CAPÍTULO 7 / REVISIÓN

DIVERSIDAD Y CLASIFICACIÓN DE LOS SERES VIVOS | ¿qué aprendimos?

Clasificación de los seres vivos

La clasificación de los seres vivos comenzó como un sistema jerárquico que dividió a todos los organismos conocidos en plantas y animales. Este modelo fue reemplazado en el siglo XVIII por Carlos Linneo, quien realizó una división en reinos y los estructuró en cinco niveles: clase, orden, género, especie y variedad. Luego se empleó el sistema de clasificación binomial para nombrar a los organismos, pero fue Robert H. Whittaker quien postuló una clasificación de cinco reinos llamados Monera, Protista, Fungi, Plantae y Animalia. El sistema de cinco reinos no está en uso en la actualidad, en cambio, lo que ahora se emplea es un sistema de seis reinos: Animalia, Plantae, Fungi, Protista, Monera y Archaea.

La complejidad de la estructura celular fue uno de los criterios que Whittaker tuvo en cuenta para la clasificación.

Procariotas: dominio Bacteria, reino Monera

Las bacterias son los organismos procarióticos más simples, y presentan características como: ausencia de membrana nuclear, cromosoma único y circular, carencia de organelos celulares y reproducción por formación de esporas o fisión binaria. Inicialmente, las bacterias fueron consideradas animales, plantas y hongos. Se clasifican de varias maneras, pero la más importante consta de dos grupos principales: Archaebacteria y Eubacteria. Las primeras son organismos que viven en condiciones extremas y carecen de pared celular; las segundas son las llamadas bacterias verdaderas. Su rasgo característico es la presencia de pared celular rígida.

La bacteria que naturalmente forma parte de la flora intestinal es muy importante para una digestión adecuada.

Procariotas: dominio Archaea, reino Archaebacteria

Las arqueobacterias surgieron cuando la Tierra se encontraba en sus primeros años de existencia y las condiciones reinantes eran extremas. Tienen una estructura más parecida a la de los eucariotas que a la de las bacterias. Tienen un solo cromosoma redondo, como las bacterias, pero su transcripción genética es similar a la que ocurre en los núcleos de las células eucariotas. Hay tres tipos principales: Crenarchaeota, que son organismos extremadamente tolerantes al calor y a ambientes muy ácidos; Euryarchaeota, que son organismos que pueden sobrevivir ambientes con 10 veces la concentración de sal del mar y que reducen el CO2; y Korarchaeota, que es el linaje más antiguo pero menos comprendido, y que presenta genes diferentes a los de los grupos anteriores.

Organismos como Methanobacterium ruminantium están presentes en el sistema digestivo de los animales rumiantes y ayudan a la digestión de la celulosa.

Eucariotas: dominio Eukarya, reino Protista o Protoctista

El término protista fue introducido por Ernst Haeckel. Este reino forma un vínculo entre otros reinos de plantas, animales y hongos. Son generalmente organismos eucariotas simples, unicelulares, aunque algunos son coloniales y otros multicelulares. Principalmente son de naturaleza acuática y realizan el movimiento mediante flagelos o cilios. Algunos protistas son semejantes a los animales y se conocen como protozoos; otros, son similares a plantas, y tienen clorofila. Entre estos últimos se encuentran las algas verdes, rojas, pardas, doradas y fuego. Por último, los protistas con aspecto de hongos son unicelulares, saprófitos y viven en suelo húmedo, plantas y árboles en descomposición.

Por su condición de parásitos, algunos protistas pueden causar muchas enfermedades en plantas, en animales e incluso en el hombre.

Eucariotas: dominio Eukarya, reino Fungi

El Reino Fungi incluye un grupo diverso de seres que no pueden ser catalogados como animales ni como plantas. Se caracterizan por ser heterótrofos y descomponer la materia orgánica. Poseen una pared celular rígida y pueden ser unicelulares o pluricelulares. Los hongos pluricelulares presentan estructuras filamentosas llamadas hifas y viven en lugares húmedos y sombríos. Este reino contiene cinco filos principales: Chytridiomycota, Zygomycota, Ascomycota, Basidiomycota y Glomeromycota.

