CAPÍTULO 7 / REVISIÓN

DIVERSIDAD Y CLASIFICACIÓN DE LOS SERES VIVOS | ¿qué aprendimos?

Clasificación de los seres vivos

La clasificación de los seres vivos comenzó como un sistema jerárquico que dividió a todos los organismos conocidos en plantas y animales. Este modelo fue reemplazado en el siglo XVIII por Carlos Linneo, quien realizó una división en reinos y los estructuró en cinco niveles: clase, orden, género, especie y variedad. Luego se empleó el sistema de clasificación binomial para nombrar a los organismos, pero fue Robert H. Whittaker quien postuló una clasificación de cinco reinos llamados Monera, Protista, Fungi, Plantae y Animalia. El sistema de cinco reinos no está en uso en la actualidad, en cambio, lo que ahora se emplea es un sistema de seis reinos: Animalia, Plantae, Fungi, Protista, Monera y Archaea.

La complejidad de la estructura celular fue uno de los criterios que Whittaker tuvo en cuenta para la clasificación.

Procariotas: dominio Bacteria, reino Monera

Las bacterias son los organismos procarióticos más simples, y presentan características como: ausencia de membrana nuclear, cromosoma único y circular, carencia de organelos celulares y reproducción por formación de esporas o fisión binaria. Inicialmente, las bacterias fueron consideradas animales, plantas y hongos. Se clasifican de varias maneras, pero la más importante consta de dos grupos principales: Archaebacteria y Eubacteria. Las primeras son organismos que viven en condiciones extremas y carecen de pared celular; las segundas son las llamadas bacterias verdaderas. Su rasgo característico es la presencia de pared celular rígida.

La bacteria que naturalmente forma parte de la flora intestinal es muy importante para una digestión adecuada.

Procariotas: dominio Archaea, reino Archaebacteria

Las arqueobacterias surgieron cuando la Tierra se encontraba en sus primeros años de existencia y las condiciones reinantes eran extremas. Tienen una estructura más parecida a la de los eucariotas que a la de las bacterias. Tienen un solo cromosoma redondo, como las bacterias, pero su transcripción genética es similar a la que ocurre en los núcleos de las células eucariotas. Hay tres tipos principales: Crenarchaeota, que son organismos extremadamente tolerantes al calor y a ambientes muy ácidos; Euryarchaeota, que son organismos que pueden sobrevivir ambientes con 10 veces la concentración de sal del mar y que reducen el CO2; y Korarchaeota, que es el linaje más antiguo pero menos comprendido, y que presenta genes diferentes a los de los grupos anteriores.

Organismos como Methanobacterium ruminantium están presentes en el sistema digestivo de los animales rumiantes y ayudan a la digestión de la celulosa.

Eucariotas: dominio Eukarya, reino Protista o Protoctista

El término protista fue introducido por Ernst Haeckel. Este reino forma un vínculo entre otros reinos de plantas, animales y hongos. Son generalmente organismos eucariotas simples, unicelulares, aunque algunos son coloniales y otros multicelulares. Principalmente son de naturaleza acuática y realizan el movimiento mediante flagelos o cilios. Algunos protistas son semejantes a los animales y se conocen como protozoos; otros, son similares a plantas, y tienen clorofila. Entre estos últimos se encuentran las algas verdes, rojas, pardas, doradas y fuego. Por último, los protistas con aspecto de hongos son unicelulares, saprófitos y viven en suelo húmedo, plantas y árboles en descomposición.

Por su condición de parásitos, algunos protistas pueden causar muchas enfermedades en plantas, en animales e incluso en el hombre.

Eucariotas: dominio Eukarya, reino Fungi

El Reino Fungi incluye un grupo diverso de seres que no pueden ser catalogados como animales ni como plantas. Se caracterizan por ser heterótrofos y descomponer la materia orgánica. Poseen una pared celular rígida y pueden ser unicelulares o pluricelulares. Los hongos pluricelulares presentan estructuras filamentosas llamadas hifas y viven en lugares húmedos y sombríos. Este reino contiene cinco filos principales: Chytridiomycota, Zygomycota, Ascomycota, Basidiomycota y Glomeromycota.

Los hongos producen naturalmente antibióticos que permiten inhibir el crecimiento de bacterias.

Eucariotas: dominio Eukarya, reino Animalia

El Reino Animalia está compuesto por todos los animales, vivos o extintos, del planeta. Son eucariotas, ya que el ADN se encuentra dentro del núcleo celular. No tienen paredes celulares. Son multicelulares, heterótrofos y tienen la capacidad de moverse y responder a su entorno. Todos los animales se pueden dividir en los grupos vertebrados e invertebrados. Además, cada reino se divide en categorías más pequeñas llamadas phylum (filo): Porifera, Coelenterata, Plathelminthes, Nematoda, Annelida, Arthropoda, Mollusca, Echinodermata, Protochordata y Vertebrata.

Los animales extintos también forman parte del reino Animalia.

Eucariotas: dominio Eukarya, reino Plantae

Este reino incluye a los diferentes tipos de plantas que se encuentran en el planeta. Cada grupo tiene características especiales y únicas, como la presencia de pared celular, nutrición autótrofa, clorofila, ausencia de sistema locomotor y reproducción sexual o asexual. Se clasifican en Briophyta, las cuales carecen de un sistema vascular y se desarrollan en dos fases, gametofito y esporofito; y Cormophyta, que es un grupo de plantas vasculares que tienen raíz, tallo y hojas. Éstas, a su vez se dividen en Pteridophyta y Spermatophyta. Además, éstas últimas se clasifican en gimnospermas y angiospermas.

La fotosíntesis de las plantas proporciona oxígeno a la atmósfera de nuestro planeta.

 

La era del guano

A mediados del siglo XIX, Perú tuvo uno de los mayores avances en el sector económico gracias a la exportación del guano. El auge de este sustrato, usado principalmente como abono y fertilizante, llevó al país a una estabilidad financiera y política jamás vista hasta entonces.

¿Qué es el guano?

El guano no es más que la masiva acumulación de los excrementos de aves marinas, focas o murciélagos. Se caracteriza por tener un color amarillento, sin embargo, las formaciones que provienen de épocas geológicas más antiguas, como el Plioceno, tienen un color rojizo.

