CAPÍTULO 7 / TEMA 3

Procariotas: dominio Archaea, reino Archaebacteria

Las arqueobacterias son casi tan antiguas como nuestro planeta. Surgieron cuando la Tierra se encontraba en su etapa naciente y las condiciones eran extremas. Hasta la fecha, estos organismos viven en condiciones tales en las que otros no podrían sobrevivir.

ORIGEN DEL REINO

Las arqueobacterias son un tipo de organismo unicelular tan diferente de otras formas de vida modernas que han desafiado la manera en que los científicos clasifican la vida.

El término achaio es una palabra griega que significa “antiguo”.

Los estudios genéticos y bioquímicos recientes en bacterias mostraron que una clase de procariotas era muy diferente de las bacterias actuales e incluso de todas las demás formas de vida modernas.

Se presume que estas células únicas son descendientes de un linaje muy antiguo de bacterias que evolucionaron alrededor de fuentes de aguas profundas ricas en azufre.

Nuevo árbol de la vida

El análisis genético y bioquímico ha llevado a un nuevo árbol filogenético de la vida, que hace uso del concepto de dominios para describir las divisiones de la vida que son más grandes y más generales que la del reino.

CARACTERÍSTICAS GENERALES

VER INFOGRAFÍA

Las arqueobacterias tienen una estructura más similar a los eucariotas que a las bacterias. Hay varias características de este reino que ayudan a distinguirlas de las eubacterias.

  • Las arqueobacterias no tienen peptidoglicano en sus paredes celulares.
  • La pared celular está compuesta de glicoproteínas y polisacáridos.
  • Las arqueobacterias tienen un solo cromosoma redondo, como las bacterias, pero su transcripción genética es similar a la que ocurre en los núcleos de las células eucariotas.
¿Sabías qué?
La transcripción de genes en las arqueobacterias ha llevado a algunos científicos a proponer que las eucariotas descienden directamente de las arqueobacterias.
  • Las envolturas de la pared celular tienen una alta resistencia a los antibióticos debido a la diferencia en la composición de la pared celular.
  • Las proteínas ribosómicas en eucariotas y arqueas también son similares entre sí.
  • Solo las arqueobacterias son capaces de realizar la metanogénesis.

CLASIFICACIONES DENTRO DEL REINO ARCHAEBACTERIA

Hay tres tipos de arqueobacterias que se clasifican en función de su relación filogenética:

1. Crenarchaeota (Termoacidófilos)

Grupo de organismos extremadamente tolerantes al calor. Tienen proteínas especiales que funcionan a temperaturas tan altas como 100 °C y además sobreviven en ambientes muy ácidos.

Se han descubierto muchas especies que viven en aguas termales y alrededor de los respiraderos de aguas profundas.

2. Euryarchaeota (halófilos y metanógenos)

Los halófilos pueden sobrevivir en 10 veces la concentración de sal presente en el mar y los metanógenos reducen el CO2 para producir metano. Sin metanógenos, el ciclo del carbono de la Tierra se vería afectado.

Importancia ecológica

Euryarchaeota es la única forma de vida que puede realizar la respiración celular mediante el uso del carbono como su aceptor de electrones. Esto le da un nicho ecológico importante porque la descomposición del carbono en metano es el paso final en la descomposición de la mayoría de las formas de vida.

Las arqueobacterias metanogénicas se pueden encontrar en marismas y humedales, donde son responsables del llamado gas de pantano que da el olor característico a estos lugares. También en los estómagos de los rumiantes, como las vacas, donde descomponen los azúcares que se encuentran en el pasto.

3. Korarchaeota

Es el linaje más antiguo de las arqueobacterias y el tercero descubierto.

Se hallan en escasas cantidades y específicamente en ambientes hidrotermales. Se descubrieron gracias a un muestro filogenético realizado en el estanque Obsidiana de Yellowstone en Estados Unidos. Hoy en día, ya se pueden cultivar en laboratorios.

Los Korarchaeota son raros en la naturaleza tal vez porque otras formas de vida más nuevas están mejor adaptadas para sobrevivir en ciertos ambientes.

