfera terrestre se conoce como meteoro, y si llega a alcanzar el suelo sin desintegrarse se denomina meteorito.

RECURSOS PARA DOCENTES

Artículo destacado “¿Cómo se forman los planetas?”

Este artículo describe el origen de los planetas rocosos y de los gigantes gaseosos.

http://elbibliote.com/resources/Temas/html/909.php

Artículo destacado “Galaxias: Vía Láctea”

Apartado que explica los aspectos fundamentales de las galaxias y especifica los componentes de nuestra galaxia: la Vía Láctea.

http://elbibliote.com/resources/articulosdestacados/?p=7216

Artículo destacado “Al espacio y más allá: un océano desconocido”

Recurso explicativo de los avances más significativos que se hicieron para conocer qué hay más allá de nuestra galaxia y la posibilidad de explorar su inmensidad.

http://elbibliote.com/resources/Temas/html/1105.php

Judaísmo, cristianismo e islam

El judaísmo, el cristianismo y el islam son religiones abrahámicas caracterizadas por ser monoteístas y estar establecidas bajo una tradición espiritual identificada con Abraham. Se estima que, en conjunto, estas religiones suponen más de la mitad de la población creyente en todo el mundo.

Judaísmo Cristianismo Islam
Símbolo Estrella de David.

 

Crucifijo.

 

Media luna y estrella.

 

Lugar de origen Mesopotamia y Canaán. Palestina. La Meca, Arabia Saudita.
Fundador Abraham. Jesús de Nazaret.  Mahoma.
Deidad Yahveh, también se usa el nombre “Adonai”.  Dios. Alá.
Imagen de la deidad Creador y liberador que se revela, se comunica y se presenta en la historia del pueblo. Es un Dios personal. Él es amor y se lo trata como el Padre. Es un Dios personal, cercano que se relaciona con las personas. Único Dios y Señor absoluto del universo. Es un Dios impersonal, lejano y superior al hombre.
Tipo
  • Monoteísta.
  • Religión abrahámica.
  • Monoteísta.
  • Religión abrahámica.
  • Monoteísta.
  • Religión abrahámica.
Sagradas escrituras Torá, Tanaj y Talmud. Biblia. Corán.
Seguidores Judíos.  Cristianos. Musulmanes.
Templo Sinagoga.

 

Sinagoga de Jerusalén en Praga, República Checa.
Iglesia.

 

Basílica de San Pedro, Ciudad del Vaticano.
 Mezquita.

 

Mezquita Nasir-ol-Molk, Shiraz, Irán.
Lugares sagrados
  • Jerusalén, Safed y Tiberíades en Israel.
  • Hebrón en los territorios Palestinos.
  • Jerusalén en Israel.
  • Ciudad del Vaticano.
  • La Meca y Medina en Arabia Saudita.
  • Jerusalén en Israel.
  • Hebrón en el Estado de Palestina.
Clero Rabino y jazán. Sacerdotes, obispos, pastores, entre otros títulos. Ayatolá, Imam, ulema, jeque, entre otros títulos.
Organizaciones internacionales Congreso Mundial Judío. Comuniones Cristianas Mundiales. Liga Mundial Islámica.

 

La Luna, satélite natural de la Tierra

Gira alrededor de la Tierra, se ve a simple vista a más de 380 mil kilómetros de distancia, brilla potentemente pero no tiene luz propia, carece de atmósfera y de agua, su superficie no se deteriora con el tiempo y las estrellas son siempre visibles. Les presentamos: la Luna, el único satélite natural de la Tierra.

El cielo, las estrellas y la Luna… cuántos secretos encierran. Toda la humanidad se ha cuestionado y continúa haciéndolo por su existencia. Pensadores y científicos de todas las épocas han teorizado sobre la Luna; Estados Unidos parece haber tenido el mayor logro: el haber llegado a la Luna. Pero un gran número de personas ponen en tela de juicio la “supuesta aventura”.

¿Qué esconde la Luna? ¿Por qué está allí? ¿Cómo es su superficie? Tratemos de esclarecer algunas de estas curiosidades y aprendamos algo nuevo sobre este misterioso Universo.

La ciencia que se ocupa del estudio de los cuerpos celestes del universo es la astronomía. Los primeros aportes tuvieron lugar en la antigüedad: primitivamente se asociaba a los fenómenos astronómicos con la magia, la mitología y con ideas religiosas. Posteriormente los antiguos griegos sentaron las bases de esta ciencia describiendo distancias y estableciendo las órbitas de la Luna y de algunos planetas.

Algunos de los personajes de la historia que hicieron grandes aportes en la materia fueron: Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Santo Tomás de Aquino, Tycho Brahe, Johannes Kepler y Galileo Galilei.

¿Sabías qué...?
En castellano el segundo día de la semana, «lunes», tiene su raíz en el «día de la Luna» (Lunae dies, en latín).

CONCEPCIONES COSMOLÓGICAS

Aristóteles: Fue un filósofo que nació en Estagira, un pequeño pueblo de la antigua Grecia, en el año 384 a.C. Para esa época se consideraba que el cielo se constituía por los planetas Mercurio, Venus, Marte, Júpiter y Saturno; más La Luna, el Sol y las estrellas.

Aristóteles, entre otros temas, filosofó sobre el Universo. Al respecto explicó que la Tierra permanecía fija en el centro de una serie de esferas, cada una de las cuales contenía a un planeta, a la Luna o al Sol. El resto de las estrellas las situaba en la esfera más externa. Para explicar el movimiento de los cuerpos celestes, hablaba de la rotación de las esferas sobre sus propios ejes. Este modelo fue definido como geocéntrico dado que la Tierra se situaba en un lugar de privilegio.

Ptolomeo: Cuando se descubrió que algunos planetas tenían un extraño comportamiento al retroceder y luego avanzar, por su viaje en el espacio, durante algunas épocas del año, fue necesario enriquecer el modelo aristotélico que no explicaba este fenómeno.

Quien se ocupó de dar una nueva visión del universo fue Ptolomeo, hacia el siglo II a.C. Reuniendo todo la información astronómica de la época llegó a la conclusión de que la Tierra era el centro del cosmos, las esferas se situaban donde se desplazaban los planetas y los astros tenían un movimiento particular. Sostuvo que cada uno de ellos, al mismo tiempo que realizaba su camino de rotación alrededor de la Tierra, giraba en un pequeño recorrido circular, llamado epiciclo. Este modelo se mantuvo vigente durante casi quince siglos.