Sulas en el guano de una isla peruana.

El guano está compuesto de amoniaco, ácido úrico, fosfórico, oxálico y ácidos carbónicos, además de sales. Su rico contenido de nitrógeno y fósforo lo convierte en un valioso fertilizante.

Amoniaco.
Ácido úrico.
Ácido fosfórico.
Ácido carbónico.

¿Sabías qué...?
El guano de murciélagos es uno de los fertilizantes naturales más famoso en la actualidad. Esto es porque contiene todas sustancias necesarias para que las plantas se desarrollen saludablemente.

Nitrógeno como fertilizante

Un fertilizante es una mezcla química que puede ser natural o sintética. Se utiliza para enriquecer el suelo y de este modo ayudar al crecimiento vegetal. Uno de los elementos químicos más importantes para las plantas es el nitrógeno (N), un macronutriente que sirve para la formación de proteínas, ácidos nucleicos y clorofila.

Hechos previos

Las islas del litoral peruano contaban con grandes depósitos de guano, y para aprovechar este recurso, el Estado se asoció con la empresa privada y extranjera. Francisco Quirós, comerciante peruano, fue el primero en asociarse y firmó un contrato en 1841 en el que obtenía los derechos de explotación del guano por 6 años a muy bajo costo.

La explotación del guano inició en 1841 en las islas de Chincha, las de Lobos de Afuera y Lobos de Adentro y las islas del sur hasta Tarapacá.

No pasó mucho tiempo para que el Estado comprendiera que no le había dado el valor suficiente a este recurso natural, pues los agricultores ingleses estaban dispuestos a pagar mucho más dinero. Esto despertó no sólo el interés de esta lucrativa actividad, sino que también provocó una inestabilidad durante 1841 y 1842, años en los que el Estado empezó a buscar mayores beneficios.

De este modo, lo que comenzó como un sistema de contrato de alquiler a Francisco Quirós, terminó en un convenio que otorgaba al Estado el 75 % del ingreso líquido.

Francisco Quirós y Ampudia, primer capitalista peruano que negoció con el Estado el alquiler de la explotación del guano.

Inicia Ramón Castilla, inicia la era del guano

Ramón Castilla llegó a la presidencia de Perú en 1845. Era un militar mestizo, con habilidad en política y una clara visión de las necesidades del país. Aunque su gobierno fue represivo y autoritario, permitió elecciones, la fiscalización del Congreso, invirtió en educación y creó el primer programa de obras públicas en el Perú. Todo ello gracias al inicio del auge del guano.

Luego de conocerse las virtudes del guano como fertilizante de tierra, éste se convirtió en la base de la economía peruana hasta 1879.

Ramón Castilla gobernó por dos períodos, de 1845 a 1851 y de 1855 a 1862. De 1851 a 1854 gobernó el general José Rufino Echenique, impuesto por Castilla.

¿Cómo se formó el guano?

El clima templado, así como la falta de lluvias en el litoral peruano hicieron posible que el excremento de aves marinas se acumulara durante siglos en los islotes de la costa, principalmente en las islas de Chincha.

El guano: principal ingreso fiscal

Con Ramón Castilla al mando, Perú se convirtió en el primer exportador mundial de guano y los ingresos generados por su venta fueron la principal fuente de ingreso fiscal, la cual aumentaba cada año de manera considerable.

Durante los dos períodos de gobierno de Castilla, el país contó con la mayor prosperidad y estabilidad política que se había vivido. Este presidente impuso un sistema de consignaciones en el que el Estado peruano autorizaba la explotación del guano en lugares específicos y por un tiempo determinado a empresarios o inversionistas. Éstos, también llamados consignatarios, tenían que asumir los gastos desde la extracción hasta la venta. Por consiguiente, al ingreso bruto se le debían restar los gastos y el producto neto se fraccionaba entre los consignatarios y el fisco.

El Contrato Dreyfus

El sistema de consignaciones se acabó durante el gobierno del presidente José Balta, quien le encomendó al ministro de Hacienda Nicolás de Piérola que convocara una licitación en París en la que vendería dos millones de toneladas de guano. Todo ello sin notificar a los consignatarios.

Portada del Contrato Dreyfus.

Este convenio comercial se llevó a cabo en 5 de julio de 1869 entre el Estado peruano y la firma Dreyfus y hermanos. Las condiciones que ofrecía el acuerdo eran excelentes, pues permitía, entre otras cosas, cubrir la deuda externa.

Los consignatarios hicieron reiteradas denuncias ante el Poder Judicial, las cuales no fueron escuchadas ya que el acuerdo con Dreyfus siguió adelante, aunque no por mucho tiempo. El dinero no fue invertido de manera correcta y en 1875 el contrato fue cancelado.

Fin de una era

La sobreexplotación del guano llevó a su parcial desaparición en las islas. La extracción del sustrato se redujo al mínimo tras el descubrimiento del alemán Fritz Haber, quien sintetizó sustancias con alto contenido de nitrógeno, lo que conllevó, finalmente, a la producción de abonos más económicos.

Para finales del siglo XX, Perú quedó inmerso en una crisis económica y social producto del despilfarro del dinero del guano y de la derrota en la Guerra del Pacífico ante Chile en 1879.

El químico alemán Fritz Haber ganó el Premio Nobel de Química en 1918 por realizar la síntesis del amoniaco.
El amoniaco es un compuesto químico de nitrógeno muy usado en la agricultura por sus beneficios en la nutrición de organismos terrestres.

Los ciclos de la naturaleza

Los ciclos en los ecosistemas son de vital importancia para su funcionamiento, y es que cada ser vivo depende de los nutrientes que éstos le aportan para realizar sus funciones vitales; por lo que una variación en ellos generaría cambios drásticos a corto y largo plazo.

Un ciclo es definido por la Real Academia Española como una “serie de fases por las que pasa un fenómeno periódico”; por lo que al aplicarlo a los ciclos de la naturaleza podemos decir que son eventos o procesos naturales que ocurren continuamente.

Los seres vivos, tanto plantas como animales, están formados por elementos químicos (oxígeno, fósforo, carbono, entre otros) que funcionan como nutrientes esenciales para su funcionamiento normal y además el del ambiente circundante.