IMPORTANCIA BIOLÓGICA

  • Su capacidad para tolerar condiciones extremas ayuda a los investigadores a aprender sobre las condiciones climáticas, el medioambiente y su supervivencia en la tierra primitiva.
  • Los metanógenos pueden crecer en fermentadores de biogás y descomponer el estiércol de vaca en gas metano como subproducto. Por lo tanto, se utilizan para la producción de gas doméstico para cocinar.
¿Sabías qué?
Las arqueobacterias constituyen hasta el 20 % de todas las células microbianas en el océano.
  • Organismos como Methanobacterium ruminantium están presentes en el sistema digestivo de los animales rumiantes con la finalidad de ayudarles a digerir la celulosa.
  • Las arqueobacterias tienen un papel importante en muchos ciclos químicos, como el ciclo del carbono, el ciclo del nitrógeno y el ciclo del azufre.

UTILIDAD INDUSTRIAL

Debido a su naturaleza extremófila, las arqueobacterias han demostrado ser de gran ayuda en el campo de la biotecnología, especialmente en la producción de enzimas que trabajan a temperaturas muy altas y de algunos antibióticos.

Visión hacia el futuro

Las características del reino de las arqueobacterias demuestran que la vida puede existir en cualquier lugar, bajo cualquier condición. La existencia de estos extremófilos nos da esperanza de que tal vez en un futuro cercano se logre descubrir vida en los otros planetas.

RECURSOS PARA DOCENTES

Artículo “Los seres vivos unicelulares”

Este recurso le permitirá obtener más información acerca de un gran grupo de seres vivos de tamaño considerablemente pequeño, con material genético y conformación simple que solo pueden ser observados bajo un microscopio.

VER

Vídeo “Reino Monera”

Este video le permitirá conocer las características del grupo de microorganismos pertenecientes a este reino.

VER

Infografía “Bacterias”

Con este recurso podrá dar a conocer la información sobre estos organismos unicelulares procariotas que no son visibles a simple vista y que abundan en la naturaleza.

VER

CAPÍTULO 7 / REVISIÓN

DIVERSIDAD Y CLASIFICACIÓN DE LOS SERES VIVOS | ¿qué aprendimos?

Clasificación de los seres vivos

La clasificación de los seres vivos comenzó como un sistema jerárquico que dividió a todos los organismos conocidos en plantas y animales. Este modelo fue reemplazado en el siglo XVIII por Carlos Linneo, quien realizó una división en reinos y los estructuró en cinco niveles: clase, orden, género, especie y variedad. Luego se empleó el sistema de clasificación binomial para nombrar a los organismos, pero fue Robert H. Whittaker quien postuló una clasificación de cinco reinos llamados Monera, Protista, Fungi, Plantae y Animalia. El sistema de cinco reinos no está en uso en la actualidad, en cambio, lo que ahora se emplea es un sistema de seis reinos: Animalia, Plantae, Fungi, Protista, Monera y Archaea.

La complejidad de la estructura celular fue uno de los criterios que Whittaker tuvo en cuenta para la clasificación.

Procariotas: dominio Bacteria, reino Monera

Las bacterias son los organismos procarióticos más simples, y presentan características como: ausencia de membrana nuclear, cromosoma único y circular, carencia de organelos celulares y reproducción por formación de esporas o fisión binaria. Inicialmente, las bacterias fueron consideradas animales, plantas y hongos. Se clasifican de varias maneras, pero la más importante consta de dos grupos principales: Archaebacteria y Eubacteria. Las primeras son organismos que viven en condiciones extremas y carecen de pared celular; las segundas son las llamadas bacterias verdaderas. Su rasgo característico es la presencia de pared celular rígida.

La bacteria que naturalmente forma parte de la flora intestinal es muy importante para una digestión adecuada.

Procariotas: dominio Archaea, reino Archaebacteria

Las arqueobacterias surgieron cuando la Tierra se encontraba en sus primeros años de existencia y las condiciones reinantes eran extremas. Tienen una estructura más parecida a la de los eucariotas que a la de las bacterias. Tienen un solo cromosoma redondo, como las bacterias, pero su transcripción genética es similar a la que ocurre en los núcleos de las células eucariotas. Hay tres tipos principales: Crenarchaeota, que son organismos extremadamente tolerantes al calor y a ambientes muy ácidos; Euryarchaeota, que son organismos que pueden sobrevivir ambientes con 10 veces la concentración de sal del mar y que reducen el CO2; y Korarchaeota, que es el linaje más antiguo pero menos comprendido, y que presenta genes diferentes a los de los grupos anteriores.

