CAPÍTULO 6 / TEMA 4

NUTRICIÓN Y RESPIRACIÓN CELULAR

Las células necesitan energía para poder realizar todas sus funciones vitales. La mejor manera de obtenerla es mediante la respiración celular llevada a cabo en las mitocondrias, que tiene como resultado la producción de adenosín trifosfato o ATP. Se conoce como respiración al conjunto de reacciones bioquímicas mediante las cuales la energía es liberada a partir de sustancias alimenticias, como por ejemplo la glucosa obtenida principalmente de los nutrientes.

¿CÓMO OBTIENE ENERGÍA LA CÉLULA?

Se necesita energía para realizar trabajos pesados y ejercicios, pero los humanos también utilizamos energía mientras pensamos e incluso mientras dormimos. De hecho, las células vivas de cada organismo utilizan constantemente energía. Los nutrientes y otras moléculas se importan a la célula, se metabolizan (se descomponen) y, posiblemente, se sintetizan en nuevas moléculas, se modifican si es necesario, se transportan alrededor de la célula y posiblemente se distribuyen a todo el organismo.

La mayor parte de las estructuras que componen a los seres vivos pertenecen a tres tipos de moléculas básicas: aminoácidos, azúcares y grasas. Estas moléculas son vitales y el metabolismo se centra en sintetizarlas para la construcción o reparación de células y tejidos, o en degradarlas y utilizarlas como recurso energético.

De los carbohidratos se obtiene la mayor cantidad de energía a través del metabolismo de la glucosa o glucólisis y la respiración celular.

¿Qué es el metabolismo?

Es la circulación continua de materia y energía a través del cuerpo. El metabolismo es una red de procesos que generan energía y le permiten a los seres vivos perpetuarse y autorrepararse.

¿QUÉ ES LA RESPIRACIÓN CELULAR?

Es el el proceso mediante el cual los organismos combinan el oxígeno con las moléculas de los productos alimenticios y desvían la energía química de estas sustancias a actividades que sustentan la vida y los descartan, como productos de desecho, dióxido de carbono y agua.

¿Sabías qué?
Los organismos que no dependen del oxígeno degradan los alimentos en un proceso llamado fermentación.

Glucólisis

Es el conjunto de reacciones químicas en las que la energía es extraída de la glucosa mediante su ruptura en dos moléculas llamadas piruvato. Este mecanismo es parte de la respiración celular y es la primera etapa del metabolismo de los carbohidratos, específicamente del catabolismo, donde las moléculas grandes se transforman en otras más pequeñas. Al romperse la glucosa, se libera energía en forma de dos moléculas de ATP. Finalmente, el producto resultante del piruvato puede ser utilizado en la respiración celular para almacenar aún más energía.

La glucólisis consta de 2 etapas: la fase de requerimiento energético, donde se gastan dos moléculas de ATP, y la fase de liberación de energía, donde se genera piruvato.

Ciclo de Krebs

Es la segunda etapa del proceso de respiración celular, mecanismo mediante el cual las células vivas descomponen moléculas de combustible orgánico en presencia de oxígeno para recoger la energía que necesitan para crecer y dividirse.

El combustible orgánico, ahora piruvato, es degradado a acetil coenzima A o acetil coA para poder entrar al ciclo de Krebs, el cual consta de 8 reacciones: citrato sintasa, acontinasa, isocitrato deshidrogenasa, alfa-cetoglutarato deshidrogenasa, succinil CoA sintetasa, succinato deshidrogenasa, fumarasa y malato deshidrogenasa. De todas estas reacciones se producen 2 moléculas de ATP, 6 de NADH y 2 de FADH2, de estas dos últimas se generarán 18 ATP y 4 ATP respectivamente.

Cadena transportadora de electrones

Es la ruta final de la respiración aerobia y, además, es la única parte del metabolismo de la glucosa donde se utiliza el oxígeno atmosférico. Se lleva a cabo en la membrana interna de la mitocondria y tiene como finalidad crear un gradiente de protones (hidrogeniones H+) que luego puede ser utilizado en la fosforilación oxidativa para producir energía en forma de ATP.

El transporte de electrones es un conjunto de reacciones de óxido-reducción (reacciones de transferencia de electrones) que se asemejan a una especie de carrera de relevos. Allí los electrones son pasados rápidamente de un componente a otro hasta llegar al final de la cadena, donde los electrones reducen el oxígeno molecular y producen agua.

Los electrones transferidos en esta etapa pertenecen a las coenzimas NADH+H y FADH, provenientes de la glucólisis y el ciclo de Krebs, en total son 10 NADH+H y 2 FADH.