Dichos nutrientes se encuentran en las capas de la Tierra (atmósfera, hidrósfera y geósfera) durante un período de tiempo, pero pronto siguen una trayectoria hasta la superficie terrestre (suelo, agua) y a los individuos que en ella se encuentran, para posteriormente regresar a las capas de la Tierra y continuar el ciclo, formando lo que se conoce como ciclos biogeoquímicos.

Los nutrientes van circulando entre la superficie terrestre y las capas de la Tierra a través de diferentes procesos (lluvias, evaporación, condensación, transpiración, etc.).
Ciclos biogeoquímicos
bio”: organismos vivos.
geo”: capas de la Tierra (rocas, aire, agua).
químicos”: elementos químicos.

Si decimos que los nutrientes siguen un ciclo constante en la Tierra, podemos calificarla entonces como un sistema cerrado, en el que los nutrientes están siendo aprovechados primero por los organismos y luego por los ecosistemas o viceversa.

Los ciclos biogeoquímicos de los nutrientes que circulan constantemente en la naturaleza son:

Ciclo del Carbono (C): El carbono es, si se quiere, el elemento principal del esqueleto de las biomoléculas (carbohidratos, lípidos, proteínas y ácidos nucleicos) que constituyen a los seres vivos; lo encontramos en el aire, en el suelo o disuelto en el agua.

Atmósfera: capa de gas que rodea la Tierra.

Hidrósfera: capas de agua que se encuentran debajo o cubriendo la superficie de la Tierra.

Geósfera: capa de rocas (sólidas o fluidas) que se encuentra en la Tierra.

La forma en la que principalmente se presenta el carbono es como dióxido de carbono (CO2).

El dióxido de carbono (CO2) que se encuentra en la atmósfera es utilizado por las plantas para realizar la fotosíntesis. De igual forma, durante la respiración éstas tomarán oxígeno para convertirlo en moléculas de CO2 que serán devueltas a la atmósfera.

La superficie terrestre, específicamente el suelo, presenta grandes cantidades de carbono producto de la descomposición de los desechos orgánicos de plantas y animales (excremento, hojas secas, etc.); de este proceso de descomposición realizado principalmente por bacterias, se produce CO2.

En el subsuelo, por su parte, existen los llamados combustibles fósiles, que no son más que yacimientos de carbón, gas natural y petróleo. Al extraerlos del suelo y realizar la combustión desprenden CO2 como un subproducto.

Las rocas, la acción de las industrias, los vehículos, las erupciones volcánicas y los incendios son fuentes de carbono, que es liberado a la atmósfera para que continúe el ciclo.

Ciclo del carbono.
En la naturaleza se presentan varios ciclos geoquímicos.

Ciclo del Oxígeno (O2): Este ciclo va de la mano del ciclo del carbono, ya que, producto de la fotosíntesis, a pesar de que se invierte CO2, se produce oxígeno que es liberado a la atmósfera. Caso contrario al proceso de respiración, donde se consume oxígeno por los animales y plantas.

¿Sabías qué...?
El dióxido de carbono representa el 0,03% de los compuestos gaseosos que están presentes en la atmósfera.

El oxígeno es indispensable para los seres vivos, debido a ello lo podemos encontrar como parte de las siguientes moléculas:

Ciclo del oxígeno.

Ciclo del agua o ciclo hidrológico: El 71 % de la superficie terrestre y el 65-75 % del peso corporal del hombre está formado por agua, por lo que la circulación de esta molécula es de gran importancia en los ecosistemas.

En la Tierra la podemos encontrar en forma líquida, sólida (glaciares, iceberg) o en forma de vapor, dependiendo de la fase del ciclo en la que se encuentre.

El ciclo del agua está condicionado principalmente por la energía emitida por el Sol y por la fuerza de gravedad.

En la atmósfera el agua se encuentra en forma de vapor (gas) proveniente de la transpiración de las plantas, animales y de la evaporación de esta en los océanos. Cuando desciende la temperatura, este vapor de agua se condensa y se forman las nubes, las cuales llegado el momento precipitan a la superficie terrestre (ríos, lagos, mares, suelo) en forma de granizo, nieve o lluvia.

En este punto el agua presente en la superficie se infiltra en el subsuelo, originando depósitos de aguas subterráneas, también puede evaporarse por el calor generado por acción del sol a medida que sigue su trayectoria hacia los océanos.

Ciclo del Nitrógeno (N): El nitrógeno es uno de los componentes principales de los aminoácidos, constituyentes de las proteínas de todos los seres vivientes; aunque este elemento se encuentra en gran abundancia en la atmósfera no es tan sencillo de aprovechar por los organismos vivos, debido a su carácter inerte (no es químicamente reactivo puesto que posee sus capas de valencia saturadas).

Ciclo del nitrógeno.

Sin embargo, para poder emplearlo, la naturaleza ha evolucionado de tal forma que el nitrógeno atmosférico debe fijarse en el suelo con otros elementos, ya sea por acción de un grupo de bacterias especializadas (de vida libre o asociadas a raíces de las plantas) o en menor medida por acción de los relámpagos.

Para esto las bacterias presentes en el suelo convierten parte del nitrógeno que se encuentra en los desechos de los animales y plantas (excremento, hojas secas, etc.) en proteínas, y los restos de nitrógeno lo liberan al suelo en forma de amoniaco (NH3) o amonio (NH4+), proceso conocido como amonificación; o como nitrato (NO3) , generando la nitrificación.

En dicho caso, el nitrato es absorbido por las plantas para formar las proteínas que servirán de alimento a los animales. Posteriormente este nitrógeno regresa al suelo a través de los desechos de los animales o al morir éstos, y vuelven a la atmósfera producto de la desnitrificación, proceso en el que las bacterias transforman el nitrato en nitrógeno gaseoso.

Bacterias como Enterobacter, Rhizobium y Klebsiella transforman el nitrógeno para que este pueda ser aprovechado por plantas y animales.