Organismos como Methanobacterium ruminantium están presentes en el sistema digestivo de los animales rumiantes y ayudan a la digestión de la celulosa.

Eucariotas: dominio Eukarya, reino Protista o Protoctista

El término protista fue introducido por Ernst Haeckel. Este reino forma un vínculo entre otros reinos de plantas, animales y hongos. Son generalmente organismos eucariotas simples, unicelulares, aunque algunos son coloniales y otros multicelulares. Principalmente son de naturaleza acuática y realizan el movimiento mediante flagelos o cilios. Algunos protistas son semejantes a los animales y se conocen como protozoos; otros, son similares a plantas, y tienen clorofila. Entre estos últimos se encuentran las algas verdes, rojas, pardas, doradas y fuego. Por último, los protistas con aspecto de hongos son unicelulares, saprófitos y viven en suelo húmedo, plantas y árboles en descomposición.

Por su condición de parásitos, algunos protistas pueden causar muchas enfermedades en plantas, en animales e incluso en el hombre.

Eucariotas: dominio Eukarya, reino Fungi

El Reino Fungi incluye un grupo diverso de seres que no pueden ser catalogados como animales ni como plantas. Se caracterizan por ser heterótrofos y descomponer la materia orgánica. Poseen una pared celular rígida y pueden ser unicelulares o pluricelulares. Los hongos pluricelulares presentan estructuras filamentosas llamadas hifas y viven en lugares húmedos y sombríos. Este reino contiene cinco filos principales: Chytridiomycota, Zygomycota, Ascomycota, Basidiomycota y Glomeromycota.

Los hongos producen naturalmente antibióticos que permiten inhibir el crecimiento de bacterias.

Eucariotas: dominio Eukarya, reino Animalia

El Reino Animalia está compuesto por todos los animales, vivos o extintos, del planeta. Son eucariotas, ya que el ADN se encuentra dentro del núcleo celular. No tienen paredes celulares. Son multicelulares, heterótrofos y tienen la capacidad de moverse y responder a su entorno. Todos los animales se pueden dividir en los grupos vertebrados e invertebrados. Además, cada reino se divide en categorías más pequeñas llamadas phylum (filo): Porifera, Coelenterata, Plathelminthes, Nematoda, Annelida, Arthropoda, Mollusca, Echinodermata, Protochordata y Vertebrata.

Los animales extintos también forman parte del reino Animalia.

Eucariotas: dominio Eukarya, reino Plantae

Este reino incluye a los diferentes tipos de plantas que se encuentran en el planeta. Cada grupo tiene características especiales y únicas, como la presencia de pared celular, nutrición autótrofa, clorofila, ausencia de sistema locomotor y reproducción sexual o asexual. Se clasifican en Briophyta, las cuales carecen de un sistema vascular y se desarrollan en dos fases, gametofito y esporofito; y Cormophyta, que es un grupo de plantas vasculares que tienen raíz, tallo y hojas. Éstas, a su vez se dividen en Pteridophyta y Spermatophyta. Además, éstas últimas se clasifican en gimnospermas y angiospermas.

La fotosíntesis de las plantas proporciona oxígeno a la atmósfera de nuestro planeta.

 

Alcanos, alquenos y alquinos

Los hidrocarburos son el grupo más diverso y amplio de los compuestos orgánicos y se clasifican en alifáticos o aromáticos. Dentro de los hidrocarburos alifáticos encontramos a los alcanos, los alquenos y los alquinos, todos compuestos que constituyen mayormente cadenas abiertas de carbono e hidrógeno.

Alcanos Alquenos Alquinos
Tipo de compuesto orgánico Hidrocarburo. Hidrocarburo. Hidrocarburo.
Tipo de hidrocarburo Alifático. Alifático. Alifático.
Otros nombres Parafinas. Oleofinas. Acetilenos.
Fórmula general CnH2n+2

 

Donde n es igual a la cantidad de carbonos.

n= 1,2,3…

CnH2n

 

Donde n es igual a la cantidad de carbonos.

n= 2,3…

CnH2n-2

 

Donde n es igual a la cantidad de carbonos.

n= 2,3…

Saturaciones Saturado. No saturado. No saturado.
Tipo de enlace característico Covalente simple. Covalente doble. Covalente triple.
Hibridación sp3

(en todos sus carbonos)

sp2

(en los carbonos del doble enlace)

sp

(en los carbonos del triple enlace)

Molécula más simple Metano

Eteno

Etino

 Estado físico Hasta C4H10 son gases.

