Calor y temperatura

Cuando calentamos algún objeto sabemos que su temperatura aumenta, no obstante, es usual que confundamos los términos temperatura y calor en la vida cotidiana, y aunque éstos tienen relación entre sí, sus significados son muy diferentes.

Calor Temperatura
¿Qué es? Es la energía total del movimiento molecular en un cuerpo. Es la medida de la energía del movimiento molecular en un cuerpo.
Comportamiento La energía se intercambia entre un sistema y sus alrededores debido a la diferencia de temperatura. La temperatura aumenta conforme aumenta el movimiento o los choques entre las moléculas.
Dependencia Depende de la velocidad, cantidad y tamaño de las partículas. No depende de la velocidad, cantidad y tamaño de las partículas.
Unidades
  • Calorías (cal)
  • Joule (J)
  • Ergio (erg)
  • Grado Celsius (°C)
  • Grado Fahrenheit (°F)
  • Kelvin (K)
Instrumentos de medición Calorímetro

Termómetro

Ejemplos
  • Al servir té caliente, el agua transmite su calor a la taza.
  • Al sujetar un trozo de chocolate en la palma de la mano, éste empieza a derretirse por la transferencia de calor corporal al chocolate.
  • La temperatura para que el agua hierva es de 100 °C.
  • La temperatura corporal promedio es de 36,5 °C.
    La temperatura del ambiente está entre los 20 a 25 °C.

 

Reflexión y refracción

Las ondas suelen cambiar su comportamiento cuando se encuentran con un obstáculo en su recorrido. La superficie que separa los dos medios es la interfaz, y justo allí las ondas pueden pasar de un medio a otro si cambian la dirección de su movimiento o si bordean el obstáculo, lo logran gracias a fenómenos como la reflexión, refracción y difracción.

Reflexión Refracción
¿Qué es? Cambio de dirección del movimiento de una onda. Cambio de dirección del movimiento de una onda.
¿Cuando ocurre? Cuando la onda choca con un obstáculo. Cuando la onda pasa de un material a otro.
Elementos:

1. Ondas incidentes

Es el frente de ondas que inciden sobre el obstáculo. Es el frente de ondas que se propagan en el primer medio.
Elementos:

2. Ángulo de incidencia (i)

Es el ángulo que forma el rayo incidente con dirección determinada por la normal del obstáculo. Es el ángulo que forma el rayo incidente con la normal a la interfaz entre los medios materiales.
Elementos:

3. Ondas resultantes

Llamada onda reflejada, es el frente de ondas que se aleja del obstáculo. Llamada onda refractada, es el frente de ondas que se propagan en el segundo medio.
Elementos:

4. Ángulos resultantes

Llamado ángulo de reflexión (r), es el ángulo que forma el rayo reflejado con la dirección determinada por la normal del obstáculo. Llamado ángulo de refracción (r), es el ángulo que forma el rayo refractado con la normal de la interfaz.
Representación
Ejemplo

El reflejo de un paisaje sobre el agua se debe al rebote de la luz sobre la superficie que no puede atravesar.

Al introducir un lápiz dentro de un vaso pareciera que éste se quebrara, sucede porque la luz se desvía al cambiar de medio.

 

Conceptos de la dinámica del punto material: energía

La energía se define como la capacidad para realizar trabajo. La gasolina, por ejemplo, puede quemarse en un motor para realizar el trabajo de impulsar un pistón: la gasolina almacena energía química. En el lenguaje corriente se habla de energía eólica, nuclear, geotérmica, mareomotriz, etc., y aunque atendiendo a su origen estas distinciones son adecuadas, desde un punto de vista estrictamente físico esas energías no siempre constituyen formas particulares. Así, la energía eólica es energía cinética y la energía mareomotriz es energía potencial.

Tipos de energía mecánica

En mecánica, sólo existen dos formas de energía: la cinética y la potencial. La primera es una energía actual asociada con el movimiento, y la segunda es una energía en potencia asociada con la posición o con la forma. Un cuerpo en movimiento posee una energía cinética que depende de su masa y su velocidad. Si, por ejemplo, usamos un martillo para clavar un clavo, lo que hacemos es comunicar una energía cinética al martillo, con lo cual, cuando éste golpea el clavo, puede realizar el trabajo de hundirlo en la madera. Ese trabajo es igual al producto de la fuerza que opone la madera a ser penetrada por el hundimiento del clavo que se ha logrado.