Copérnico: Astrónomo polaco que en 1543, no conforme con las ideas que había desarrollado Ptolomeo, decidió estudiar viejas ideas que habían propuesto los antiguos griegos. En base a esos conceptos elaboró una nueva teoría sobre el universo en la que ubicó al Sol en el centro del cosmos y a la Tierra en continuo movimiento de rotación sobre su eje. En tanto, el resto de los planetas se desplazaban alrededor del sol siguiendo caminos circulares. Este nuevo modelo tuvo aceptación y se le denominó heliocéntrico.

Kepler: Fue un astrónomo y matemático alemán que se hizo conocido por la teoría sobre el movimiento de los planetas en su órbita alrededor del Sol. Partidario de las ideas de Copérnico, se adentró en el estudio del Universo buscando comprender su organización. Tras varios años de cálculos, concluyó que los planetas no seguían órbitas circulares sino elípticas alrededor del Sol. A partir de la divulgación de este nuevo sistema, se pudo realizar una carta del Sistema Solar, muy parecida a la que conocemos hoy en día.

LO QUE SE SABE DE LA LUNA

Ubicación:
La Luna gira alrededor de la Tierra y la Tierra alrededor del Sol. La distancia entre el centro de la Tierra y la Luna es de 390 mil kilómetros aproximadamente. La Luna se encuentra en relación síncrona con la Tierra, es decir, siempre mostrando la misma cara a la Tierra.

Dimensión:
Su diámetro es de unos 3.476 km, aproximadamente una cuarta parte del de la Tierra. La masa de la Tierra es 81 veces mayor que la de la Luna.

Origen:
Existen muchas teorías que explican el origen de la Luna, pero la más aceptada es la del “Gran Impacto” que se planteó en 1974 en el marco de una conferencia sobre satélites. Indica que la Luna es el resultado de una colisión entre la joven Tierra y un planeta de las dimensiones de Marte, al cual se lo denominó Theia, Orpheus u Orfeo. Este suceso habría tenido lugar hace 4.533 millones de años y, concretamente, habría sido así: Theia impacta con la Tierra, como consecuencia Theia se destruye, el manto de Theia y una fracción significativa del manto terrestre son expulsados hacia el espacio y el núcleo de Theia se hunde dentro del núcleo terrestre. De este modo, Theia queda en una órbita baja uniéndose con la Tierra por un puente de materia. Pero con el tiempo, Theia se aleja y vuelve a colisionar con la Tierra. Estimaciones actuales indican que de este último choque se formó un disco de escombros alrededor de la Tierra con restos de Tehia, luego la mitad de estos restos se fusionaron para formar la Luna entre uno y cien años después del impacto.

Movimientos:
• Rotación: Se llama así al giro que da la Luna sobre su propio eje. Tarda 28 días en completar la vuelta.
• Revolución: Es el movimiento que da la Luna para dar la vuelta alrededor de la Tierra. Tarda 28 días en completarla.
• Traslación: La Luna acompaña a la Tierra en su traslación alrededor del Sol.

Como podemos ver, el tiempo en completar los movimientos de rotación y revolución son los mismos, por lo tanto, desde nuestro planeta siempre vemos la misma cara de la Luna. Pero no siempre la apreciamos igual (iluminación). Esto es así porque el plano de la traslación no coincide con el plano de revolución de la Luna, por lo tanto muy pocas veces los tres astros se ubican formando una línea recta. Cuando esto sucede se produce un eclipse, que es la ocultación transitoria de un astro por la interposición de otro astro.

Fases de la Luna:
De acuerdo a la ubicación relativa del Sol, la Tierra y la Luna en el espacio, se definen cuatro fases distintas.

• Luna Nueva: La Luna se ubica entre la Tierra y el Sol. A partir de este momento la Luna comienza a crecer.
• Cuarto Creciente: La Luna, la Tierra y el Sol forman un ángulo recto. Se observa la mitad de la Luna en su período de crecimiento.
• Luna Llena: La Tierra se ubica entre el Sol y la Luna y ésta última recibe los rayos del sol en su cara visible, por lo tanto, se ve en forma completa desde la superficie terrestre.
• Cuarto Menguante: La Luna, la Tierra y el Sol forman nuevamente un ángulo recto, por lo que se puede observar en el cielo la mitad de la Luna, en su período de decrecimiento.

Fases de la Luna.

superficie lunar

Se observan montañas, cráteres y otras formaciones. Las montañas suelen encontrarse tanto en forma aislada como formando grandes cadenas. Los cráteres son consecuencia del impacto de meteoritos. La gran mayoría tienen forma de anillo, una base y un pico central. Su tamaño varía desde pocos centímetros hasta 260 kilómetros. Se conocen picos centrales de hasta 4000 metros y anillos del mismo tamaño. Por otro lado, se distinguen “mares”, que son zonas llanas de color oscuro. Son producto de la salida de lava basáltica durante el periodo de formación de la luna.También existen grietas, con profundidades de hasta 400 metros y varios kilómetros de longitud.

¿Sabías qué...?
En la Luna son mucho más frecuentes los terremotos que en la Tierra.

Agua

La Agencia espacial de Estados Unidos, NASA, anunció el 13 de noviembre de 2009 que detectó agua en la Luna tras estrellar el 9 de octubre la sonda LCROSS y su cohete Centauro en el fondo de uno de los cráteres de la Luna (el Cabeus). La colisión provocó el levantamiento de una columna de material y de agua desde el fondo del cráter que no ha recibido la luz del Sol en miles de millones de años. El científico Anthony Colaprete sostuvo al respecto “el agua que se levantó por el impacto de la sonda podría llenar una docena de baldes de ocho litros”.

ECLIPSES

Las dos posiciones relativas posibles entre la Luna, el Sol y la Tierra formando una línea recta dan lugar a dos tipos de eclipses.

• Eclipse de Sol: Cuando la Luna se interpone entre el Sol y la Tierra.

• Eclipse de Luna: Cuando la Tierra se interpone entre la Luna y el Sol.

Eclipse de Luna.
Eclipse de Sol.

DEBATE: ¿EL HOMBRE LLEGÓ A LA LUNA?

Habitualmente se habla con certeza de la llegada del hombre a la Luna pero debemos saber que existen argumentos que se contraponen al respecto. Conozcamos ambas visiones para construir una opinión sobre la base de diversas visiones.