 

De C5H12 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Hasta C4H8 son gases.

 

De C5H10 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Hasta C4H6 son gases.

 

De C5H8 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Punto de ebullición
  • Aumenta con el número de carbonos.
  • Es mayor en alcanos no ramificados.
  • Aumenta con el número de carbonos.
  • Es mayor en alquenos no ramificados.
  • Muy similar al de su alcano correspondiente.
  • Aumenta con el número de carbonos.
  • Es mayor en alquinos no ramificados.
  • Ligeramente más elevados que su alcano o alqueno correspondiente.
Solubilidad Insoluble en agua, pero solubles en solventes orgánicos. Insoluble en agua, pero solubles en solventes orgánicos. Insoluble en agua, pero solubles en solventes orgánicos.
Densidad Menor a 1 g/mL. Mayor a la de los alcanos. Mayor a la de sus correspondientes alcanos y alquenos.
Fuente Petróleo y gas natural.

 

Procesos de craking del petróleo natural. Deshidrogenación y deshalonación de derivados de alquenos.
Ejemplo Propano

 

Propeno

Propino

 

Efecto invernadero

El efecto invernadero es uno de los principales factores que determinan la temperatura del planeta. Es el fenómeno por el cual ciertos gases, llamados gases de efecto invernadero, atrapan el calor que de otro modo escaparía al espacio.

¿Qué es el efecto invernadero?

Un invernadero es una casa hecha de vidrio, la cual permanece cálida por dentro, incluso durante el invierno. La luz del sol brilla y calienta las plantas y el aire en el interior, el calor está atrapado por el vidrio y no puede escapar, algo similar ocurre en nuestro planeta.

Un invernadero es el ejemplo perfecto para definir este fenómeno, ya que, así como el vidrio mantiene el calor en el invernadero, los gases mantienen el calor en la Tierra.

Los gases que se encuentran en la atmósfera, como por ejemplo, el dióxido de carbono (CO2), hacen lo mismo que hace el techo de un invernadero. Durante el día, los rayos del Sol entran a través de la atmósfera, la superficie de la Tierra se calienta y por la noche, se enfría y libera el calor en el aire, sin embargo, este calor reflejado no es devuelto al espacio porque queda atrapado por los gases de efecto invernadero en la atmósfera, lo que mantiene cálida la Tierra.

De manera que, definimos al efecto invernadero como un proceso natural que calienta la superficie de la Tierra.

¿El efecto invernadero es natural o producido por el hombre?

El efecto invernadero no es un fenómeno creado por el hombre, la atmósfera terrestre siempre ha tenido gases de efecto invernadero y siempre han calentado la Tierra. Si no hubiera efecto invernadero, el planeta estaría tan frío que sería inhabitable.

El efecto invernadero no es creado por el hombre, sin embargo, la actividad humana es la razón por la cual se incrementa.

Sin embargo, aunque sea un fenómeno natural, la actividad humana provoca un cambio en la fuerza del efecto invernadero al aumentar la proporción de gases de efecto invernadero en el aire. Por ejemplo, la concentración de CO2 en el aire ha aumentado de 315 ppm a 387 ppm desde el año 1959.

¿Sabías qué...?
Los clororofluorocarbonos fueron prohibidos en 1996 debido a que destruyen la capa de ozono. Tienen una capacidad de supervivencia en la atmósfera de 50 a 100 años y con el tiempo pueden pasar a la estratosfera donde liberan el cloro y destruyen el ozono.

Si el efecto invernadero es demasiado fuerte, lo que ocurrirá es que la Tierra se volverá más y más caliente. Esto es lo que sucede actualmente, hay demasiados gases de efecto invernadero que producen que este efecto sea más fuerte.

¿Cómo ocurre este efecto en la Tierra?

