CAPÍTULO 13 / TEMA 3

Los sismos

El movimiento en zonas estrechas a lo largo de los límites de las placas causa la mayoría de los terremotos. La mayor parte de la actividad sísmica ocurre en tres tipos de límites de placa: divergentes, convergentes y transformantes.

MOVIMIENTO DE PLACAS

La litosfera de la Tierra, que incluye la corteza y el manto superior, está formada por una serie de piezas o placas tectónicas que se mueven lentamente.

Los movimientos de las placas ayudan a dar forma a las características geológicas de nuestro planeta.

¿Cómo se mueven?

 

  • La fuerza impulsora detrás de la tectónica de placas es la convección en el manto.
  • Las crestas del océano medio son espacios entre las placas tectónicas que cubren la Tierra. El magma caliente brota de las crestas, forma una nueva corteza oceánica y separa las placas.
  • En las zonas de subducción dos placas tectónicas se encuentran y una se desliza por debajo de la otra hacia el manto.
  • La placa fría que se hunde tira de la corteza hacia abajo.

El material caliente cerca del núcleo de la Tierra se eleva y la roca del manto más fría se hunde.

Los tres principales tipos de movimientos de placas incluyen:

Divergente (propagación): ocurre cuando dos placas tectónicas se alejan una de la otra.

Convergente (colisión): esto ocurre cuando las placas se mueven una hacia la otra y chocan. En los límites convergentes se crea la corteza continental y se destruye la corteza oceánica.

¿Sabías qué?
Alrededor del 80 % de los terremotos ocurren donde las placas se juntan en zonas llamadas límites convergentes.

Transformante: cuando dos placas tectónicas se deslizan una junto a la otra, el lugar donde se encuentran es una falla de transformación o lateral.

La falla de San Andrés es uno de los mejores ejemplos de movimiento lateral de la placa.

¿QUÉ SON LOS TERREMOTOS?

Ver infografía

A medida que las placas se cruzan, a veces quedan atrapadas y se acumula presión. Cuando finalmente ceden y se deslizan debido al aumento de la presión, la energía se libera como ondas sísmicas, lo que hace que el suelo tiemble. Esto es lo que se conoce como terremoto.

Tipos de terremoto

Hay muchos tipos de terremoto, cada uno depende de la región donde ocurre y la composición geológica de esa región.

  • Terremotos tectónicos: ocurren cuando las rocas en la corteza terrestre se rompen debido a las fuerzas geológicas creadas por el movimiento de las placas tectónicas.
  • Terremotos volcánicos: ocurren junto con la actividad volcánica.
  • Terremotos colapsados: pequeños terremotos en cavernas y minas subterráneas.
  • Terremotos de explosión: resultan de la explosión de dispositivos nucleares y químicos.
Ondas de terremoto

 

Hay dos tipos de ondas sísmicas y la diferencia radica en la forma en que se transmiten. Durante un terremoto, las ondas liberadas pueden ser ondas “P” o “S” de acuerdo con la velocidad y la forma en la que viajan. Ambas pueden ser destructivas, pero su estudio permite saber dónde ocurrió el terremoto.

ESCALA RITCHER Y MERCALLI

La escala de Mercalli describe la intensidad de un terremoto en función de sus efectos observados y la escala de Richter describe la magnitud del terremoto a través de las ondas sísmicas que causan el terremoto.

Diferencias

 

  • La escala de Mercalli es lineal y la escala de Richter es logarítmica. Es decir, un terremoto de magnitud 5 es diez veces más intenso que un terremoto de magnitud 4.
  • La escala de Mercalli mide la intensidad de un terremoto al observar su efecto en las personas, el medio ambiente y la superficie de la Tierra.
  • La escala de Richter mide la energía liberada por un terremoto mediante el uso de un sismógrafo.

LUGARES DE RIESGO DE SISMOS

Ver infografía

Los mapas de sismos revelan qué partes del mundo tienen mayor riesgo de terremotos, y dónde las personas son vulnerables a los desastres sísmicos.