Ciclo del Fósforo (P): El fósforo a diferencia de los elementos químicos anteriores, no se encuentra en la atmósfera sino más bien en el suelo, específicamente en las rocas o sedimentos en forma de fosfato inorgánico (Pi). Allí, como producto de la erosión por el agua, es liberado y tomado por los productores primarios (plantas, bacterias) para formar biomoléculas, las cuales servirán de alimento para organismos superiores, que podrán incorporar de esta forma el fósforo a su sistema, el cual posteriormente regresará al suelo cuando estos organismos mueran.

La degradación y transporte del suelo (erosión) proporciona el medio ideal para la movilización del fosfato inorgánico (Pi) a los diferentes ecosistemas.
Sedimento: partículas de rocas o suelo que son arrastrados por el agua y que tienden a depositarse en ríos, lagos, mares, océanos.

En la naturaleza, los nutrientes nunca se encuentran distribuidos de forma homogénea ni se encuentran presentes en la misma forma química en todo el ecosistema; he aquí donde radica la importancia de los ciclos para el ecosistema y para los seres vivos que lo componen.

Actualmente los avances en las actividades humanas han generado desequilibrios en la proporción de estos elementos y sus diferentes formas químicas presentes en los ecosistemas, trayendo como consecuencia el calentamiento global, que no es más que el aumento de la temperatura de la Tierra.

¿Sabías qué...?
La mayor cantidad de agua en la Tierra se encuentra en los mares y océanos (95 %).

Las actividades humanas que contribuyen con el desequilibrio en la dinámica de los ciclos biogeoquímicos son: la deforestación, algunas actividades agrícolas (principalmente por el uso de fertilizantes), emanación de gases por las industrias y los automóviles, vertidos de aguas contaminadas (sin tratamiento) a los ecosistemas acuáticos, entre otras.

Una de las mayores consecuencias del aumento de la temperatura es el derretimiento acelerado de los glaciares y icebergs, lo que genera un aumento del nivel del mar.
Los productos químicos (fertilizantes) utilizados en la agricultura aceleran y alteran el flujo del carbono y el nitrógeno a la atmósfera.

Estas actividades no sólo causan variaciones en los ciclos, sino también en los organismos (plantas, animales, bacterias) que los necesitan para realizar sus funciones vitales.

Los animales dependen de los ciclos biogeoquímicos para realizar sus funciones vitales.

Abono

Para que las plantas crezcan prósperamente necesitan elementos químicos diferentes, como el fósforo, el nitrógeno o el hidrógeno. Estos se encuentran en los suelos de manera natural, sin embargo, para que un cultivo crezca rápidamente, se deben agregar ciertas sustancias, por ejemplo, los abonos.

¿Qué son los abonos?

Un fertilizante o abono es una sustancia natural o artificial que contiene los elementos químicos que mejoran el crecimiento y la productividad de las plantas. Los fertilizantes mejoran la fertilidad natural del suelo o reemplazan los elementos químicos tomados del suelo por cultivos anteriores.

Los fertilizantes son utilizados desde lugares como pequeños jardines hasta grandes zonas de cultivo.

Para que una planta crezca y prospere, necesita una cantidad de elementos químicos diferentes. Los más importantes son:

  • Carbono
  • Hidrógeno
  • Oxígeno
  • Nitrógeno
  • Fósforo
  • Potasio
  • Azufre
  • Calcio
  • Magnesio

Sin embargo, en menor proporción, también necesitan nutrientes como el boro, cobalto, cobre, hierro, manganeso, molibdeno y zinc.

Los nutrientes más importantes para las plantas son el fósforo, el nitrógeno y el potasio.

Si alguno de los nutrientes falta o es difícil de obtener del suelo, se limitará la tasa de crecimiento de la planta. En la naturaleza, el nitrógeno, el fósforo y el potasio a menudo provienen de la descomposición de las plantas que han muerto, en el caso específico del nitrógeno, el reciclaje de plantas muertas a plantas vivas suele ser la única fuente de nitrógeno en el suelo.

Para que las plantas crezcan rápidamente, ese deben suministrar los elementos que necesitan en formas fácilmente disponibles, ese es el objetivo de los fertilizantes. La mayoría de los fertilizantes suministran sólo nitrógeno, fósforo y potasio porque los otros químicos son necesarios en cantidades mucho menores y generalmente están disponibles en la mayoría de los suelos.

¿Cuáles son los tipos de abono?

Fertilizantes orgánicos

Los fertilizantes orgánicos son aquellos que generalmente están hechos de ingredientes individuales que por lo general se encuentran en la naturaleza. Los fertilizantes orgánicos agregan sustancias, las cuales, a causa de la humedad y los organismos beneficiosos que están en el suelo, son descompuestas en nutrientes que luego la planta puede adquirir fácilmente.

Los tipos de fertilizantes orgánicos pueden provenir de fuentes vegetales, animales o minerales:

  • Fertilizantes orgánicos a base de plantas: se descomponen más rápido que otros fertilizantes orgánicos. Dentro de este tipo de fertilizantes se pueden destacar, el de harina de alfalfa o el compost, los cuales ayudan a agregar drenaje y retención de humedad a los suelos pobres.
¿Sabías qué...?
El compost es un tipo de fertilizante orgánico compuesto por estiércol, residuos sólidos y residuos agropecuarios, entre otros. Estos componentes se someten a un proceso de fermentación llamado compostaje que permite la liberación de nutrientes.
Otros fertilizantes a base de plantas incluyen: harina de semilla de algodón, melaza o cultivos de cobertura de legumbres.
  • Fertilizantes orgánicos a base de animales: dentro de este grupo destacan el estiércol, harina de huesos o harina de sangre. La función de estos fertilizantes es añadir gran cantidad de nitrógeno al suelo. Es ideal para plantas frondosas y un crecimiento fuerte.
La harina de sangre se hace a base de sangre animal cocida.
  • Fertilizantes orgánicos minerales: pueden agregar nutrientes al suelo, así como aumentar o disminuir el nivel de pH, cuando sea necesario, para un crecimiento saludable de las plantas.

Fertilizantes inorgánicos

Los fertilizantes inorgánicos, también conocidos como fertilizantes sintéticos, se fabrican artificialmente y contiene minerales o productos químicos sintéticos. Por ejemplo, los fertilizantes nitrogenados sintéticos generalmente están hechos de petróleo o gas natural.