  1. Los rayos ultravioletas provenientes del Sol llegan a la atmósfera.
  2. Parte del calor es absorbido por la tierra y los océanos, lo que calienta la Tierra.
  3. La Tierra libera calor hacia el espacio.
  4. Parte del calor es atrapado por los gases de efecto invernadero y calienta la Tierra, otra parte es liberada a la atmósfera. Sin embargo, si aumentan los gases de efecto invernadero, el exceso de calor no es liberado.

Causas del efecto y gases que lo producen

Es causado por la interacción entre la energía del Sol y los gases de efecto invernadero en la atmósfera de la Tierra. La capacidad que tienen estos gases para atrapar el calor es lo que causa este fenómeno.

Los gases de efecto invernadero están compuestos por 3 o más átomos, esta estructura molecular es lo que hace posible que logren atrapar el calor que es reflejado por la Tierra hacia la atmósfera.

Los gases que intervienen en este fenómeno son:

  • Vapor de agua
  • Dióxido de carbono (CO2)
  • Metano (CH4)
  • Óxidos de nitrógeno (NOx)
  • Ozono (O3)
  • Clorofluorocarbonos (CFC)
Sin la presencia de los gases de efecto invernadero, este fenómeno colapsaría.

¿Qué está agravando el efecto invernadero?

  • Aumento de las fábricas que liberan gases contaminantes a la atmósfera.
  • Uso de combustibles fósiles.
  • Uso de transportes que requieren gasolina, por ejemplo, buses, automóviles o aviones, entre otros.
  • La tala de árboles, ya que ellos son los encargado de tomar el CO2 de la atmósfera.
  • El aumento de la ganadería produce un aumento excesivo del metano, gas que se genera durante la digestión de los alimentos por parte del ganado y que luego es expulsado por ellos.

Consecuencias del efecto invernadero

Deshielo de los polos

En los polos, el deshielo ocurre a ritmos diferentes y es mucho mayor en el Ártico, esto se debe a que el Ártico está formado por hielo marítimo y aumento de la temperatura de los océanos puede que lo afecte más, además de que en el norte, están los países que más contaminan.

Con el aumento en los niveles de emisión de gases de efecto invernadero, este fenómeno se ha incrementado hasta el punto en que se mantiene demasiado calor en la atmósfera de la Tierra, lo que trae graves consecuencias para el ambiente, entre las que se pueden destacar:

  • Desertificación.
  • Derretimiento de los polos, lo que a su vez provoca un aumento en el nivel del mar.
  • Tormentas más fuertes y eventos extremos.
  • Incremento en los incendios forestales.
  • Aumento de la radiación solar, lo que provoca enfermedades como el cáncer de piel.
  • Acidificación de los océanos, debido a que estos son sumideros de CO2. El CO2 reacciona con el agua y forma ácido carbónico, si aumenta el CO2, se incrementa esta interacción y se acidifica el océano.
  • La acidificación de los océanos junto con el aumento de temperatura puede provocar extinciones de muchas especies.
El efecto invernadero junto con el calentamiento global, destruyen el hábitat de muchos animales.
  • Descontrol en el crecimiento de las plantas.
  • Destrucción de la capa de ozono debido al aumento del óxido nitroso, el principal gas de efecto invernadero que daña esta capa.

 

Los alcanos

Los alcanos son compuestos que están formados solo por enlaces entre átomos de carbono e hidrógeno. Comúnmente se los suele llamar también hidrocarburos.

El alcano más simple es el metano, cuya fórmula molecular es CH4. Admitiendo la tetravalencia del carbono y la monovalencia del hidrógeno, solamente es posible una estructura para el metano:

El alcano con dos átomos de carbono, el etano, tiene por fórmula molecular C2H6. Su fórmula estructural es:

Cuando el número de átomos de carbono es n, su fórmula molecular es CnH2n+2. Los alcanos pueden suponerse derivados del metano por sustitución sucesiva de un hidrógeno por un grupo metilo, CH3.

Los alcanos pueden ser de cadena lineal o de cadena ramificada. En la cadena normal cada átomo de carbono está unido directamente a lo sumo a otros dos, es decir, los carbonos son primarios o secundarios; en las cadenas ramificadas existen también átomos de carbono terciarios o cuaternarios:

 

El metano es el alcano más simple.

Una cadena ramificada se puede considerar como una cadena normal en la que la parte de sus átomos de hidrógeno han sido sustituidos por grupos CnH2n+1, que se denominan cadenas laterales.