Principales argumentos de los que
sostienen que el hombre llegó a la Luna.
Principales argumentos
de los que niegan la hazaña.
La NASA desarrolló la misión con la colaboración de más de 35.000 personas; es imposible mantener el engaño a tantos profesionales. Además otras 400.000 personas, nucleadas en empresas y universidades, colaboraron con la NASA. Es imposible porque se carecía de la tecnología necesaria para llegar a la Luna. La computadora que llevaban tenía menos memoria que una lavadora moderna.
Luis Ruiz de Gopegui, director de la Estación de Seguimiento de Fresnedillas, que la NASA utilizó como apoyo para los vuelos del programa Apollo, afirmaba que no se siente molesto con las acusaciones de fraude: “Es como si a ti te dijeran que dudan de la noche y el día. Es tan evidente que no se puede ni discutir”. Estados Unidos estratégicamente decidió emprender la misión porque quería consolidarse como vencedora en la carrera espacial que se disputaba con la Unión Soviética. Además en 1969 La Guerra de Vietnam se encontraba en pleno desarrollo, sin objetivo claro y con el agravante de más de 50.000 muertos; por lo que un alunizaje era el suceso perfecto para distraer a la sociedad.
Los astronautas trajeron 382 kilos de piedras lunares que los geólogos han autentificado.

 

En realidad no ondea, tenía un mástil superior para mantenerla rígida. Las ondulaciones son consecuencia de haber estado plegada durante el viaje y sólo se mueve cuando la manipulan los astronautas.

Todo fue un montaje, las imágenes mostradas fueron rodadas en un estudio. El director de cine Stanley Kubrick dirigió la “misión”.

 

En las fotos y videos que divulgó la NASA sobre el alunizaje, la bandera estadounidense ondea sin viento en la Luna.

No se captaron por una cuestión técnica, concretamente por la intensidad de la luz. Para que se perciban, el tiempo de exposición de la película tendría que haber sido mayor. En las imágenes divulgadas no se distinguen las estrellas.
Las sombras de las imágenes no se ven paralelas por el efecto de perspectiva que sucede también en la Tierra. A su vez hay que considerar que no tienen que ser paralelas en un terreno irregular, como es el caso de la Luna. Las sombras que se visualizan en las fotos no son paralelas.
La letra C que se ve en una de las rocas no es parte de un montaje, era un pelo introducido durante el revelado; en la imagen original no aparece. Una roca del suelo está marcada con la letra C, eso nos habla de un montaje.
El módulo lunar pesaba entre 15 y 17 toneladas en la Tierra. En la Luna la gravedad es aproximadamente seis veces menor y hay que restar el combustible gastado antes de alunizar, situándose su peso ‘lunar’ entre 1.200 y 1.600 kilogramos. Cuando se acercaba a la superficie reducía su potencia a menos de un tercio de dicha capacidad, del mismo modo que nadie aparca un coche a 200 km por hora. Bajo el módulo lunar (vehículo espacial diseñado para el alunizaje) no hay cráter.
No es necesario que haya humedad o aire para dejar huellas en un terreno. No pueden dejarse huellas sin aire o humedad.
Foto Archivo NASA.

CURIOSIDADES

LAS MAREAS, LA LUNA Y EL SOL

Las mareas son movimientos periódicos de avance y retroceso del mar sobre el continente. Su relación con el Sol y la Luna se conoce desde hace más de 2000 años, pero su causa no pudo explicarse hasta 1686 cuando Newton enunció la ley de la gravitación universal. Su explicación debe buscarse en la influencia de las atracciones gravitatorias del Sol y la Luna sobre la masa líquida de nuestro planeta.

¿Sabías qué...?
En la Luna no hay viento ni sonido.

El centro del sistema de gravedad Tierra-Luna, como consecuencia de la mayor masa de la Tierra, se encuentra desplazado hacia nuestro planeta; en su interior, por lo tanto, el efecto de la atracción gravitatoria de la Luna actúa con mayor intensidad sobre la masa de agua más próxima. En la zona opuesta del planeta, la menor atracción gravitatoria lunar y el mayor efecto de la fuerza centrífuga producido por la rotación de ambas masas en torno al centro de gravedad del conjunto, permiten que la masa de agua se desplace por la fuerza centrífuga en sentido opuesto. En ambos lugares, diametralmente opuestos, se forman mareas (pleamar) y, en ese mismo momento, en los puntos equidistantes de los de marea, existe bajamar.

La acción del Sol produce también mareas, cuya intensidad es aproximadamente la mitad que la de las mareas lunares. En determinadas circunstancias su efecto se suma al de éstas o bien las debilita: cuando los tres astros se encuentran aproximadamente en línea recta, Luna nueva y Luna llena, el flujo es más intenso (mareas vivas). Por el contrario, en los momentos de cuarto creciente o cuarto menguante, los efectos del Sol y la Luna se anulan parcialmente y las mareas alcanzan su mínima intensidad (mareas muertas).

EL DUEÑO DE LA LUNA

En 1953, el abogado chileno Jenaro Gajardo Vera registró la propiedad de la Luna pagando 42.000 pesos de la época. La escritura se hizo oficial el 25 de septiembre de 1954 en el Conservador de Bienes Raíces de la ciudad de Talca.
Además creó la llamada Sociedad Telescópica Interplanetaria bajo el objetivo de formar un comité de recepción a los primeros visitantes extraterrestres que llegaran a la Tierra.

Según ha relatado Gajardo Vara, el presidente de Estados Unidos, Richard Nixon, le solicitó permiso para el alunizaje del Apolo 11 en 1969. Estos habrían sido los mensajes intercambiados:

Solicito en nombre del pueblo de los Estados Unidos autorización para el descenso de los astronautas Aldrin, Collins y Armstrong en el satélite lunar que le pertenece.

Richard Nixon, 1969

En nombre de Jefferson, de Washington y del gran poeta Walt Whitman, autorizo el descenso de Aldrin, Collins y Armstrong en el satélite lunar que me pertenece, y lo que más me interesa no es sólo un feliz descenso de los astronautas, de esos valientes, sino también un feliz regreso a su patria. Gracias, señor Presidente.

Jenaro Gajardo Vera, 1969

Actualmente la Luna no tiene dueño: en 1967 se firmó un tratado en las Naciones Unidas que prohíbe la compraventa de objetos exteriores a la Tierra. No obstante, en 1980, el estadounidense Dennis Hope formaliza de nuevo en una oficina del registro de San Francisco la “compra” de la Luna, dedicándose desde entonces a vender “parcelas” en suelo lunar.

Los calendarios

Muchos años atrás, diferentes culturas, civilizaciones y creencias, de alguna manera fabricaron instrumentos con los que medían el tiempo a través de los fenómenos astrológicos, los acontecimientos elegidos para llevar un control; estos instrumentos son los conocidos calendarios.

Los astros han sido usados como guía cronológica.