Los fertilizantes inorgánicos, aunque son muy eficaces, a la larga pueden provocar daños en el suelo.

Los fertilizantes inorgánicos equilibrados son usados por su alto en macronutrientes, comúnmente incluyen productos como el nitrato de amonio, sulfato de amonio, cloruro de potasio, superfosfato triple y sulfato de magnesio.

¿Abonos simples o abonos compuestos?

Los abonos simples son aquellos que están compuestos por un solo nutriente principal, por ejemplo:

  • Nitrogenados: el elementos que contienen en mayor proporción es el nitrógeno, la urea es un ejemplo perfecto, contiene 46 % de nitrógeno.
  • Fosfatos: el elemento principal es el fosforo, el superfosfato triple tiene 46 % de P2O5.
  • Potasas: el elemento principal es el potasio, por ejemplo, el cloruro de potasio, el cual tiene 60 % de K2

Por otro lado, los abonos compuestos son los que tienen más de un nutriente principal y algún nutriente secundario. Por ejemplo, el fosfato diamónico, que contiene nitrógeno y fósforo como elementos principales.

Ventajas del abono

orgánico El abono orgánico al ser de origen natural es más amigable con los suelos que el abono sintético, entre sus ventajas están: fácil elaboración, promueven la recuperación de la materia orgánica del suelo, aumentan la actividad microbiana y gracias a ellos los residuos orgánicos son reciclados.

Ciclos biogeoquímicos

Los seis elementos más comunes asociados con las moléculas orgánicas como el carbono, el hidrógeno, el nitrógeno, el oxígeno, el fósforo y el azufre, toman una variedad de formas químicas y pueden existir durante largos períodos en la atmósfera, en tierra, en agua o debajo de la superficie terrestre.

Procesos geológicos como la erosión, el drenaje de agua, el movimiento de las placas continentales y la meteorización, están involucrados en el ciclo de elementos en la Tierra. El reciclaje de materia inorgánica entre los organismos vivos y su medio ambiente se denomina ciclo biogeoquímico.

El término biogeoquímico proviene de los procesos biológicos, geológicos y químicos que causan la transferencia de materia.

Los ciclos biogeoquímicos pueden clasificarse como gaseosos, en los que el reservorio es el aire o los océanos (por evaporación) y sedimentarios, en el que el yacimiento es la corteza terrestre. Los gaseosos tienden a moverse más rápidamente que los sedimentarios y se ajustan más fácilmente a los cambios en la biosfera debido al gran reservorio atmosférico.

Ciclo del agua

Una molécula muy significativa en nuestro planeta que recorre los ecosistemas es la molécula de agua (H2O). Si bien generalmente se trata del ciclo del agua como los diversos estados que presenta la misma, al menos algunas moléculas de agua son absorbidas por las plantas y se dividen en átomos de hidrógeno y oxígeno; este último se libera en la atmósfera como oxígeno molecular (O2). Así, en virtud de los organismos fotosintéticos, el ciclo del agua es una parte importante de los ciclos del oxígeno y del hidrógeno.

La mayor parte del agua se encuentra en los océanos y las capas polares, aunque el agua también está presente en lagos y ríos de agua dulce, el cuerpo de los organismos y en el suelo como agua subterránea.

El agua se mueve entre los depósitos de almacenamiento por medio de la evaporación, la precipitación y por escurrimiento de la tierra.

El ciclo de sedimentación es una extensión del ciclo hidrológico. El agua transporta material de la tierra al océano, donde se añaden como sedimentos. El ciclo de sedimentos incluye la erosión física y química, el transporte de nutrientes y la formación de sedimentos a partir de los flujos de agua.

El ciclo de sedimentos está ligado con el flujo de seis elementos importantes, que son el hidrógeno, el carbono, el oxígeno, el nitrógeno, el fósforo y el azufre. Estos elementos, también conocidos como macroelementos, constituyen el 95 % de todos los seres vivos. El equilibrio de estas moléculas es necesario para sostener la vida.

Ciclo del carbono

El carbono es uno de los elementos más importantes para los organismos vivos, como lo demuestra su abundancia y presencia en todas las moléculas orgánicas. El ciclo del carbono ejemplifica la conexión entre los organismos en varios ecosistemas. El carbono se intercambia entre los heterótrofos y los autótrofos dentro y entre los ecosistemas principalmente a través del CO2 atmosférico, una versión completamente oxidada del carbono que sirve como bloque básico para que los autótrofos puedan construir moléculas orgánicas de alta energía como la glucosa.

¿Sabías qué...?
La liberación mundial de carbono a través de las actividades humanas ha aumentado de 1 billón de toneladas al año en 1940 a 6,5 millones de toneladas en el año 2000.

Los fotoautótrofos y los quimioautótrofos aprovechan la energía del Sol y de los compuestos químicos inorgánicos para unir los átomos de carbono y transformarlos en compuestos orgánicos reducidos cuya energía se puede absorber posteriormente a través de los procesos de respiración y fermentación.

Ciclo del carbono

Ciclo del nitrógeno

En el suelo, así como en las raíces de ciertas plantas, el nitrógeno es fijado por bacterias, rayos y radiación ultravioleta.

Las bacterias fijan el nitrógeno elemental en una forma que puede ser usada por los organismos.

Ciertas bacterias toman las formas en las que se fijó el nitrógeno y posteriormente lo procesan. Este proceso que se conoce como oxidación proporciona energía para que el ciclo del nitrógeno tenga lugar. Las plantas absorben nitratos o iones de amonio del suelo y los convierten en compuestos orgánicos; por su parte, los animales obtienen nitrógeno mediante el consumo de plantas u otros animales.

Los residuos de los animales contienen nitrógeno; por lo tanto, independientemente de la forma de excreción del animal, algún nitrógeno se libera de nuevo en el ecosistema a través de este proceso.

Muchos problemas ambientales son causados por la interrupción del ciclo del nitrógeno gracias a la actividad humana, desde la producción de smog troposférico hasta la perturbación del ozono estratosférico y la contaminación del agua subterránea. Un ejemplo de uno de los problemas causados es la formación de gases de efecto invernadero.