La cadena transportadora está formada por 4 complejos transportadores: complejo I o NADH deshidrogenasa, complejo II o succinato deshidrogenasa, complejo III o citocromo bc1 y complejo IV o citocromo oxidasa.

LA FABRICA DE ENERGÍA CELULAR: LA MITOCONDRIA

Las mitocondrias actúan como las centrales eléctricas de la célula. Contienen dos membranas principales. La membrana mitocondrial externa rodea completamente la membrana interna, con un pequeño espacio intermembrana en medio. La membrana externa tiene poros basados ​​en proteínas y suficientemente grandes para permitir el paso de algunos iones y moléculas.

Tanto el ciclo de Krebs como la cadena transportadora de electrones se producen dentro de la mitocondria.

En contraste, la membrana interna tiene una permeabilidad mucho más restringida. Al igual que la membrana plasmática de una célula, también está cargada de proteínas involucradas en el transporte de electrones y la síntesis de ATP. Esta membrana rodea la matriz mitocondrial, donde el ciclo de Krebs produce los electrones que viajan de un complejo de proteínas a otro en la membrana interna. El aceptor final de electrones es el oxígeno, y esto en última instancia forma agua. Al mismo tiempo, la cadena de transporte de electrones produce ATP.

¿QUÉ ES EL ATP?

El adenosín trifosfato o ATP es una molécula transportadora de energía y se encuentra en las células de todos los seres vivos. El ATP captura la energía química obtenida de la descomposición de las moléculas de los alimentos y la libera para alimentar otros procesos celulares.

¿Cómo es la estructura del ATP?

El ATP es un nucleótido que consta de tres estructuras principales: la base nitrogenada, la adenina; el azúcar (ribosa) y una cadena de tres grupos fosfato unidos a la ribosa.

La cadena de fosfato del ATP es la fuente de energía real que la célula utiliza. La energía disponible está contenida en los enlaces de los fosfatos y se libera cuando se rompen, lo que ocurre mediante la adición de una molécula de agua (un proceso llamado hidrólisis). Por lo general, solo el fosfato externo se elimina del ATP para producir energía; cuando esto ocurre, el ATP se convierte en difosfato de adenosina (ADP), la forma del nucleótido que tiene solo dos fosfatos.

De ADP a ATP

La mayor parte del ATP en las células es producido por la enzima ATP sintasa, que convierte el ADP y el fosfato en ATP.

RECURSOS PARA DOCENTES

Artículo “Glucólisis: la energía del azúcar”

En este artículo encontrará información acerca de la glucólisis y sus etapas.

VER

Artículo “Respiración: cadena transportadora de electrones”

Este artículo contiene todos los pasos de la cadena transportadora de electrones, parte de la respiración celular.

VER

Artículo “Ciclo de Krebs: respiración celular”

Este artículo contiene toda la información necesaria acerca del ciclo de Krebs o ciclo del ácido cítrico.

VER

Ciclo de Krebs: respiración celular

Después de la glucólisis, sigue otro mecanismo de la respiración celular que consta de múltiples etapas: el ciclo de Krebs, también conocido como el ciclo del ácido cítrico o el ciclo de ácido tricarboxílico.

¿Qué es el ciclo de Krebs?

Ciclo de ácido tricarboxílico, también conocido como ciclo de Krebs o ciclo de ácido cítrico, es la segunda etapa del proceso de respiración celular, mecanismo mediante el cual las células vivas descomponen moléculas de combustible orgánico en presencia de oxígeno para recoger la energía que necesitan para crecer y dividirse.

 

Se lleva a cabo en las mitocondrias, específicamente en la matriz, a excepción de las bacterias.

El ciclo de Krebs desempeña un papel central en la descomposición o catabolismo de moléculas de combustible orgánico, es decir, la glucosa, los ácidos grasos y algunos aminoácidos. Antes de que estas moléculas puedan entrar en el ciclo, deben ser degradadas en un compuesto de dos carbonos llamado acetil coenzima A (acetil CoA).

El ciclo de Krebs se produce en la mayoría de los organismos, tanto animales como vegetales.

¿Qué es el acetil CoA?

Es una molécula sintetizada a partir del piruvato e imprescindible para la síntesis de sustancias como: ácidos grasos, colesterol acetilcolina. Está formado por un grupo acetil unido a la coenzima A, el cual finalmente es degradado en CO2 H2O a través del ciclo de Krebs, la síntesis de ácidos grados o la fosforilación oxidativa.

El acetil CoA, es una molécula sumamente energética.