Origen de los calendarios

Éstos se originaron hace mucho tiempo. Las grandes culturas antiguas llevaban registro de todos los fenómenos cronológicos de sus épocas, entre ellas, la civilización egipcia, la babilónica, las culturas prehispánicas como los aztecas, mayas e incas; todas observaban los ciclos a través del tiempo.

Calendario maya.

LOS CALENDARIOS Y LA ASTRONOMÍA

Pues porque antiguamente se observaban los astros como el Sol y la Luna, las estrellas, y los movimientos que éstos tienen alrededor de la Tierra, para determinar la cronología del tiempo. El tiempo se medía según tres fenómenos naturales :es que para ese entonces servían como guía, estos eran:

  • El transcurso de los días, como la salida y puesta del Sol.
  • El transcurso de las noches, incluidas las fases de la Luna.
  • Las estaciones del año (invierno, verano, otoño y primavera).

Es importante que hablemos de los meses, los años, las semanas y los días para poder comprender en qué se basaban los calendarios y cómo estaban conformados.

Para muchos, la semana (en latín septimana = siete) es el transcurso del tiempo formado por siete días. Cada día corresponde a 24 horas, desde que sale el Sol hasta que se oculta la Luna. El mes, antiguamente era el transcurso de tiempo en el que la Luna giraba alrededor de la Tierra. En nuestros días se cuenta con 28 hasta 31 días por mes, al cumplirse 12 meses transcurre un año, que es el tiempo en que la Tierra da la vuelta alrededor del Sol.

ORIGEN DE LOS DÍAS DE LA SEMANA Y LOS MESES

Etimología de los días de la semana

De Venus, la diosa del amor, proviene la palabra viernes.
Lunes Martes Miércoles Jueves Viernes Sábado Domingo
Deriva de la palabra lunae, que significa día de Luna. Deriva de la palabra martis, que en romano significaba Marte y alude a este dios. Deriva de la palabra romana mercurii, el dios Mercurio. Deriva de Jovis o Jove, por Júpiter, dios del rayo. Deriva de la palabra veneris, por Venus, la diosa del amor. Deriva de la palabra romana saturni, por el dios Saturno. Deriva de la palabra latina dominica, por las fiestas romanas.
Meses Origen
Enero Fue añadido por el rey de Roma Numa Pompilius como el mes 11, llamándolo januarius en honor al dios Jano, de los comienzos y finales.
Febrero Fue propuesto por el rey de Roma Numa Pompilius como el mes 12, completando las estaciones al año, llamándolo februarius en honor al dios del perdón en faltas, februus.
Marzo En la época romana, marzo era el primer mes llamado martius, ya que se honoraba al dios guerrero Marte.
Abril Era el segundo mes romano, llamado aprilis, en referencia a la apertura de las flores.
Mayo El tercer mes fue llamado maius, debido a la diosa Maia o Maya.
Junio Corresponde al cuarto mes, llamado iunius, en alusión a la diosa Juno.
Julio El quinto mes fue llamado iulius, en referencia al general de Roma Julio César.
Agosto El sexto mes fue llamado augustum, debido al emperador romano Augusto.
Septiembre Por ser el séptimo mes, los romanos lo llamaron septem, septimus o september.
Octubre Por ser el octavo mes, fue llamado octavus, octavum o mensis october.
Noviembre Fue llamado en Roma como nonum, nonus o novembris.
Diciembre Al ser el décimo mes, fue llamado decimus o december.

En Roma, marzo era el primer mes y diciembre el décimo mes, pero luego, en el gobierno de Julio César se tomó al Sol como base del calendario. Así fue que el emperador agregó dos meses más, enero y febrero, siendo éstos los primeros y convirtiéndose marzo en el tercero.

¿Sabías qué...?
En el calendario gregoriano cada 555 años hay un mes que tiene 5 viernes, 5 sábados y 5 domingos, como en Octubre de 2010.

¿Por qué febrero es el mes con menos días?

Cuando el gobernante Julio César ordenó estos cambios, para permitir que agosto tuviese 31 días al igual que julio, se le quitó un día al mes de febrero. El motivo era rendirle honor al emperador Augusto.

Clasificación

Debido a la manera como antiguamente se medía el tiempo, surgieron 3 tipos de calendarios que se estructuraron acorde al fenómeno usado. Se conformaron 3 calendarios:

Los calendarios y las diferentes culturas

Calendario egipcio: Según los registros arqueológicos se conoce que utilizaron varios tipos de calendarios, siendo ellos los primeros que incorporaron un calendario solar.

El calendario oficial o civil tomaba como referencia al Sol y acorde a ello calcularon la temporada entre la sequía y la lluvia; este tiempo trascurrido era de 365 días y fue tomado como un año. Estos años fueron organizados en 12 meses de 30 días cada mes y se dice que fue uno de los calendarios más precisos y completos, porque a los 360 se le añadían 5 días para completar los 365 días.

Los egipcios utilizaban un calendario solar.

Calendario babilónico mesopotámico: Los babilonios utilizaban un calendario lunar, los días se regían según las fases de la Luna. Su calendario consistía en 12 meses de 30 días y para distribuir el tiempo acorde a las estaciones se añadía un mes adicional (el décimo tercero) cada 6 años. A esto se lo denominaba ciclo metónico. Los días de la semana recibieron el nombre de los astros y los planetas (Luna, Sol, Marte, Mercurio, Júpiter, Venus y Saturno).

Calendario romano juliano: Como anteriormente se menciona, los romanos usaban al principio 10 meses empezando por marzo y culminando por diciembre, hasta que se le adicionaron dos meses (januarius y februarius). La mayoría de nombres que llevaban los primeros meses eran dedicados a dioses romanos. Su calendario era lunisolar, y tras la modificación se constituye el calendario juliano (por la aprobación de Julio César en formar un calendario uniforme) que tenía 12 meses y 365 días. Febrero tuvo 28 días hasta que se introdujo el calendario gregoriano.

Reloj calendario romano en la torre San Marcos.

Calendario gregoriano: Este calendario se denomina así gracias a la modificación del calendario juliano que el papa Gregorio XIII ordenó hacer, ya que para ese entonces el calendario juliano utilizado presentaba errores que implicaban la acumulación de días con el transcurso de los años; para esto el papa Gregorio XIII contó con ayuda del astrónomo Luigi Ghiraldi y la colaboración del matemático astrónomo Cristóbal Clavius. Se adaptó el nuevo calendario gregoriano para contrarrestar los 11 días de atraso generados por el calendario juliano, para ello se eliminaron los días entre el 4 y 15 de octubre.