Dado que la fórmula estructural desarrollada ocupa mucho espacio, para los alcanos de cadena larga se acostumbra usar la fórmula estructural abreviada, que se escribe poniendo entre paréntesis las cadenas laterales (y los sustituyentes) para indicar que esos átomos o grupos están directamente unidos al átomo de carbono precedente no escrito entre paréntesis. Por ejemplo, la última fórmula que hemos escrito en forma desarrollada, en forma abreviada se escribiría:

CH3 CH(CH3)CH2 C(CH3)3

Nomenclatura de los alcanos

Los primeros químicos nombraban en general los compuestos haciendo referencia a su origen. Esto dio lugar a una nomenclatura vulgar que, en muchos casos, aún se emplea. A medida que fue aumentando el número de compuestos orgánicos conocidos se fue haciendo evidente la necesidad de sistematizar la nomenclatura, de manera que el nombre de un compuesto reflejara su estructura. La nomenclatura actual se basa en la establecida en el Congreso de Química de Ginebra de 1892 (nomenclatura de Ginebra), que ha sido revisada repetidas veces, siendo las últimas reglas las que recomendó en 1957 la Comisión de Nomenclatura de la Unión Internacional de Química Pura y Aplicada (IUPAC). En esta obra seguiremos el sistema de la IUPAC, aunque usaremos nombres vulgares cuando éstos estén muy arraigados.

Los cuatro primeros alcanos tienen nombres especiales (relacionados con su historia); a partir del quinto término se nombran según el prefijo griego o latino correspondiente al número de átomos seguido de la terminación -ano.

Los alcanos de cadena normal se indican colocando una n delante del nombre (n-butano) cuando se los quiere diferenciar de los que tienen el mismo número de átomos de carbono pero cadena ramificada en el primer enlace, a los que se antepone el prefijo iso- (iso-butano).

Los radicales monovalentes que se forman eliminando un átomo de hidrógeno de un carbono extremo de un alcano se denominan radicales alquilo. El nombre de cada radical se obtiene cambiando el sufijo -ano del nombre del alcano por -ilo, o bien por -il si el nombre del radical antecede en el nombre del compuesto (por ejemplo, el radical metilo o metil es CH3).

Para nombrar a los hidrocarburos ramificados se elige la cadena más larga y el compuesto se nombra como derivado de ese alcano de cadena normal. La cadena de carbonos se numera de un extremo a otro, eligiendo empezar por el extremo que permita que los números usados para ubicar las cadenas laterales sean lo más bajos posible. Por ejemplo, el 2-etil-3-metil-pentano sería:

Al examinar las fórmulas de los alcanos se observa que dos cualesquiera de ellos se diferencian en uno o más CH2. Una serie de compuestos en la que, como en las parafinas, los sucesivos términos se diferencian en un CH2 se denomina serie homóloga, denominándose homólogos los términos de la misma.

Los constantes físicas (densidad, solubilidad, punto de fusión, índice de refracción, etc.) de los términos de una misma serie homóloga suelen variar de un modo continuo con el aumento del peso molecular, sobre todo los puntos de fusión y de ebullición.

Propiedades generales de los alcanos

Las propiedades físicas de los alcanos siguen la gradación propia de los términos de una serie homóloga. Los cuatro primeros términos de los alcanos normales son gaseosos, del 5 al 16 son líquidos y los términos superiores, sólidos. Son incoloros e inodoros, insolubles en agua, miscibles entre sí y fácilmente solubles en disolventes orgánicos, tales como éter, sulfuro de carbono, benceno, etc. Fácilmente combustibles, arden con llama tanto más luminosa cuanto mayor es el número de carbonos de su molécula. Son estables y químicamente inertes puesto que a temperatura ambiente no son atacados por los ácidos ni las bases fuertes; ésta es la razón por la que se les denomina también parafinas (poca afinidad). Los halógenos se combinan con ellos por sustitución, formándose el derivado halogenado y el hidrácido correspondiente. Así, el metano reacciona con gas cloro dando cloruro de metilo y cloruro de hidrógeno:

CH4 + Cl2 → CH3Cl + HCl

El proceso puede proseguir hasta la sustitución de todos los hidrógenos por átomos de Cl, formándose tetracloruro de carbono.