  • El  mapa del peligro sísmico global muestra qué partes del mundo son propensas a los terremotos, como el Anillo de fuego alrededor del océano Pacífico.
  • El mapa del riesgo sísmico global destaca las áreas donde los edificios pueden ser dañados por el temblor del suelo, como en Guatemala.
  • El mapa de exposición global analiza la cantidad de edificios en todo el mundo y enfatiza el peligro en regiones altamente pobladas como Indonesia e India.

¿QUÉ SON LOS TSUNAMIS?

Ver infografía

Un tsunami es una serie de grandes olas generadas por un movimiento brusco en el fondo del océano que puede resultar de un terremoto, un deslizamiento de tierra bajo el agua, una erupción volcánica o, muy raramente, un gran impacto de meteorito.

¿Sabías qué?
Las olas de los tsunamis cuentan con crestas que llegan entre 5 y 60 minutos, y su altura puede ser de hasta 30 metros en casos extremos.

Lugares de riesgo de tsunamis

Todas las regiones oceánicas del mundo pueden experimentar tsunamis, pero en el océano Pacífico y en sus mares secundarios hay una ocurrencia mucho más frecuente de tsunamis grandes y destructivos debido a los terremotos a lo largo de los márgenes del océano Pacífico.

Zonas con mayor riesgo de tsunamis

 

  • Japón.
  • Chile.
  • Indonesia.
  • Cascadia (extremo noroeste de los Estados Unidos y del suroeste de Canadá).
  • Islas Aleutianas y península de Kamchatca.

MEDIDAS DE PREVENCIÓN O SEGURIDAD FRENTE A LOS SISMOS

Antes

  • Preparar un kit de emergencia con alimentos no perecederos, agua embotellada, copias de documentos importantes como certificados de nacimiento, recetas y documentos de seguro.
  • Tener a mano linternas, materiales de primeros auxilios, mantas y otros artículos esenciales.
  • Mantener los teléfonos celulares cargados.
  • Planificar rutas alternativas de viaje en caso de que un terremoto dañe las carreteras.
  • Establecer un lugar de reunión familiar en un área segura.
  • Enseñar a todos los miembros de la familia los primeros auxilios básicos, cómo comportarse durante un terremoto y qué hacer después de un terremoto.
  • Almacenar artículos pesados ​​o cristalería en armarios inferiores para que no se conviertan en proyectiles peligrosos.
  • Asegurar electrodomésticos grandes como refrigeradores, aires acondicionados y otros artículos voluminosos con correas, pernos y otros métodos de estabilización.
Mascotas

 

Las mascotas son parte de la familia, por lo que hay que hacerlas sentir seguras y listas cuando llegue el momento:

 

  • Se debe tener un kit de emergencia que incluya los registros de vacunas, medicamentos, tazones de comida y agua, y un suministro de alimentos para una semana.
  • Asegurarse de que tengan sus collares con la información de contacto actualizada en una etiqueta y correas o transportadores apropiados.
  • Guardar bolsas adicionales para los desechos en el equipo de emergencia de la mascota y tener la caja de arena para gatos a mano.

Durante

  • Buscar de inmediato un lugar seguro, como una puerta, debajo de una mesa o escritorio, o a lo largo de una pared interior, lejos de ventanas u objetos peligrosos.
  • Cubrir la parte posterior de la cabeza y los ojos para minimizar las lesiones causadas por los escombros.
  • No tomar los ascensores durante un terremoto.
  • Mantener la calma y prepararse para mantener el equilibrio, sentarse si es posible.