Desde 1582 se generaliza el uso de este calendario, que consta de 24 horas al día, 7 semanas de lunes a domingo, siendo éste último el primer día de la semana según la iglesia católica; algunos meses con 30 o 31 días, y febrero con 28 días y 29 (cada cuatro años), cuando se dan los años bisiestos. Este calendario fue adoptado en varios países y naciones.

Exactamente el año se compone 365 días, 5 horas, 48 minutos y 54 segundos. Esas horas, minutos y segundos adicionales, cada 4 años, suman un día más que es agregado en febrero.

Calendario chino: En los países orientales varias regiones utilizan este calendario lunisolar para algunas fiestas tradicionales y en la actividad agrícola, ya que en China se aceptó el calendario gregoriano. El calendario usado para la actividad agrícola está formado por años que se componen desde los 353 hasta los 365 días, con 12 meses mínimos de 29 días. Utiliza un ciclo sexagenario (ciclo de 60 años) donde a cada año en transcurso se le denomina por una combinación de nombres de animales que se denominan ramas terrenales.

Las ramas terrenales, representan el horóscopo zodiacal chino.

Calendario hebreo: Es un calendario lunisolar, que a diferencia de otras culturas, sus meses comienzan con la puesta de la luna nueva. Está formado por 3 tipos de año dependiendo de los días que tengan según la liturgia. Años defectivos que pueden ser bisiestos con 383 días, o no bisiestos con 353 días. Los años regulares cuentan con 354 o 384 días, los años completos con 355 o 385 días, habiendo un año de diferencia entre ellos. Para los hebreos, el ciclo metónico es de 19 años, tienen como día de fiesta semanal los sábados, el Sabbath.

Calendario islámico o musulmán: Los musulmanes se rigen por los calendarios lunares. Está formado por 12 meses de 354 días, y los años bisiestos de 355, siendo cada mes destinado a distintas actividades sagradas. Por ejemplo, en el primer mes, muharram, se conmemora la Hégira con un ayuno el día 10.

Su peculiaridad es que los días no inician al amanecer, sino en las puestas del sol, cuando éste se oculta. Los días de fiestas inician desde la tarde de los jueves cuando se oculta el Sol, hasta el amanecer del viernes.

Calendario maya: Los mayas poseían un sistema de calendario solar muy preciso y complejo clasificado en 3 calendarios:

Glifo maya.

1. Calendario de año solar haab: Contaba con 365 días de los cuales los primeros 364 días estaban distribuidos en 28 semanas de 13 días cada una, y el día 365 era el inicio de un nuevo año.

2. Calendario del año sagrado tzolkin: Contaba con 20 meses y 260 días, pero usualmente se usaba el calendario solar. Este calendario era usado también por los aztecas.

3. Calendario solar kayun: Era el calendario más primitivo que daba inicio a esta civilización que era más larga, formado por veinte años de 7300 días cada uno.

¿Sabías qué...?
Los solsticios de verano son épocas del año donde el Sol alcanza su mayor altura, causando que el día sea más largo y la noche más corta.

Calendario azteca: Los aztecas poseían calendarios solares similares a los mayas, contaban con el calendario de año solar tonalamatl con 260 días, con el más exacto de 365 días distribuidos en 18 meses (con 20 días cada mes) y por último con el calendario solar del siglo azteca que contaba con 18.980 días dispuestos en 52 años que al concluir, según ellos, se destruiría el mundo, y luego se volvería a crear.

Calendario inca: Fue un calendario lunisolar, los antiguos incas medían el tiempo favoreciendo así las actividades agrícolas que iniciaban en el mes de diciembre, el que sería el primer mes de trabajo al iniciar el año.

El año constaba de 12 meses con 30 días, y la mayoría de los meses desde febrero a noviembre eran de fiestas y rituales. Para diferenciar el día de la noche usaban palabras peculiares en sus lenguas, y su tiempo cronológico estaba ligado a sus festividades, agricultura y creencias.

La piedra Intihuatana (Machu Picchu) se considera un reloj solar que usaban los incas para calcular el tiempo.

Calendario internacional: Este calendario fue propuesto por una organización cuyo objetivo era acoplar el calendario gregoriano que es aceptado en la mayoría de los países a uno de uso mundial. The World Calendar Association estructuró el año en 12 meses, empezando la semana los domingos y terminando los sábados. Esto fue propuesto ante la organización de las naciones unidas (ONU) en una resolución, pero no todos lo aceptaron ya que interfería con sus fiestas.

La piedra Intihuatana (Machu Picchu) se considera un reloj solar que usaban los incas para calcular el tiempo.

Caída libre

La caída libre es un tipo de movimiento rectilíneo uniformemente acelerado porque su desplazamiento se realiza en línea recta con una aceleración constante igual a la gravedad, lo que hace que la velocidad de los cuerpos que describen este movimientos aumente en el transcurso de su trayectoria.

La caída libre

En este movimiento, el móvil cae de forma vertical desde cierta altura sin ningún obstáculo. Es un tipo de movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) porque su aceleración es constante y coincide con el valor de la gravedad.

La gravedad

Al encontrarse cerca de la superficie terrestre, los cuerpos experimentan una fuerza de atracción que les confiere una aceleración. Cuando una manzana cae de un árbol lo hace por acción de dicha fuerza. En el caso de la Tierra, la gravedad puede considerarse constante y su dirección es hacia abajo. Generalmente se designa con la letra g y sus valores aproximados para algunos sistemas de medición son:

Sistema M.K.S → g = 9,8 m/s²

Sistema c.g.s → g = 980 cm/s²

Sistema inglés → g = 32 ft/s² (pies por segundo)

En algunas ocasiones la gravedad de la Tierra suele aproximarse a 10 m/s², pero el valor más usado en la resolución de problemas es el de 9,8 m/s².
En algunas ocasiones la gravedad de la Tierra suele aproximarse a 10 m/s², pero el valor más usado en la resolución de problemas es el de 9,8 m/s².
 En el movimiento de caída libre se considera que el rozamiento con el aire es despreciable.
En el movimiento de caída libre se considera que el rozamiento con el aire es despreciable.

Características del movimiento de caída libre

  • Es un tipo de movimiento uniformemente acelerado o variado.
  • Su trayectoria es vertical.
  • La altura inicial es mayor que la final.
  • La velocidad inicial es igual cero, es decir, el cuerpo se deja caer.

Ecuaciones de caída libre

Dónde:

Vo = velocidad inicial

Vf = velocidad final

h = altura

g = gravedad

t = tiempo

La velocidad inicial en este tipo de movimiento es igual a 0 m/s si el objeto se deja caer, por el contrario, si el objeto no se deja caer sino que se lanza, se le confiere una velocidad inicial diferente a 0 m/s.