Los hongos producen naturalmente antibióticos que permiten inhibir el crecimiento de bacterias.

Eucariotas: dominio Eukarya, reino Animalia

El Reino Animalia está compuesto por todos los animales, vivos o extintos, del planeta. Son eucariotas, ya que el ADN se encuentra dentro del núcleo celular. No tienen paredes celulares. Son multicelulares, heterótrofos y tienen la capacidad de moverse y responder a su entorno. Todos los animales se pueden dividir en los grupos vertebrados e invertebrados. Además, cada reino se divide en categorías más pequeñas llamadas phylum (filo): Porifera, Coelenterata, Plathelminthes, Nematoda, Annelida, Arthropoda, Mollusca, Echinodermata, Protochordata y Vertebrata.

Los animales extintos también forman parte del reino Animalia.

Eucariotas: dominio Eukarya, reino Plantae

Este reino incluye a los diferentes tipos de plantas que se encuentran en el planeta. Cada grupo tiene características especiales y únicas, como la presencia de pared celular, nutrición autótrofa, clorofila, ausencia de sistema locomotor y reproducción sexual o asexual. Se clasifican en Briophyta, las cuales carecen de un sistema vascular y se desarrollan en dos fases, gametofito y esporofito; y Cormophyta, que es un grupo de plantas vasculares que tienen raíz, tallo y hojas. Éstas, a su vez se dividen en Pteridophyta y Spermatophyta. Además, éstas últimas se clasifican en gimnospermas y angiospermas.

La fotosíntesis de las plantas proporciona oxígeno a la atmósfera de nuestro planeta.

 

CAPÍTULO 3 / TEMA 2

Sistemas homogéneos

Cuando un sistema posee las mismas propiedades intensivas en toda su masa, significa que es un sistema homogéneo. Un sistema homogéneo cuenta con una sola fase. En estos sistemas generalmente se debe aplicar mayor energía o calor para lograr separar las sustancias que lo conforman.

Aire fresco

 

El aire que respiramos es un sistema homogéneo, es una mezcla de distintos gases como el oxígeno, el nitrógeno, el argón, el helio y el dióxido de carbono.

SOLUCIONES

Las soluciones son sistemas materiales homogéneos compuestos por uno o más solutos disueltos en un solvente determinado.

VER INFOGRAFÍA

El soluto es el componente de la solución que se encuentra en menor proporción y se disuelve en el solvente, en tanto, el solvente es el que se encuentra en mayor proporción y tiene la capacidad disolver el soluto. El agua es el solvente más conocido y empelado a nivel mundial.

Solvente universal

 

El agua es conocida como el solvente universal, es capaz de disolver una gran cantidad de compuestos, además no es tóxica y su manipulación no conlleva ninguna peligrosidad. Encabeza la lista de los denominados solventes verdes o sostenibles, cada vez más importantes para la industria y la ciencia.

 

Sin embargo, el agua no es capaz de disolver todos los compuestos que existen, por ejemplo, no puede disolver el aceite.

CLASIFICACIÓN DE LAS SOLUCIONES

Las soluciones se clasifican en función de la concentración en insaturadas, saturadas y sobresaturadas.

  • Solución insaturada: no alcanza la cantidad máxima posible de soluto para la presión y la temperatura dadas.
  • Solución saturada: es cuando la cantidad del soluto disuelto es la máxima que puede disolver el solvente en determinadas condiciones.
  • Solución sobresaturada: es aquella donde la cantidad de soluto es mayor a la máxima que puede ser disuelta en el solvente. Este tipo de soluciones suelen ser inestables ya que el soluto tiende a precipitar. Además, para lograr la completa disolución del soluto se utilizan temperaturas superiores a la del ambiente.
Solubilidad

 

Es la propiedad de las sustancias que nos indica qué tan solubles son en un solvente determinado a temperaturas y presiones específicas.