El alcano más importante es el metano, que es muy estable, ya que sólo empieza a descomponerse por encima de los 600 °C.

Los alcanos son incoloros, inoloros e insolubles en agua.

Estado natural de los alcanos

Los alcanos son compuestos muy abundantes en la naturaleza. El primer término de la serie, el metano, se desprende en los pantanos como producto de la descomposición de sustancias orgánicas por acción de bacterias anaerobias (es decir, en ausencia de aire); de ahí su antiguo nombre de gas de los pantanos. También se desprende en las minas de carbón (grisú), donde puede provocar peligrosas explosiones. Es el principal componente del gas natural, cada día más utilizado por ser un combustible limpio y de elevado poder calorífico. Los demás alcanos se hallan contenidos en el gas natural y en el petróleo, del que pueden obtenerse muchos hidrocarburos saturados por destilación fraccionada. El propano y el butano son constituyentes del gas natural y del gas de los pozos petrolíferos, de los cuales se pueden separar por fraccionamiento. Se utilizan como combustibles, comercializándose licuados bajo presión en bombonas, a diferencia del gas natural, que se suministra por cañerías.

Compuestos orgánicos

Un conjunto de átomos enlazados de un modo especifico que genera un conjunto de propiedades químicas que caracterizan a una familia de compuestos. Los compuestos que poseen el mismo grupo funcional se concentran en una misma familia y en química orgánica existen decenas de familias. En este artículo analizaremos cada una de las familias de compuestos orgánicos.

Alcanos

Grupo de compuestos formados únicamente por carbonos e hidrógenos unidos mediante enlaces simples, de modo que todos los carbonos de un alcano poseen hibridación sp3. Los representantes más simples de esta familia son el metano, el etano, el propano, y el butano, que son gases empleados como combustibles domésticos e industriales. En la forma general, los alcanos se representan como R-H.

Los compuestos orgánicos están formados por moléculas compuestas por átomos de carbono y oxígeno.
Los compuestos orgánicos están formados por moléculas compuestas por átomos de carbono y oxígeno.

 

Alquenos

Familia de compuestos que contienen un doble enlace entre carbonos, el resto son enlaces simples a otros carbonos e hidrógenos. El eteno, propeno y buteno son ejemplos de alquenos. En forma general, los alquenos se representan como:

Cabe señalar que en la formula general, los carbonos con doble enlace pueden estar unidos a un grupo R y a un, o también a dos grupos R o incluso a dos hidrogenos; en este último caso se tratará de la molécula del eteno, un gas que se utiliza para hacer madurar frutos, como anestésicos y también como precursor del polietileno.

Alquinos

Son moléculas que contienen triple enlace de carbonos el resto de los enlaces son simples ya sea entre carbonos o de estos con hidrógenos. Su representación general es:

Aldehídos

En el extremo de la molécula contiene un carbonilo unido a un hidrogeno. El grupo

carbonilo es un carbón unido a oxigeno mediante un doble enlace (C=O).

Cetonas

También poseen un grupo carbonilo pero éste se encuentra en su interior de la cadena de modo que está directamente unido a dos átomos de carbono a diferencia de los aldehídos en las cetonas el carbono carboxílico no cuenta con uniones a átomos de hidrogeno.

Alcoholes

Se caracterizan por tener un grupo OH hidroxilo unido mediante un enlace simple a un carbono. Se representan en forma general como R-OH.

Seguramente es familiar la palabra alcohol, ya que uno de ellos, el etanol, es el famoso alcohol de farmacia y también el que contienen las bebidas alcohólicas y algunos otros alimentos y medicamentos.

El alcohol que poseen las bebidas alcohólicas es el etanol.
El alcohol que poseen las bebidas alcohólicas es el etanol.

Éteres

Molécula que contiene oxígeno en su estructura, unido mediante enlace simple a dos carbonos de modo que forma parte de una cadena carbonatada. Dicho de otra forma, el oxígeno se encuentra en medio interrumpiendo la cadena de carbonos. Su fórmula general es R-O-R.

Ácidos carboxílicos

Estas moléculas también contienen un grupo carbonilo en el extremo de la molécula que está unido a un grupo hidroxilo. A la combinación entre el grupo carbonilo y el hidroxilo se le conoce como grupo carboxilo y es propio de eta familia de compuestos.