Ciclo de Azufre

El azufre es un elemento esencial para las macromoléculas de los seres vivos. Varios grupos de microorganismos son responsables de llevar a cabo los procesos implicados en el ciclo del azufre.

El ciclo del azufre contiene tanto procesos atmosféricos como terrestres.

Dentro de la porción terrestre, el ciclo comienza con el desgaste de las rocas, lo que hace que el azufre almacenado se libere; luego entra en contacto con el aire donde se convierte en sulfato. El sulfato es absorbido por plantas y microorganismos y se convierte en formas orgánicas; los animales consumen estas formas orgánicas a través de los alimentos, de tal manera que es movido a través de la cadena alimentaria. A medida que los organismos mueren y se descomponen, se libera de nuevo como sulfato y algunos entran en los tejidos de los microorganismos. También hay una variedad de fuentes naturales que emiten azufre directamente en la atmósfera, donde se incluyen las erupciones volcánicas, la descomposición de materia orgánica en pantanos y la evaporación del agua.

El azufre eventualmente se instala en la Tierra. Una pérdida continua de este elemento ocurre a través del drenaje en lagos y arroyos, y ocasionalmente en océanos. Dentro del océano se realizan algunos ciclos de azufre a través de las comunidades marinas, que se mueven a través de la cadena alimentaria; una parte de éste es emitida de nuevo a la atmósfera por la evaporación, el restante se pierde en las profundidades del océano, donde se combina con el hierro para formar el sulfuro ferroso que es el responsable del color negro de la mayoría de los sedimentos marinos.

Una tercera parte de todo el azufre que llega a la atmósfera proviene de las actividades humanas.

Ciclo del fósforo

El fósforo es un elemento importante para todas las formas de vida. Como fosfato, constituye una parte importante del marco estructural que mantiene el ADN y el ARN juntos. Al igual que el calcio, el fósforo es importante para los vertebrados; en el cuerpo humano, el 80 % del fósforo se encuentra en los dientes y huesos.

El ATP contiene tres moléculas de fosfato que requieren fósforo.

El ciclo de fósforo difiere de los otros ciclos biogeoquímicos en que no incluye una fase gaseosa; aunque pequeñas cantidades de ácido fosfórico pueden llegar a la atmósfera, lo que contribuye, en algunos casos, a la lluvia ácida. Muy poco fósforo circula en la atmósfera porque a las temperaturas y presiones normales de la Tierra, el fósforo y sus diversos compuestos no son gases. El fósforo se mueve en un ciclo a través del agua, el suelo, los sedimentos y los organismos, pero el mayor reservorio de fósforo está en la roca sedimentaria.

Los cambios en el ciclo del fósforo no tienen efectos directos sobre el clima, pero su disponibilidad condiciona la actividad vegetal y microbiana en los ecosistemas.

Con el tiempo, la lluvia y la intemperie causan que las rocas liberen iones de fosfato y otros minerales. Este fosfato inorgánico se distribuye entonces en el suelo y en el agua.

Las plantas absorben fosfato inorgánico del suelo y pueden ser consumidas por los animales; una vez en la planta o el animal, el fosfato se incorpora en moléculas orgánicas como el ADN. Cuando la planta o el animal mueren, se descomponen por la acción de bacterias, el fosfato orgánico se devuelve al suelo y puede estar disponible nuevamente para las plantas. Este proceso se conoce como mineralización.

El fósforo en el suelo puede terminar en los cursos de agua y eventualmente en los océanos. Una vez allí, se puede incorpora con el tiempo a los sedimentos.

El mismo proceso ocurre dentro del ecosistema acuático. El fósforo no es muy soluble, se une fuertemente a las moléculas en el suelo y alcanza principalmente las aguas donde viaja con las partículas de suciedad. Los fosfatos también entran en las vías fluviales a través de escurrimientos de fertilizantes, filtraciones de aguas residuales, depósitos minerales naturales y desechos de otros procesos industriales.

Aunque obviamente es beneficioso para muchos procesos biológicos, en aguas superficiales una concentración excesiva de fósforo se considera un contaminante. El fosfato estimula el crecimiento excesivo del plancton y las plantas, que tienden a consumir grandes cantidades de oxígeno disuelto, lo que potencialmente sofoca a los peces y otros animales marinos, al mismo tiempo que bloquea la luz solar disponible para las especies que habitan en el fondo. Esto se conoce como eutrofización.

Contaminación

Las actividades humanas han aumentado considerablemente los niveles de CO2 en la atmósfera y los niveles de nitrógeno en la biosfera. Los ciclos biogeoquímicos alterados combinados con el cambio climático aumentan la vulnerabilidad de la biodiversidad, la seguridad alimentaria, la salud humana y la calidad del agua.

Propiedades y nomenclatura de aminas

Las aminas son compuestos orgánicos nitrogenados conocidos por su importancia a nivel biológico y medicinal. Ejemplo de ello es la serotonina, un neurotransmisor involucrado en diversos procesos de tipo afectivo a nivel del sistema nervioso central.

Las aminas son compuestos orgánicos derivados del amoniaco, conformados por uno o más grupos alquilo o arilo enlazados al átomo de hidrógeno mediante un enlace simple.


En función del número de grupos alquilo o arilo unido al nitrógeno las aminas se clasifican en:

Amina primaria: están constituidas por un grupo amino unido a un sustituyente alquilo o arilo (R- NH2).

Amina secundaria: están formadas por dos grupos alquilo o arilo (R-NH-R´) unidos al átomo de hidrógeno.


Amina terciaria: tienen tres grupos alquilo o arilo unidos al nitrógeno (NR3).


IMPORTANCIA BIOLÓGICA DE LAS AMINAS

En el cuerpo humano hay diferentes aminas que cumplen funciones vitales en el organismo, entre las cuales se encuentran:

Histamina: es la sustancia responsable de las reacciones típicas de la alergia como la dilatación de los vasos sanguíneos, también es un importante neurotransmisor.

Niacina: es una vitamina que ayuda al buen funcionamiento de órganos como la piel, además interviene en procesos del sistema digestivo y nervioso.

Dopamina: es un neurotransmisor del sistema nervioso central y periférico.