Las soluciones también pueden clasificarse en función al estado de agregación en el que se encuentran ambos compuestos En una disolución, tanto el soluto como el solvente pueden estar presentes en diferentes estados de agregación, ya sea sólido, líquido o gaseoso, por lo que en caso de que ambos estén en el mismo estado, se dice que el solvente es el componente que está en mayor cantidad y el otro componente sería el soluto.

¿Sabías qué?
Es posible encontrar soluciones con dos o más solutos. Este principio también se puede aplicar para los gases y los sólidos.

CONCENTRACIONES DE UNA SOLUCIÓN

La concentración puede expresarse cuantitativamente al establecer  diferentes relaciones porcentuales entre las cantidades de sustancias a través de unidades químicas y físicas conocidas como: masa (m), volumen (v) y cantidad de sustancia (n). Dentro de las formas de expresar la concentración de una sustancia tenemos:

  • Tanto por ciento masa sobre masa (%m/m): el porcentaje masa-masa se define como la unidad física que determina la concentración en gramos (g) de soluto contenidos en 100 g de solución.
  • Tanto por ciento volumen sobre volumen (%v/v): el porcentaje en volumen- volumen se define como la unidad física que determina la concentración en mililitros (ml) de soluto contenido en 100 ml de solución.
  • Tanto por ciento masa sobre volumen (%m/v): el porcentaje en masa- volumen se define como la unidad física que determina la concentración en gramos de soluto contenidos en 100 ml de solución.
  • Molalidad (m): es una magnitud que expresa el número de moles de soluto por kilogramo de solvente.
  • Molaridad (M): es una magnitud que expresa el número de moles de soluto por litro de solución.

SEPARACIÓN DE COMPONENTES EN SOLUCIÓN

Al ver una solución parece imposible que se puedan separar sus componentes, sin embargo, los componentes de una solución pueden aislarse a través del empleo de diferentes técnicas de separación, la utilización de cada una dependerá del tipo de solución y las características particulares de sus elementos.

Técnicas de separación.

Destilación

Puede ser simple o fraccionada.

  • Destilación simple: es una técnica empleada para separar dos líquidos con punto de ebullición diferente o un sólido disuelto en un líquido. El fundamento de esta técnica es la evaporación del componente más volátil de la solución seguida de una condensación del mismo, lo cual ocurre dentro de un sistema cerrado que se conoce como equipo de destilación.
  • Destilación fraccionada: se utiliza cuando se necesita separar una solución formada por dos líquidos de punto de ebullición muy cercanos. En la industria se emplea la destilación fraccionada para la fabricación de bebidas alcohólicas, la obtención de agua destilada y el fraccionamiento de los componentes del petróleo.

Cromatografía

Se utiliza para separar fluidos que pueden ser gases o líquidos. Este método de separación requiere de dos fases: una llamada fase móvil y la otra llamada fase fija o estacionaria. Las sustancias presentes en una mezcla son arrastradas a través de la fase estacionaria, generalmente representada por papel, y la fase móvil, que puede ser agua, alcohol u otro solvente.

Precipitación y cristalización

Es una técnica que se usa cuando la solución está sobresaturada. Esto provoca que el soluto se precipite y finalmente se cristalice. Cuanto más lentamente se produce la precipitación mejor se cristaliza, ya que los iones tendrán más tiempo para ordenarse y los cristales serán mayores.

Una de las formas de provocar la cristalización es evaporar el solvente hasta lograr la sobresaturación de la solución, luego se enfría para la formación de los cristales del soluto.

Extracción de sal

 

En la extracción de sal se induce la formación de los cristales de sal a partir de la evaporación del agua.