Los paracaidistas describen un movimiento de caída libre hasta el momento en el que abren su paracaídas.
Los paracaidistas describen un movimiento de caída libre hasta el momento en el que abren su paracaídas.

Ejercicios

1.- Se deja caer desde la parte alta de un edificio una roca, la cual tarda 4 segundos en llegar al suelo. Determinar:

a) La altura del edificio.
b) La velocidad con la que impacta la roca al suelo.

Datos:

V0 = 0 m/s à la velocidad inicial es cero porque la roca se dejó caer.
t = 4 s

a) Para calcular la altura del edificio se debe emplear la ecuación número 4 mostrada anteriormente, ya que es la que involucra el término de altura.

El único dato no proporcionado es el valor de la gravedad, pero como se explicó anteriormente, la gravedad de la Tierra se aproxima a 9,8 m/s². Al sustituir los datos en la ecuación quedaría:

Recuerda simplificar las unidades iguales.

El edificio tiene una altura de 78,4 metros.

b) Para determinar la velocidad con la que impactó la roca al suelo se aplica la ecuación 1 de las fórmulas mostradas anteriormente.

Al sustituir los datos en la ecuación se tiene:

La roca golpeó el suelo con una velocidad de 39,2 m/s.

Otra forma de calcular la velocidad de impacto con el suelo es aplicar la fórmula 3, la cual involucra la altura, pero como se calculó ese valor en la primera parte (78,4 m) se puede aplicar. En caso de no conocer el valor de la altura, se debería aplicar la ecuación 1.

Como podrás observar, se obtuvo el mismo resultado que el obtenido con la ecuación 1.

2.- Desde lo alto de un balcón de 6 m se lanza hacia abajo una pelota con una velocidad inicial de 4 m/s. Determinar:

a) La velocidad final de la pelota.
b) El tiempo que tarda en llegar al suelo.

Datos:

h = 6 m
V0 = 4 m/s → La velocidad no es de 0 m/s porque la pelota no se dejó caer desde el reposo.

a) Para calcular la velocidad de la pelota se emplea la ecuación 3 porque no se ha calculado el tiempo aún.

La velocidad final de la pelota es aproximadamente igual a 11,56 m/s.

En el movimiento de caída libre, la velocidad aumenta de forma constante hasta que el cuerpo llega al suelo.
En el movimiento de caída libre, la velocidad aumenta de forma constante hasta que el cuerpo llega al suelo.

b) Para determinar el tiempo que la pelota emplea en llegar al suelo, se utiliza la ecuación 2.

El tiempo que tarda la pelota en llegar al suelo es aproximadamente igual a 0,77 segundos.

Otra forma de calcular el tiempo

Para los casos en los que se conoce la altura y la velocidad inicial se puede calcular el tiempo por medio de la ecuación 4, en este caso, se formaría una ecuación de segundo grado al sustituir los datos y de la cual se tomaría la raíz positiva.

En el problema anterior, al sustituir los valores en la ecuación 4 quedarían de la siguiente forma:

(Para efectos ilustrativos no se colocaron las unidades)

Organizando los términos en la ecuación quedaría de la siguiente forma:

4,9t2+4t6=0

Al calcular las raíces de la ecuación anterior se tienen:

t1 = 0,77 s (Es el valor verdadero y coincide con el que se calculó anteriormente)

t2 = -1,58 s (No se considera este valor ya que no hay tiempos negativos)

No todos los ejercicios siguen una misma metodología por ello debes reconocer muy bien los datos con los que cuentas y las ecuaciones que debes usar.

Características de las estrellas

Básicamente, las estrellas son grandes bolas de gas en explosión, principalmente hidrógeno y helio. Nuestra estrella más cercana, el Sol, está tan caliente que la enorme cantidad de hidrógeno experimenta una reacción nuclear constante en toda la estrella, como en una bomba de hidrógeno.

¿Qué son las estrellas?

Las estrellas son astros gaseosos e incandescentes (por ejemplo, el Sol) y aparecen como simples puntos de luz a causa de la enorme distancia a que se encuentran. En una noche sin luna se pueden observar a simple vista entre 2.500 y 3.000 estrellas en cada hemisferio. El catálogo estelar o mapa celeste más antiguo conocido es el confeccionado por Claudio Tolomeo (hacia el 150 d. C.), basado probablemente en el de Hiparco (130 a. C.). Tolomeo catalogó 1.022 estrellas y las subdividió en seis clases de magnitudes: desde las más brillantes, Sirio y Vega, que definen la primera magnitud, hasta llegar a las más débiles, que corresponden a la sexta magnitud. El término galaxia designa los sistemas independientes de estrellas que se hallan situados fuera del nuestro, la denominada Vía Láctea. Contienen entre 3.000 millones y un billón de estrellas, además de una gran cantidad de polvo y gas interestelar.

¿Sabías qué...?
Con un pequeño telescopio se pueden ver unas 300.000 estrellas; con uno de tamaño mediano hasta 250 millones, y más de 3.000 millones con los más perfeccionados.

Las estrellas constituyen uno de los principales tipos de cuerpos que pueblan el universo. Una estrella es una bola caliente de gas que brilla como consecuencia de las reacciones de fusión nuclear que se producen en su núcleo. Al igual que los demás cuerpos celestes, están compuestas en su mayor parte por hidrógeno, el más simple y ligero de los elementos.

Resto de la supernova conocida como Casiopea.

Características de las estrellas

Además del brillo, las características físicas más importantes de una estrella son el color, el diámetro y la masa.

El color

A mediados del siglo pasado se clasificaban las estrellas por su color, se creía que éste dependía de la temperatura superficial, del mismo modo que una barra de hierro calentada hasta la incandescencia se vuelve primero roja, luego anaranjada, más tarde amarilla y finalmente blanca, a medida que la temperatura aumenta. En la actualidad está correctamente establecida la relación entre la temperatura y el color.

El espectro del Sol y las estrellas forma un continuo surco de rayas oscuras, a veces brillantes, a partir de las cuales es posible identificar los elementos químicos presentes y el porcentaje de los mismos. De tales rayas es posible obtener también la temperatura y características físicas como la presión o los campos magnéticos y eléctricos.

Por tanto, es evidente que debe existir también una relación entre el color y las características del espectro lineal, siendo ambos esencialmente dependientes de la temperatura.