Después

  • Estar preparado para las réplicas, que pueden ser más fuertes que la sacudida inicial.
  • Atender las lesiones de inmediato y solicitar asistencia de emergencia si es necesario.
  • Verificar si hay daños estructurales, pero no ingresar a un edificio que muestre daños o tenga grietas visibles en las paredes o cimientos.
  • Usar zapatos en todo momento para evitar pisar vidrios rotos.
  • Apagar el gas, la electricidad y el agua si sospecha que hay daños.
  • Mantener las líneas telefónicas despejadas para uso de emergencia.
Lo principal es tener paciencia, ya que puede llevar horas o días restaurar todos los servicios de acuerdo con la gravedad del terremoto.
RECURSOS PARA DOCENTES

Artículo “Cambios terrestres”

Este recurso cuenta con la explicación de los fenómenos y fuerzas tanto internas como externas que actúan sobre la faz de la Tierra, ya sea en la estructura o en la composición de algunas de sus partes.

VER

Artículo ¿Cómo se forma el tsunami?

Este material explica la formación de los tsunamis, así como las condiciones necesarias para que un sismo genere un tsunami.

VER

Video “Catástrofes naturales”

Con esto podrá dar a conocer las diferentes catástrofes que ocurren en nuestro planeta y sus posibles consecuencias.

VER

Corteza terrestre

El planeta se compone de tres capas principales: la corteza, el manto y el núcleo. El núcleo representa sólo el 15 % del volumen de la Tierra, mientras que el manto ocupa el 84 %y la corteza compone el 1 % restante.

¿Qué es la corteza terrestre?

La corteza de la Tierra es una capa extremadamente fina de roca que forma la más externa cubierta sólida de nuestro planeta. En términos comparativos, su espesor es como el de la piel de una manzana. Supone menos de la mitad del 1 % de la masa total del planeta, pero desempeña un papel vital en la mayoría de los ciclos naturales de la Tierra.

La corteza puede tener un grosor de más de 80 kilómetros en algunos lugares y menos de un kilómetro de grosor en otros.
La corteza puede tener un grosor de más de 80 kilómetros en algunos lugares y menos de un kilómetro de grosor en otros.

Aquí en tierra firme, en las plataformas continentales, la corteza tiene unos 30 kilómetros de espesor, mientras que en el medio del océano es de aproximadamente 5 kilómetros.

¿Cómo sabemos que la Tierra tiene una corteza?

No se supo que la Tierra tenía una corteza hasta principios del siglo XX. Hasta entonces, todo lo que sabíamos era que nuestro planeta se tambaleaba en relación con el cielo como si tuviera un núcleo grande y denso. Luego vino la sismología, que trajo un nuevo tipo de evidencia desde abajo, la velocidad sísmica.

La velocidad sísmica mide la velocidad en la que las ondas sísmicas se propagan a través de los diferentes materiales por debajo de la superficie. Con algunas excepciones importantes, la velocidad sísmica dentro de la Tierra tiende a aumentar con la profundidad.

En 1909, un documento del sismólogo Andrija Mohorovicic estableció un cambio repentino en la velocidad sísmica a unos 50 kilómetros de profundidad en la Tierra. Las ondas sísmicas rebotan de él (reflejan) y doblan (refractan) mientras que lo atraviesan, de la misma manera que la luz se comporta en la discontinuidad entre el agua y el aire.

Esa discontinuidad, llamada discontinuidad de Mohorovicic o “Moho”, es el límite aceptado entre la corteza y el manto.

Composición de la corteza

La corteza se compone de muchos tipos diferentes de rocas que caen dentro de tres categorías principales: ígneas (más del 90 % en volumen), metamórficas y sedimentarias. Sin embargo, la mayoría de estas rocas se originaron como granito o basalto. El manto debajo está hecho de peridotita. Bridgmanita, el mineral más común en la Tierra, se encuentra en el manto profundo.

La capa externa de la Tierra está formada por dos grandes categorías de rocas: basálticas y graníticas.
La capa externa de la Tierra está formada por dos grandes categorías de rocas: basálticas y graníticas.

Tipos de corteza

En general, hay dos tipos de corteza: corteza oceánica (basáltica) y corteza continental (granítica).