PROPIEDADES DE LAS AMINAS

Las propiedades de las aminas están asociadas a su estructura química y la forma en que ésta determina las interacciones moleculares. En general, las aminas son polares y presentan interacciones del tipo dipolo-dipolo, además, aquellas que contienen enlaces de N-H pueden interactuar mediante enlaces de hidrógeno. Debido a que el nitrógeno es menos electronegativo que el oxígeno presente en los alcoholes (R-OH), los puentes de hidrógeno en las aminas son más débiles y por tanto sus puntos de ebullición suelen ser menores a los de los alcoholes de igual masa molecular.

¿Sabías que incluso las aminas terciarias pueden interaccionar con otras moléculas que formen enlaces de hidrógeno? Esto debido al par de electrones libre del nitrógeno.

En cuanto a la solubilidad, las aminas con menos de siete átomos de carbono son solubles en agua, propiedad que disminuye al aumentar el número de carbonos.

Las aminas se comportan como bases débiles en presencia de un ácido, tal como muestra el siguiente ejemplo:


AMINAS MEDICINALES

En la medicina hay drogas o fármacos que pertenecen al grupo de las aminas, como son los antihistamínicos recetados en los casos de alergias y gripes, también la morfina administrada en dosis pequeñas a pacientes que sufren dolor crónico y agudo.

Sin embargo, algunas aminas como la cocaína, la nicotina y la metanfetamina generan adicción y demás efectos negativos sobre el sistema nervioso central y la salud en general.

¿Sabías que el nombre de vitaminas se debe a que inicialmente se creía dichas biomoléculas eran todas aminas?

NOMENCLATURA DE AMINAS

Las aminas se nombran como alcanoaminas o alquilaminas, es decir, se nombran utilizando el nombre del alcano o sustituyente alquilo, respectivamente. En ambos casos se utiliza la terminación –amina.


En aquellos casos donde hay más de un sustituyente se deben nombrar en orden alfabético, así mismo, si alguno de estos se repite varias veces se utilizan los prefijos de cantidad: di, tri y tetra, entre otros.


También es posible nombrar los sustituyentes empleando la letra N como localizador, siempre que los sustituyentes estén unidos al átomo de nitrógeno.


En compuestos donde la prioridad corresponde a otra función química, las aminas se nombran empleando el término amino- precedido por el localizador.


SALES CUATERNARIAS

Las sales cuaternarias se forman cuando una amina reacciona con un ácido. Se utilizan como producto de limpieza y en medicamentos, ya que son más estables y resistentes que las aminas de las cuales provienen.



¡Aplica lo aprendido!

Indica el nombre del siguiente compuesto.


  1. Enumera la cadena carbonada más larga.

  1. Identificar los sustituyentes.

  1. Nombrar el compuesto.

Compuestos orgánicos

Seguramente has escuchado a alguien decir “somos química”, pues no hay nada más cierto que esta afirmación. Ya que a nivel molecular, el ser humano está constituido por diversos compuestos orgánicos, como: proteínas, carbohidratos, aminas y azúcares.

En la química orgánica existe una gran variedad de compuestos, formados en su mayoría por combinaciones de átomos de carbono. El carbono es un elemento químico capaz de formar enlaces fuertes con otros átomos de carbono, oxígeno, hidrógeno, nitrógeno, entre otros.

La química orgánica es la rama de la química que estudia los compuestos de carbono.

Los compuestos de carbono hidrógeno, también conocidos como hidrocarburos están formados por átomos de carbono e hidrógeno unidos mediante enlaces covalentes simples o múltiples, estos últimos tienen gran influencia en el comportamiento químico de los hidrocarburos.Compuestos carbono hidrógeno

¿Qué es la cadena carbonada?

La cadena carbonada es la unión de varios átomos de carbono a través de enlaces sigma (σ) y pi (π), también se le denomina esqueleto carbonado.

De acuerdo a la estructura de su cadena carbonada, los hidrocarburos se clasifican de la siguiente manera:

Alifáticos acíclico: son aquellos compuestos formados por cadenas de carbono abiertas, las cuales pueden ser lineales o ramificadas.

 

Tipos de carbono
En el esqueleto carbonado de una molécula se distinguen varios tipos de carbono:

Carbono primario: enlazado a 1 átomo de carbono y 3 hidrógenos.

Carbono secundario: enlazado a 2 átomos de carbono y 2 hidrógenos.

Carbono terciario: enlazado a 3 átomos de carbono y 1 hidrógeno.

Carbono cuaternario: enlazado a 4 átomos de carbono.

Inténtalo en casa, ¿cuál de las siguientes opciones es la correcta?

  1. El 2,2,5-trimetilhexano tiene 5C 1rio, 2C 2rio, 2C 3rio y 1C 4rio
  2. El 2,2,5-trimetilhexano tiene 6C 1rio, 2C 2rio, 1C 3rio y 1C 4rio
  3. El 2,2,5-trimetilhexano tiene 5C 1rio, 3C 2rio, 1C 3rio y 1C 4rio
  4. El 2,2,5-trimetilhexano tiene 5C 1rio, 2C 2rio, 1C 3rio y 1C 4rio
 

 

 

  • Insaturados: compuestos de carbono hidrógeno que tienen enlaces simples y múltiples, se dividen en:
    • Alquenos: son aquellos que contienen un doble enlace (uno σ y otro π) en su cadena carbonada.
    • Alquinos: poseen un triple enlace (uno σ y dos π) en su cadena carbonada.

Las bolsas plásticas están hechas de polietileno [-(CH2-CH2)n-], un polímero formado a partir del eteno.
Alicíclicos: son los compuestos formados por cadenas de carbono cerradas, estas pueden tener ramificaciones.

  • Saturados: cadenas carbonadas cerradas formadas únicamente por enlaces simples (σ), se conocen como cicloalcanos.

  • Insaturados: cadenas carbonadas cerradas que tienen enlaces simples y múltiples, se clasifican en:
    • Cicloalquenos: son los que poseen dobles enlaces (uno σ y otro π) no alternados.
    • Cicloalquinos: constituidos por al menos un triple enlaces (uno σ y dos π).