El diámetro y la masa

Determinar el diámetro de las estrellas es también un gran problema ya que los mayores telescopios muestran sólo puntos y no discos. En 1930, Albert Michelson (1852-1931), mediante el uso de interferómetros (aparatos para realizar mediciones muy precisas basadas en los fenómenos de interferencia de la luz que incide sobre ellos), logró medir el diámetro de algunas estrellas supergigantes relativamente cercanas, como Antares y Betelgeuse; resultaron tener, respectivamente, unos diámetros 400 y 300 veces mayores que el del Sol.

Existen estrellas con diámetros centenares de veces mayores que el del Sol y otras con diámetros casi iguales al de éste. Puede afirmarse que los diámetros estelares varían desde 10.000 kilómetros a 1.000 millones de kilómetros, pero la mayoría de las estrellas de la secuencia principal tienen diámetros comprendidos entre 0,5 (enanas rojas) y 10 veces el diámetro del Sol.

La estrella Beta Pictoris, segunda en importancia de la constelación del Pintor, está a 50 años luz de la Tierra. Como puede apreciarse en la imagen, la rodea un disco de materia que se extiende hasta 60 billones de km.

Para calcular las masas de las estrellas, Arthur Stanley Eddington (1882-1944), en 1924, halló de manera teórica la existencia de una relación entre masa y luminosidad (las estrellas de masa mayor son también las más luminosas), relación que había sido ya demostrada empíricamente a partir de las pocas estrellas cuyas masa y luminosidad se conocían.

Las variaciones de las distintas masas son bastante más reducidas que las de los volúmenes, pasando de unas 0,2 a 50 veces la masa solar. Por consiguiente, la densidad media de las estrellas gigantes rojas resulta del orden de 0,0001 g/cm3, y la de las enanas blancas es de 105 g/cm3. Véanse algunos ejemplos: el Sol, que es una estrella, tiene una densidad poco mayor que la del agua, o sea 1,41 g/cm3; Antares, una estrella supergigante roja, una millonésima parte de la densidad del agua; una estrella enana blanca, como la compañera de Sirio, llamada Sirio B, con la misma masa que el Sol y un diámetro sólo cuatro veces el de nuestro planeta, la Tierra, tiene una densidad de 1.000 000 veces la del agua. Con tan enorme densidad, el gas que constituye la enana blanca se encuentra en un estado degenerado.

S. Eddington

Astrónomo y físico británico (1882-1944). Desarrolló métodos para la determinación de la masa, la temperatura y la constitución interna de las estrellas.

Características del sistema Tierra-Luna

La Tierra es el único planeta cuyo nombre en inglés no se deriva de la mitología griega o romana. El nombre deriva del inglés antiguo y germánico, hay, por supuesto, cientos de otros nombres para el planeta en otros idiomas.

La Tierra, como los demás planetas, recorre desde hace millones de años su órbita alrededor del Sol, y lo seguirá haciendo durante otros miles de millones de años sin cambios notables. Es el Sol, con un volumen 1.000 veces mayor que todos los planetas juntos, quien la retiene y regula, además, el sistema solar. Si existiese otra estrella cercana, es decir, si el Sol perteneciese a un sistema binario, o si los planetas tuviesen masas mucho mayores, las órbitas de sus componentes sufrirían variaciones continuas. En ningún planeta habría posibilidad de vida porque pasaría demasiado cerca o demasiado lejos de su estrella y, por tanto, no existiría una sucesión regular de las estaciones.

¿Sabías qué...?
La Luna es el cuerpo celeste más fácil de ubicar en el cielo y es el único sitio, más allá de la Tierra el cual el hombre ha sido capaz de pisar.

La Luna está dotada también de un movimiento de rotación y otro de traslación alrededor de la Tierra (que se cumplen en tiempos iguales); por consiguiente, las posiciones relativas de la Tierra y la Luna respecto al Sol varían periódicamente. Ello explica que la Luna presente a la Tierra siempre la misma cara y las fases lunares.

La superficie lunar, explorada por varias misiones del programa Apolo, y cartografiada con todo detalle por la sonda estadounidense Clementine, presenta un aspecto caracterizado por una gran cantidad de accidentes geográficos.

No es del todo exacto afirmar que la Luna gira alrededor de la Tierra. Ambas giran alrededor del punto de equilibrio del sistema Tierra-Luna, o sea el centro de gravedad o centro de masa. Y como la Tierra es 81 veces mayor que la Luna, este centro está situado a 1.600 km por debajo de la superficie terrestre, del lado más próximo a la Luna. De esto se deduce que no es la Tierra la que sigue una verdadera órbita elíptica alrededor del Sol, sino que es el centro de gravedad del sistema el que lo hace, mientras que la Tierra oscila ligeramente de un lado a otro.

Fases de la Luna.

¿Por qué la Tierra no se cae?

La fuerza de la gravedad es la responsable de que los gases que componen la atmósfera no escapen al espacio y de que la Tierra permanezca estable en su órbita, relacionándose con el resto de cuerpos del universo y manteniendo unidas a los miles de millones de estrellas que pueblan la galaxia. La fuerza de la gravedad del Sol es casi 28 veces el valor de la gravedad terrestre y es la que mantiene en sus órbitas a todos los planetas y demás cuerpos que integran el sistema solar.

Color y luminosidad

Una característica de los planetas es reflejar una parte de la luz solar incidente (el porcentaje de luz reflejada se llama albedo y es un dato físico importante para todos los cuerpos del sistema solar, pues facilita el conocimiento de características como la dimensión y el material que recubre su superficie). La Tierra tiene un albedo de 0,40, o sea que refleja al espacio un 40 % de la luz solar que recibe; ello se debe a que los océanos, los casquetes polares y la capa de nubes actúan como espejos.

Heng Zhang

El astrónomo y geofísico chino Heng Zhang (78-139 d.C.), reconocido como el inventor del primer sismógrafo, fue asimismo el astrónomo oficial de la corte china. Descubrió y registró que la luz emitida por la Luna era, en realidad, luz procedente del Sol reflejada por la superficie de ésta.

El albedo terrestre está sujeto a variaciones estacionales porque la Tierra difunde más luz entre marzo y junio, y entre octubre y noviembre que entre julio y septiembre. El color de la Tierra también varía, es más azulado en los períodos que refleja más luz. En cuanto a las relaciones entre la Tierra y la Luna, la primera se ve desde la Luna 100 veces más luminosa que la Luna llena vista desde la Tierra.