Corteza oceánica

La corteza oceánica cubre aproximadamente el 60 % de la superficie de la Tierra. La corteza oceánica es delgada y joven, no tiene más de 20 km de espesor ni más de 180 millones de años. Todo lo anterior ha sido arrastrado debajo de los continentes por subducción. La corteza oceánica nace en las crestas donde las placas del océano se separan. Cuando esto sucede, la presión sobre el manto subyacente se libera y la peridotita comienza a derretirse. La fracción que se funde se convierte en lava basáltica, que se eleva y entra en erupción mientras que el resto de la peridotita se agota.

Las rocas basálticas contienen más silicio y aluminio que la peridotita dejada atrás, que tiene más hierro y magnesio.

Las rocas basálticas son también menos densas.

La corteza oceánica es una fracción muy pequeña de la Tierra, pero su ciclo de vida sirve para separar el contenido del manto superior en un residuo pesado y un conjunto más ligero de rocas basálticas.

Corteza continental

La corteza continental es gruesa y más antigua, en promedio tiene unos 50 km de espesor y alrededor de 2 mil millones de años. Cubre alrededor del 40 % del planeta.

Los continentes crecen lentamente a lo largo del tiempo geológico a medida que la corteza oceánica y los sedimentos del fondo marino son arrastrados debajo de ellos por subducción. Los basaltos descendentes tienen el agua y los elementos incompatibles que estos expulsan, este material se eleva para provocar más fusión en la llamada fábrica de subducción.

La corteza continental está hecha de rocas graníticas, que tienen aún más silicio y aluminio que la corteza oceánica basáltica. También tienen más oxígeno gracias a la atmósfera. Las rocas graníticas son aún menos densas que el basalto.

La corteza continental representa menos del 0,4 % de la Tierra, pero representa el producto de un doble proceso de refinación, primero en las crestas de los océanos y la segunda en las zonas de subducción.

Los elementos incompatibles que terminan en los continentes son importantes porque incluyen los principales elementos radiactivos uranio, torio y potasio. Estos crean calor, lo que hace que la corteza continental actúe como una manta eléctrica en la parte superior del manto. El calor también suaviza lugares gruesos en la corteza, como la meseta tibetana y los hace extenderse lateralmente.

Los continentes son rasgos verdaderamente permanentes y autosustentables de la superficie de la Tierra.
¿Sabías qué...?
La temperatura de la corteza es diferente en cada parte, comienzan en unos 200 °C y pueden elevarse hasta 400 ° C.

Corteza y placas

La corteza y las placas tectónicas no son lo mismo. Las placas son más gruesas que la corteza y consisten en la combinación de la corteza más el manto que está justo debajo de ella. Esta dura y frágil combinación de dos capas se llama litósfera. Las placas litosféricas se encuentran sobre una capa de roca de manto más blanda y más plástica llamada astenósfera que permite que las placas se muevan lentamente sobre ella como una balsa en barro grueso.

Cuenca sedimentaria

Una cuenca sedimentaria es una depresión en la corteza de la Tierra formada por la actividad tectónica de placas en la que se acumulan sedimentos. Muchas de las cuencas contienen sistemas extensivos de acuíferos con múltiples capas de sedimentos permeables establecidos en el pasado.

Una cuenca sedimentaria se caracteriza por:

  • Un relleno de sedimento distintivo.
  • Ciclos de deposiciones simples o múltiples.
  • Marco tectónico distintivo y arquitectura que define el tipo de cuenca.
  • Una o varias fases de la tectónica y/o termogénica.
  • Uno o más episodios tectono-sedimentarios que definen la historia de la cuenca.
  • Secuencias estratigráficas relacionadas con episodios tectó
  • Historia geológica distintiva indicada por ciclos de sedimentació
Las cuencas sedimentarias son regiones de la corteza terrestre dominadas por subsidencia.

El estudio de las cuencas sedimentarias requiere necesariamente un enfoque multidisciplinario que involucre la colaboración de geólogos con geofísicos, geoquímicos, paleontólogos y en aplicaciones industriales, la de ingenieros.