Aromáticos: son los hidrocarburos que poseen enlaces π conjugados, cuya deslocalización de electrones π disminuye la energía electrónica de la molécula. Existen moléculas donde la deslocalización de electrones π aumenta la energía electrónica de la misma, estos compuestos se conocen como antiaromáticos.

Los hidrocarburos aromáticos se clasifican en:

Benceno y derivados, algunos ejemplos de este tipo de compuestos son:

¿Cómo saber si es aromático o antiaromático?

Para saber si un hidrocarburo con enlaces π conjugados es aromático o antiaromático se utiliza la Regla de Hückel, la cual nos indica que para que un compuesto sea considerado aromático el número de electrones π deslocalizados debe ser igual a 4N+2, en caso de ser igual a 4N se dice que la estructura es antiaromática.

3 enlace π 4 enlace π
Cada enlace tiene 2 electrones (e), entonces hay 6 e π Cada enlace tiene 2 electrones (e), entonces hay 8 e π
4N + 2 = 6 e π 4N = 8 e π
Se cumple para N igual 1, por lo cual es aromático. Se cumple para N igual 2, por lo cual es antiaromático.

Polinucleares, las cuales están constituidas por dos o más ciclos unidos entre sí, algunos de los compuestos más representativos de este grupo son:

El petróleo está constituido por una mezcla de diferentes hidrocarburos.

Compuestos carbono halógenos

Son aquellos compuestos que poseen al menos un enlace simple (σ) entre un átomo de carbono y un halógeno (-C-X, donde X = Cl, F, I, Br), se les denomina haluros. Entre los más representativos están:

Compuestos carbono oxígeno

Son los compuestos que tienen enlaces simples o múltiples entre un átomo de carbono y uno oxígeno. Entre los compuestos carbono oxígeno se encuentran:

  • Alcoholes: son lo compuestos que contienen en su estructura al menos un enlace C-OH.

Alcohol ≠ Fenol

Los fenoles son compuestos carbono oxígeno que poseen enlaces entre un átomo de carbono aromático y el oxígeno del grupo -OH. Las propiedades químicas de los fenoles son distintas a la de los alcoholes, por lo cual se les considera un tipo de compuesto o familia diferente.

 

 

 

Algunas sustancias como el vino contienen polifenoles, los cuales tienen una gran capacidad antioxidante.

  • Éteres: tienen un átomo de oxígeno enlazado a través de enlaces simples a dos átomos de carbono (R-O-R´).

  • Ácidos carboxílicos: poseen en su esqueleto carbonado la función –COOH.

  • Cetonas: tienen la siguiente forma R-CO-R, donde R puede ser un radical alifático, alicíclico o aromático.

  • Aldehídos: son los que contienen el grupo funcional –CHO.

  • Ésteres: son derivados de los ácidos carboxílicos, su grupo funcional es –COOR, donde R puede ser un radical alifático, alicíclico o aromático.

Algunos ésteres se emplean en la fabricación de fragancias o perfumes.

Compuestos carbono nitrógeno

Como su nombre lo indica, son los compuestos que contienen enlaces simples o múltiples entre un átomo de carbono y uno de nitrógeno. Entre los tipos de moléculas orgánicas con enlace C-N se encuentran:

  • Aminas: contienen enlaces simples carbono nitrógeno, pueden ser primarias (-NH2), secundarias (-NRH) o terciarias (-NR2)

  • Nitrilos: en su esqueleto carbonado tienen un enlace triple carbono nitrógeno (-C≡N).

A continuación un resumen de los grupos funcionales característicos de algunos compuestos carbono oxígeno:

Normas generales de nomenclatura orgánica

Para poder identificar los diferentes compuestos orgánicos que existen se aplican una serie de normas establecidas por la Unión Internacional para la Química Pura y Aplicada (IUPAC por sus siglas en inglés), dichas normas consisten en lo siguiente:

  1. Identificar según el orden de prioridad de los grupos funcionales el tipo de compuesto, para ello se emplea la siguiente tabla:
Orden de prioridad Grupo funcional

presente

Sufijo
1 Ácidos carboxílicos ico
2 Ésteres (y otros derivados de ácidos carboxílicos) ato
3 Nitrilos nitrilo
4 Aldehídos al
5 Cetonas ona
6 Alcoholes y fenoles ol
7 Aminas amina
8 Alquenos eno
9 Alquinos ino
10 Alcanos ano
  1. Seleccionar la cadena principal, la cual siempre es la más larga y la que contiene el grupo funcional de mayor prioridad.
  1. Enumerar la cadena principal, para ello se debe asigna la numeración más baja posible al grupo funcional de mayor prioridad y a los radicales e insaturaciones presentes.
  1. Identificar los radicales o sustituyentes presentes, se entiende por radicales todas aquellas ramificaciones que quedan unidas a la cadena.
  1. Se nombran los radicales por orden alfabético, en casos donde los sustituyentes se encuentran repetidos se utilizan prefijos de cantidad, por ejemplo: di = 2, tri = 3, tetra = 4, penta = 5, hexa = 6 y así sucesivamente.
  1. Por último se indica el nombre del compuesto en base al grupo funcional principal y al número de carbonos que forman la cadena principal, cada tipo de compuesto tiene una terminación o sufijo particular.
Reconociendo grupos funcionales
El anís estrellado debe su sabor a un compuesto químico denominado anetol, indica los grupos funcionales presentes en su estructura química:

¡Inténtalo en casa! , indica los grupos funcionales presentes en la estructura química del GABA y la aspirina.

Los compuestos de tipo orgánico se encuentran en diversos productos de nuestra vida cotidiana, algunos ejemplos se describen a continuación:

Compuestos orgánicos en la vida cotidiana
Uso cotidiano Estructura química Grupo funcional

El gas natural se emplea en las cocinas domésticas.

Propano

Alcano lineal

Las bolas de naftalina se emplean como insecticida.

Naftaleno

Aromático polinuclear

El ibuprofeno es un medicamento antiinflamatorio no esteroideo.

Ácido 2-(4-isobutilfenil)propanoico

Ácido carboxílico

Las bebidas alcohólicas como el vino contienen etanol.

Etanol

Alcohol

La canela debe su olor característico al cinamaldehído.

Cinamaldehído

Aldehído