Cuando definimos la energía como capacidad para realizar trabajo, usamos el término trabajo en sentido físico: si hubiéramos fallado y en lugar de golpear la cabeza del clavo golpeábamos la madera (o, peor aún, nos hubiésemos golpeado un dedo), no habríamos realizado ningún trabajo útil para nosotros, pero la energía cinética del martillo hubiera sido la misma.

La energía potencial es la que adquiere un cuerpo cuando lo llevamos a una determinada posición en contra de una fuerza. Normalmente, cuando se habla de energía potencial esa fuerza es la atracción gravitatoria. Para elevar un cuerpo tenemos que realizar un trabajo; ese trabajo se almacena en el cuerpo en forma de energía potencial. Si después de elevarlo lo dejamos caer, el cuerpo adquirirá energía cinética y llegará al suelo con capacidad para realizar un trabajo.

Existen otras fuerzas que permiten almacenar energía potencial; así, si estiramos un muelle realizamos un trabajo contra la fuerza que opone el muelle a dejarse estirar: “cargamos” el muelle de energía elástica, que es una forma de energía potencial. Pero cuando hablamos de energía potencial nos referiremos a la que tiene un cuerpo por hallarse a cierta altura sobre el suelo.

De acuerdo con la definición, la energía tiene las mismas dimensiones que el trabajo y se medirá en las mismas unidades que éste.

Energía cinética

Para deducir la expresión de la energía cinética, suponemos que a un cuerpo de masa m que está en reposo le aplicamos una fuerza F hasta que adquiera una velocidad v: la energía cinética del cuerpo será el trabajo realizado por la fuerza F.

Se tratará de un movimiento rectilíneo uniformemente acelerado, por lo tanto:

Podemos expresar e en función de v y de a:

Si en la ecuación del trabajo sustituimos e por esta expresión:

y como por la ecuación fundamental de la dinámica es F = m·a, tendremos que:

Podemos llegar a esta misma expresión planteando el problema al revés, esto es, suponiendo que tenemos un cuerpo de masa m que se está moviendo a una velocidad v y tiene una energía cinética E c, igualamos E c al trabajo que tiene que hacer una fuerza F para frenar al cuerpo hasta que se pare. En este caso el movimiento es uniformemente retardado:

A partir de estas dos igualdades podemos expresar e en función de v y de a:

Si en la ecuación del trabajo sustituimos e por esta expresión:

y, por ser F = m·a, será:

Energía potencial

La energía potencial es el trabajo realizado por una fuerza mediante la cual elevamos un cuerpo de masa m desde el suelo a una altura h mediante una fuerza F.

Elevamos el cuerpo con movimiento uniforme, por lo que ejercemos una fuerza de la misma intensidad al peso del cuerpo:

F = m·g

El trabajo realizado será:

Ep = W = F·h = m·g·h

Supongamos que tenemos un cuerpo de masa m situado a una altura del suelo h y lo soltamos: el cuerpo caerá bajo la acción de su peso y, evaluando el trabajo de la fuerza peso hasta el momento en que el cuerpo llega al suelo, hallamos la misma expresión, E p = W = m·g·h.

Hemos hablado del “suelo” pero sin especificar si se trataba del suelo de la habitación o de otro nivel: es indiferente, la expresión hallada es en cualquier caso válida. Para elevar un cuerpo desde el suelo hasta una altura h podemos elevarlo primero hasta una altura h 1 y después desde ahí a una altura h 2, siendo h 1 + h 2h. La energía potencial que adquiere el cuerpo es la misma que si lo elevamos directamente desde el suelo hasta la altura h, ya que:

Ep = m·g·h = m·g·(h1 + h2) = m·g·h1 + m·g·h2

Ejemplo

Cuando se mueve un cuerpo paralelamente al suelo no se realiza trabajo contra la fuerza gravitatoria ya que, como dijimos, el trabajo es nulo si la fuerza es normal al desplazamiento. Por esta razón, la energía potencial que adquiere un cuerpo cuando lo elevamos a una altura h no depende de la trayectoria que sigamos, ya que es posible considerar ésta dividida en la suma de un número muy grande de elementos muy pequeños tangentes a la misma y cada uno de estos elementos se puede descomponer en la suma de un elemento vertical y uno horizontal, siendo nulo el trabajo en los desplazamientos horizontales.