Dimensiones

La distancia media entre la Tierra y la Luna es de 384.403 km. Esta distancia puede alcanzar 406.697 km en el apogeo, cuando la velocidad orbital de la Luna es de 3.474 km/h, o bien reducirse a 356.410 km en el perigeo, cuando la velocidad orbital es de 3.959 km/h. Mientras que la Tierra tiene como diámetro ecuatorial 12.756 km y como diámetro polar 12.713 km, con un achatamiento polar de 1/298, la Luna tiene un diámetro de 3.476 km y forma casi esférica. La Tierra tiene una masa de 5,977 x 1027 t y una densidad media de 5,52 veces la del agua, frente a 3,36 veces la densidad de la Luna, que posee también una masa mucho más baja: 1/81 de la terrestre. De la masa y las dimensiones se deduce la fuerza de gravedad en la superficie de ambos cuerpos, y también puede calcularse el peso de un objeto sobre la Luna, que es, un 1/6 de su peso sobre la Tierra.

Eclipses de Sol y de Luna

Durante su trayectoria alrededor del Sol, la Luna se encuentra periódicamente situada entre el Sol y la Tierra.

Las diferentes fases de un eclipse de Sol total, en este caso el acaecido el 11 de julio de 1991, permiten apreciar la secuencia de desaparición y reaparición del disco solar tras la silueta de la Luna, que en la fase central del fenómeno cubre por completo al astro rey.

El interés científico del eclipse de Sol depende de que la Luna oculte al Sol por completo (eclipse total); en el brevísimo período que puede durar el eclipse total, desde pocos segundos hasta un máximo de 7,30 minutos, se puede ver la parte más externa del Sol, la cromosfera, con las protuberancias, y la tenue corona con sus penachos. Debido a que la sombra de la Luna llega con dificultad a alcanzar la Tierra, la zona de sombra sobre la superficie terrestre no es superior a 275 km. Alrededor de esta zona el eclipse es parcial, o sea que se ve el disco del Sol parcialmente, no pudiéndose observar la corona ni la cromosfera.

Existe eclipse anular cuando el disco lunar no es lo suficientemente grande como para ocultar por completo al Sol. Esto se debe a que las distancias de la Luna a la Tierra y de la Tierra al Sol no son constantes, dado que las órbitas lunar y terrestre no son exactamente circulares. El disco negro de la Luna aparece entonces rodeado de un sutil anillo brillante, cuya luminosidad es suficiente para impedir la visión de la cromosfera y de la corona.

Los eclipses totales de Sol (y de Luna) se reproducen en el mismo orden después de un período de 18 años y 11 días, denominado saros (igual a 223 lunaciones), pero no en los mismos lugares. Por ejemplo: el 20 de julio de 1963 se observó un eclipse total en Canadá, y el 31 de julio de 1981 otro en Siberia (Rusia). El 11 de agosto de 1999 pudo verse un eclipse total de sol desde Gran Bretaña hasta la India. El 29 de marzo de 2006 tuvo lugar un eclipse solar total que comenzó a manifestarse al noreste del Brasil y acabó en la frontera noreste de Mongolia.

Eclipse lunar

Los eclipses de Luna se producen cuando ésta penetra en el cono de sombra de la Tierra, lo que sucede sólo durante la Luna llena. Contrariamente a los eclipses de Sol, los de Luna son visibles en todos los lugares de la Tierra donde pueda observarse la Luna por encima del horizonte. El cono de sombra está rodeado de un cono de penumbra, que intercepta una parte de la luz solar. Los eclipses de Luna pueden ser también totales o parciales. El eclipse es total si la Luna penetra completamente en el cono de sombra, y parcial si penetra sólo en parte; por último, el eclipse de penumbra se produce cuando la Luna penetra sólo en el cono de penumbra. En un año se observan de dos a cinco eclipses de Luna.

La Tierra y la Luna: su formación

El análisis radiactivo de las rocas superficiales de la Tierra indica una edad de por lo menos 3.500 millones de años. La corteza terrestre se solidificó lentamente, debido a la gran cantidad de potasio radiactivo que generaba calor en el interior. El Sol, cuya edad se estima en 5.000 millones de años, había nacido ya, aun cuando era invisible por estar oculto en el interior de la primitiva nebulosa de materia estelar, particularmente densa sobre el plano de la eclíptica. En efecto, la nube bloqueaba todas las radiaciones solares a escasa distancia del Sol. A causa de la temperatura excesivamente baja (quizá -260 °C), los gases de agua, el amoníaco, el nitrógeno, el dióxido de carbono, el monóxido de carbono y el metano formaron, junto con el polvo, la nieve y el hielo, unos cuerpos que serían los planetas. Debió de ser una tempestad permanente, en cuyo seno se formaron masas cada vez más grandes, que se rompían y agregaban de nuevo.

La Tierra pudo nacer así, o sea, por acumulaciones sucesivas y, a medida que aumentaba de masa, atraía a otros cuerpos menores. El calor generado, además de disolver los hielos y producir vapor, eliminó las sustancias más ligeras y volátiles, dejando sólo las más pétreas y metálicas.

En realidad, sobre el origen de la Luna hay muchas dudas. Según H. C. Urey, se formó también en frío, por acumulación de pequeños cuerpos. Fred Whipple sostiene que esto quizá sucedió cuando la Tierra empezó a perder el anillo que la rodeaba (similar al que todavía hoy circunda a Saturno). El núcleo de la Luna comenzó a calentarse poco a poco a causa de la presencia de elementos radiactivos; sin embargo, es probable que no se calentase lo suficiente como para producir un núcleo de hierro, como ocurrió en el caso de la Tierra.

Pequeños cuerpos siguieron cayendo sobre la Luna durante centenares de miles de años, y provocaron cráteres. Mientras, el calor interior aumentaba y fundía las capas más próximas a la superficie. En este período crítico, las grandes depresiones lunares que ahora se denominan mares, los valles y las grietas se inundaron de lava. Ese período fue breve, así como fueron también rápidos la expansión y el enfriamiento sucesivos, que produjeron tensiones, hundimientos, relieves y formaciones de diverso tipo. La acción de los volcanes es evidente en diversas regiones de la Luna, pero muchos cráteres, y especialmente los mayores, fueron producidos por impactos de meteoritos, como sucedió también en la Tierra; sin embargo, en el caso de esta última las fuerzas geológicas han rellenado, erosionado y destruido los cráteres, excepto algunos de los más recientes. Los picos centrales de muchos cráteres lunares, más bajos que los bordes de los cráteres mismos, se formaron en el período durante el cual la Luna estaba parcialmente fundida; el meteoro que originó el cráter rompió el centro de la superficie, de la cual brotó la lava que creó estas montañas. También los mares fueron producidos, siempre en el mismo período, por el impacto de grandes meteoros que, al romper la costra, provocaron intensas expulsiones e inundaciones de lava.