Etapas del ciclo de Krebs

El ciclo de Krebs consiste en ocho etapas catalizadas por ocho enzimas diferentes. Se inicia cuando el acetil CoA reacciona con un compuesto denominado oxaloacetato para formar citrato y liberar coenzima A (CoA-SH).

¿Sabías qué...?
El ciclo de Krebs en total forma 1 molécula de GTP, NADH y FADH2, las cuales en su paso por la cadena transportadora de electrones, realizada en la mitocondria, serán transformadas por ATP sumamente energética. 

Luego, el citrato se reordena para formar isocitrato; el cual posteriormente pierde una molécula de dióxido de carbono y sufre oxidación para formar alfa-cetoglutarato; seguidamente éste pierde una molécula de dióxido de carbono y se oxida para formar succinil CoA; el succinil-CoA se convierte en succinato y se oxida a fumarato, el cual se hidrata para producir malato, finalmente el malato se oxida a oxaloacetato.

Reacciones del ciclo de Krebs.

Reacción 1: citrato sintasa

La primera reacción del ciclo de Krebs es catalizada por la enzima citrato sintasa, durante esta etapa, el oxaloacetato, un intermediario metabólico, se une con el acetil-CoA para formar ácido cítrico. Una vez unidas las dos moléculas, una de agua ataca al acetilo para provocar la liberación de la coenzima A.

Reacción 2: acontinasa

La siguiente reacción del ciclo del ácido cítrico es catalizada por la enzima acontinasa. En esta reacción, una molécula de agua se retira del ácido cítrico y se coloca en otra ubicación. El efecto de esta conversión es que el grupo -OH se mueve de la posición 3′ a la posición 4′ sobre la molécula, esto trae como consecuencia la transformación de citrato a isocitrato.

Reacción 3: Isocitrato deshidrogenasa

En esta etapa ocurren dos eventos dependientes de la enzima isocitrato deshidrogenasa, localizada en la mitocondria. En la primera fase dicha enzima cataliza la oxidación del isocitrato, el cual se transforma en oxalsuccinato (un intermediario), lo que libera una molécula de NADH formada a partir de NAD.

Seguidamente, se produce la descarboxilación (liberación del CO2) del oxalsuccinato, lo que conlleva a la formación de alfa-cetoglutarato, una molécula compuesta por dos grupos carboxilos en los extremos y una cetona en posición alfa a uno de los carboxilos.

Reacción 4: alfa-cetoglutarato deshidrogenasa

Durante esta reacción se produce otra descarboxilación, el alfa-cetoglutarato es quien pierde la molécula de dióxido de carbono y en su lugar se añade la coenzima A. Esta descarboxilación se produce con la ayuda de NAD, quien es transformado durante el proceso en NADH.

La enzima catalizadora de esta reacción es la alfa-cetoglutarato deshidrogenasa u oxoglutarato deshidrogenasa, como resultado de esta etapa se forma la molécula succinil CoA.

Reacción 5: succinil CoA sintetasa

La enzima succinil-CoA sintetasa es la protagonista de esta reacción y se encarga de catalizar la síntesis de trifosfato de guanosina o GTP. El GTP es una molécula muy similar en estructura y propiedades energéticas al ATP, por lo que puede ser utilizado por las células de la misma manera.

El GTP es formado por la adición de un grupo fosfato libre a una molécula de GDP. En esta reacción, el grupo fosfato libre ataca primero a la molécula de succinil-CoA lo que provoca la liberación de la coenzima A. Después de que el fosfato se une a la molécula, se transfiere al GDP para formar GTP, el producto final es una molécula denominada succinato.

Reacción 6: succinato deshidrogenasa

La enzima succinato deshidrogenasa cataliza la eliminación de dos hidrógenos del succinato en la sexta reacción del ciclo del ácido cítrico. En esta etapa, una molécula de FAD, se reduce a FADH2 debido a que recibe los hidrógenos provenientes del succinato, de esta reacción se genera el fumarato.

Reacción 7: fumarasa

Esta reacción se produce gracias a la catálisis de la enzima fumarasa, la cual genera la adición de una molécula de agua en forma de OH al fumarato para dar lugar a la molécula L-malato.

Reacción 8: malato deshidrogenasa

Es la reacción final del ciclo, en ella es regenerado el oxaloacetato mediante la oxidación del L-malato, se utiliza otra molécula de NAD como aceptor de hidrógeno y se forma un NADH.

Energía en los alimentos

La mayor parte de nuestra energía la obtenemos de nuestros alimentos, los cuales por varias reacciones metabólicas nos permiten obtener moléculas energéticas como el ATP, FADH2 y el NADH, por ejemplo, el ciclo de Krebs logra aprovechas el 62 % de la energía contenida en la glucosa.