Conservación de la energía mecánica

Este principio constituye una aplicación restringida a la energía mecánica del primer principio de la termodinámica. Entendiendo por energía mecánica de un punto material la suma de sus energías cinética y potencial, este principio dice que la energía mecánica de un punto material sobre el que la única fuerza que actúa es la atracción gravitatoria permanece constante:

Ec + Ep = cte.

El principio puede tomarse como demostrado por la experiencia, aunque es fácil ver que es matemáticamente cierto.

En el estudio de la cinemática llegamos a la expresión:

Para la velocidad con que llega al suelo un cuerpo que cae desde una altura h, podemos llegar a esta fórmula a partir del principio de la conservación de la energía.

En efecto, igualando la energía potencial que el cuerpo ha perdido al caer con la energía cinética que ha ganado:

de donde, al simplificar y despejar:

Si sobre el punto material actúa una fuerza que hace variar la energía mecánica del móvil al realizar un trabajo W, será:

W = (Ec + Ep) = Ec + Ep

Esta expresión, muy útil en la resolución de problemas, nos dice que el trabajo realizado por un punto material (o por un sistema de puntos materiales), o bien el trabajo realizado sobre el punto material, se traduce en una variación de su energía cinética y/o su energía potencial.

Ejemplo:

Un automóvil viaja a 30 km/h subiendo por una pendiente recta de 30°. El conductor acelera y en 5 segundos dobla su velocidad. Calcular el trabajo realizado si la masa total del vehículo es de 900 kg.

Solución:

Aplicaremos la fórmula:

W = Ec + Ep

La variación de E c habrá sido:

Sustituyendo valores, con la velocidad expresada en m/s, será:

Para calcular la altura h que ha subido el coche en 5 s, calcularemos primero el espacio que ha recorrido. El movimiento del coche es uniformemente acelerado, por tanto:

siendo, a·t = v – v0.

Sustituyendo valores en esas fórmulas, tendremos:

Por trigonometría, la altura será:

h = e·sen 30

Sustituyendo valores:

h = 254,16·0,5 = 127,08 m

El incremento de E p será:

Ep = m.g. h

Ep = 900.9,8.127,08 = 1120845,6J

Por tanto, el trabajo realizado en esos 5 s por el motor del automóvil será la suma de los incrementos de la energía cinética y de la energía potencial del vehículo (más la energía disipada en forma de calor a causa de los rozamientos, que aquí no se tiene en cuenta):

W = 93750 + 1120845,6 = 1214595,6 julios

Noria

Este antiguo ingenio debe su nombre a los árabes, quienes la inventaron, y significa rueda hidráulica. La noria es una máquina que cuenta con dos grandes ruedas giratorias, una horizontal movida por una palanca que es tirada habitualmente por una caballería, y otra vertical, cuyos engranajes se unen a los de la primera para así ser puesta en movimiento y para posibilitar que los arcaduces destinados a recoger agua cumplan esta función.

Conceptos fundamentales de cinemática: aceleración 

Cuando un automóvil aumenta su velocidad decimos que está acelerando, y si ese aumento de velocidad se produce en un espacio de tiempo muy corto decimos que el automóvil ha acelerado muy deprisa. La aceleración es, pues, una variación de la velocidad por unidad de tiempo.

Puede ser positiva o negativa, produciendo un aumento o una disminución de la velocidad. En el caso de un movimiento curvilíneo, la aceleración produce una variación del módulo y de la dirección del vector velocidad. Podemos definir de forma rigurosa la aceleración diciendo que es la velocidad de la velocidad. Es decir, que la aceleración representa para el vector velocidad lo mismo que la velocidad para el vector de posición.

Partiendo de esta idea, definiremos la aceleración media de un móvil entre dos puntos de su trayectoria P0 y P (o, lo que es lo mismo, entre dos instantes t0 y t) de forma análoga a como definimos la velocidad media, es decir, como:

Ejemplo

A partir de esta definición de aceleración media, podemos definir la aceleración instantánea mediante un paso al límite similar al que aplicamos para definir la velocidad instantánea. Si el punto P está próximo al punto P 0, podemos escribir:

Cuando ∆t→0 tiende a cero, atiende hacia un vector aplicado en el punto P0. Ese vector es la aceleración instantánea en P0.