Tipos de cuencas sedimentarias

Podemos dividir las cuencas sedimentarias en tres tipos principales según su configuración de tectónica de placas:

¿Sabías qué...?
Las rocas sedimentarias son importantes porque funcionan como registradores del clima pasado, del nivel del mar y del cambio ambiental; además, son los depósitos más grandes de petróleo y gas.

Cuencas tipo Rift

Se forman en los límites de la placa extensional, por ejemplo, en los márgenes continentales.

 

Las cuencas tipo Rift son depresiones entre fallas normales.

Numerosas cuencas de Rift no marinas de diversa geografía y edad geológica comparten una arquitectura estratigráfica notablemente similar conocida como estratigrafía tripartita; esta sección comienza con depósitos fluviales anchos a lo largo de la cuenca atravesados por una sucesión lacustre ascendente relativamente abrupta, superpuesta por una sucesión lacustre y fluvial gradual, hacia arriba y hacia abajo.

Cuencas tipo Foreland

Se forman en los límites de la placa de compresión frente a los cinturones de empuje. Estas cuencas tienen forma de cuña en sección transversal, con una profundidad que disminuye gradualmente desde el cinturón de montaña hacia el cratón adyacente.

Como ejemplos de este tipo de cuencas están las cuencas alpinas del sur de Europa que se generaron como resultado de la colisión de las placas europea y africana.

Muchos grandes yacimientos de petróleo y gas se encuentran en este tipo de cuenca.

Cuencas de deslizamiento

El tercer tipo de cuenca se forma en los ajustes de falla de deslizamiento. Su origen geológico deriva de un bloque de separación, por ejemplo entre dos fallas de transformación, que disminuye significativamente.

Varios lugares en la Falla de San Andrés o la Falla de Anatolia pertenecen a este tipo de cuenca.

Las cuencas de desplazamiento son fuentes de hidrocarburos que dependen del ambiente de deposición, heterogeneidad de sedimentos, subsidencia e historia térmica.

Formación de las cuencas

Actualmente se reconoce que el principal mecanismo de formación de la cuenca es la carga de sedimentos. El desplazamiento del agua por las rocas clásicas terrígenas, como las areniscas, representa una carga sobre la superficie de la corteza que se doblará o flexionará hacia abajo por su peso. Los depósitos bioquímicos, como los de las calizas, tendrán un efecto similar.

El espesor del sedimento que se puede acumular debido a la carga depende de la densidad, pero es aproximadamente 2,5 veces la profundidad del agua que está disponible.

Los sedimentos en cuencas profundas se acumulan y esta observación sugiere que factores distintos de la carga de sedimentos son los responsables de la formación de la cuenca.

 

Cada tipo de cuenca sedimentaria presenta diferentes hundimientos tectónicos y curvas de elevación.

En contraste con las cuencas de Rift, las cuencas de tipo Foreland se caracterizan por una subsidencia lenta temprana y una subsidencia rápida más adelante.

Avances tecnológicos

El modelado de la cuenca ha avanzado significativamente desde estos primeros modelos “geométricos” para la acumulación de sedimentos. Hoy en día hay una amplia gama de modelos avanzados disponibles para construir la estratigrafía de las cuencas sedimentarias. La ventaja de estos modelos es que incorporan los controles primarios del hundimiento de la cuenca, como la carga de sedimentos.

La carga de sedimentos es también un importante control en las cuencas de deslizamiento. Estas cuencas están asociadas con tasas mucho más altas de subsidencia tectónica que las cuencas tipo Rift o tipo Foreland. Se encuentran en marcos de transformación, donde la hundimiento diferencial forma una “cuenca trasera” en el lado del continente y una depresión en el lado del océano y en zonas de fractura. Sin embargo, las cuencas de deslizamiento más profundas son las cuencas separadas que se forman entre fallas de deslizamiento superpuestas.