Hodógrafa

Cuando un móvil M recorre una determinada trayectoria, en cada punto de ésta tendremos un vector velocidad, que, por ejemplo, en el punto P0 será v(t0).

Ejemplo

Tomamos un punto O  y colocamos en él los vectores velocidad correspondientes a todos los puntos de la trayectoria de M. Los extremos de esos vectores dibujan una curva que es la hodógrafa del movimiento.

Ejemplo

La hodógrafa sería la trayectoria de un móvil M  cuyo vector de posición fuese v(t). El vector velocidad del móvil M  en el punto P  de la hodógrafa coincide con el vector aceleración en el punto P correspondiente de la trayectoria del móvil M, lo que justifica pensar la aceleración como la velocidad de la velocidad.

Polo de la hodógrafa

Punto fijo O’ en el que se sitúan vectores equipolentes a los vectores velocidad del movimiento de un punto material para dibujar la curva hodógrafa.

Dimensiones y unidades de la aceleración

La aceleración es una velocidad dividida por un tiempo, por lo que, como [v] = [L]·[T]-1, las dimensiones de la aceleración serán las de una longitud dividida por un tiempo al cuadrado[a] = [L]·[T]-2. En el Sistema Internacional y en el técnico se expresa en m/s2, mientras que en el sistema CGS se mide en cm/s2.

Conceptos fundamentales de cinemática: componentes de la aceleración 

En un movimiento curvilíneo, el vector velocidad está situado sobre la recta tangente a la trayectoria en el punto considerado. En general, es imposible hacer una afirmación de la misma sencillez sobre la dirección del vector aceleración, pero si éste se descompone según dos ejes, uno tangente a la trayectoria y otro normal a éste (componentes intrínsecas de la aceleración) es fácil comprender la variación que la aceleración impone a la velocidad.

Ejemplo

La utilidad de esta descomposición estriba en que, en el caso general, en un movimiento curvilíneo, la aceleración tiene dos efectos:

  1. Cambia el módulo del vector velocidad
  2. Curva la trayectoria o, lo que es lo mismo, cambia la dirección del vector velocidad.

La primera de estas dos acciones se debe a la aceleración tangencial at, que es la componente de la aceleración sobre la recta tangente a la trayectoria en el punto considerado. Esta aceleración, por tener la misma línea de acción que la velocidad, no afecta a la dirección de ésta, sino sólo a su módulo. La segunda acción de la aceleración se debe a la aceleración normal a, que, por ser perpendicular a la dirección del vector velocidad, no afecta a su módulo, pero sí a su dirección.

Mediante métodos propios de la geometría diferencial es posible hallar fórmulas que dan los módulos de at, y apara un movimiento según una trayectoria cualquiera. Dichas fórmulas son:

Cuando 

Donde ρ es el radio de curvatura de la trayectoria en el punto considerado.

Caída libre

La caída libre es un tipo de movimiento rectilíneo uniformemente acelerado porque su desplazamiento se realiza en línea recta con una aceleración constante igual a la gravedad, lo que hace que la velocidad de los cuerpos que describen este movimientos aumente en el transcurso de su trayectoria.

La caída libre

En este movimiento, el móvil cae de forma vertical desde cierta altura sin ningún obstáculo. Es un tipo de movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) porque su aceleración es constante y coincide con el valor de la gravedad.

La gravedad

Al encontrarse cerca de la superficie terrestre, los cuerpos experimentan una fuerza de atracción que les confiere una aceleración. Cuando una manzana cae de un árbol lo hace por acción de dicha fuerza. En el caso de la Tierra, la gravedad puede considerarse constante y su dirección es hacia abajo. Generalmente se designa con la letra g y sus valores aproximados para algunos sistemas de medición son:

Sistema M.K.S → g = 9,8 m/s²

Sistema c.g.s → g = 980 cm/s²

Sistema inglés → g = 32 ft/s² (pies por segundo)

En algunas ocasiones la gravedad de la Tierra suele aproximarse a 10 m/s², pero el valor más usado en la resolución de problemas es el de 9,8 m/s².
En algunas ocasiones la gravedad de la Tierra suele aproximarse a 10 m/s², pero el valor más usado en la resolución de problemas es el de 9,8 m/s².
 En el movimiento de caída libre se considera que el rozamiento con el aire es despreciable.
En el movimiento de caída libre se considera que el rozamiento con el aire es despreciable.

Características del movimiento de caída libre

  • Es un tipo de movimiento uniformemente acelerado o variado.
  • Su trayectoria es vertical.
  • La altura inicial es mayor que la final.
  • La velocidad inicial es igual cero, es decir, el cuerpo se deja caer.

Ecuaciones de caída libre

Dónde:

Vo = velocidad inicial

Vf = velocidad final

h = altura

g = gravedad

t = tiempo

La velocidad inicial en este tipo de movimiento es igual a 0 m/s si el objeto se deja caer, por el contrario, si el objeto no se deja caer sino que se lanza, se le confiere una velocidad inicial diferente a 0 m/s.

Los paracaidistas describen un movimiento de caída libre hasta el momento en el que abren su paracaídas.
Los paracaidistas describen un movimiento de caída libre hasta el momento en el que abren su paracaídas.

Ejercicios

1.- Se deja caer desde la parte alta de un edificio una roca, la cual tarda 4 segundos en llegar al suelo. Determinar:

a) La altura del edificio.
b) La velocidad con la que impacta la roca al suelo.

Datos:

V0 = 0 m/s à la velocidad inicial es cero porque la roca se dejó caer.
t = 4 s

a) Para calcular la altura del edificio se debe emplear la ecuación número 4 mostrada anteriormente, ya que es la que involucra el término de altura.

El único dato no proporcionado es el valor de la gravedad, pero como se explicó anteriormente, la gravedad de la Tierra se aproxima a 9,8 m/s². Al sustituir los datos en la ecuación quedaría:

Recuerda simplificar las unidades iguales.

El edificio tiene una altura de 78,4 metros.

b) Para determinar la velocidad con la que impactó la roca al suelo se aplica la ecuación 1 de las fórmulas mostradas anteriormente.

Al sustituir los datos en la ecuación se tiene:

La roca golpeó el suelo con una velocidad de 39,2 m/s.

Otra forma de calcular la velocidad de impacto con el suelo es aplicar la fórmula 3, la cual involucra la altura, pero como se calculó ese valor en la primera parte (78,4 m) se puede aplicar. En caso de no conocer el valor de la altura, se debería aplicar la ecuación 1.

Como podrás observar, se obtuvo el mismo resultado que el obtenido con la ecuación 1.

2.- Desde lo alto de un balcón de 6 m se lanza hacia abajo una pelota con una velocidad inicial de 4 m/s. Determinar:

a) La velocidad final de la pelota.
b) El tiempo que tarda en llegar al suelo.

Datos:

h = 6 m
V0 = 4 m/s → La velocidad no es de 0 m/s porque la pelota no se dejó caer desde el reposo.

a) Para calcular la velocidad de la pelota se emplea la ecuación 3 porque no se ha calculado el tiempo aún.

La velocidad final de la pelota es aproximadamente igual a 11,56 m/s.

En el movimiento de caída libre, la velocidad aumenta de forma constante hasta que el cuerpo llega al suelo.
En el movimiento de caída libre, la velocidad aumenta de forma constante hasta que el cuerpo llega al suelo.

b) Para determinar el tiempo que la pelota emplea en llegar al suelo, se utiliza la ecuación 2.

El tiempo que tarda la pelota en llegar al suelo es aproximadamente igual a 0,77 segundos.

Otra forma de calcular el tiempo

Para los casos en los que se conoce la altura y la velocidad inicial se puede calcular el tiempo por medio de la ecuación 4, en este caso, se formaría una ecuación de segundo grado al sustituir los datos y de la cual se tomaría la raíz positiva.

En el problema anterior, al sustituir los valores en la ecuación 4 quedarían de la siguiente forma:

(Para efectos ilustrativos no se colocaron las unidades)

Organizando los términos en la ecuación quedaría de la siguiente forma:

4,9t2+4t6=0

Al calcular las raíces de la ecuación anterior se tienen:

t1 = 0,77 s (Es el valor verdadero y coincide con el que se calculó anteriormente)

t2 = -1,58 s (No se considera este valor ya que no hay tiempos negativos)

No todos los ejercicios siguen una misma metodología por ello debes reconocer muy bien los datos con los que cuentas y las ecuaciones que debes usar.