SOLUCIONES EN LA VIDA COTIDIANA

En nuestro entorno entramos en contacto con diversidad de objetos; algunos son sólidos, otros líquidos y otros gaseosos. Si bien parece que todos son diferentes, podemos decir que hay algo que tienen en común: todos se forman de materia.

El estudio de las soluciones tiene mucha importancia en diferentes aspectos de la vida cotidiana, como en la elaboración de medicamentos, de exámenes médicos, a nivel industrial para estudios del petróleo, en la industria de los metales, de bebidas, entre otros.

RECURSOS PARA DOCENTES

Enciclopedia Virtual “Soluciones”

Material audiovisual exclusivo para el uso docente, en el video el profesor detalla todos los elementos y características de las soluciones.

VER

CAPÍTULO 3 / TEMA 1

Sistemas materiales

Al momento de estudiar la materia, por lo general analizamos una porción de ésta a la que llamamos sistema material. Todo sistema material tiene propiedades generales o extensivas y propiedades específicas o intensivas.

VER INFOGRAFÍA

PROPIEDADES EXTENSIVAS E INTENSIVAS

Propiedades extensivas: dependen de la cantidad de materia, por ejemplo: el peso, la masa y el volumen. Todas las sustancias de manera general presentan estas propiedades, pero no son tan útiles para identificar un material respecto de otro. Sin embargo, sirven para saber cuánta sustancia presente hay. Se trata de una identificación cuantitativa.

Con las propiedades extensivas no se puede describir un material de manera cualitativa.

Propiedades intensivas: no cambian al variar la cantidad de materia analizada. Por ejemplo: la densidad, el punto de ebullición, el punto de fusión y el índice de refracción, entre otras propiedades. En general, las propiedades intensivas brindan mucha información sobre los materiales y sirven para identificar un material respecto de otro.

El punto de fusión es una propiedad útil para identificar los metales.

¿QUÉ SON LOS SISTEMAS MATERIALES?

Un sistema material es una porción de materia que se aísla para ser estudiada. Hablamos de fase cuando nos referimos a todas aquellas porciones del sistema material que tienen propiedades intensivas iguales. Por otro lado, los componentes son las sustancias que conforman el sistema material.

Tipos de fase

Las fases que pueden estar presentes en un sistema son: sólida, líquida y gaseosa.

La fase sólida, representada con la letra “s” en el subíndice de la sustancia a estudiar (X(s)), es aquella en donde los átomos y las moléculas se encuentran unidos fuertemente, por lo que se trata de una estructura muy ordenada.

La fase líquida, representada con la letra “l” en el subíndice de la sustancia a estudiar (X(l)), es aquella fase en donde los átomos y las moléculas no se encuentran unidos tan fuertemente, como en el caso de los sólidos. Por lo tanto, se trata de una sustancia capaz de mantener cierto orden y libertad de movimiento.

La fase gaseosa, representada con la letra “g” en el subíndice de la sustancia a estudiar (X(g)), es aquella fase en donde los átomos y las moléculas no se encuentran unidos fuertemente, es decir, son uniones muy débiles, por lo que las partículas se mueven libremente y en forma aleatoria.

Fases del agua

El agua es la sustancia más versátil del planeta. En la vida cotidiana la podemos encontrar en sus tres fases: sólida, líquida y gaseosa.

CLASIFICACIÓN SEGÚN EL NÚMERO DE FASES DEL SISTEMA

Sistema homogéneo: cuando un sistema posee las mismas propiedades intensivas en toda su masa, significa que es un sistema homogéneo. Un sistema homogéneo cuenta con una sola fase.

Sistema heterogéneo: cuando un sistema material cuenta con distintas propiedades intensivas en por lo menos dos de sus puntos, se trata de un sistema heterogéneo. Un sistema de este tipo tiene dos o más fases.

El medioambiente

Si salimos al patio o vamos a un parque nos daremos cuenta que el suelo que pisamos es un sistema heterogéneo de distintos componentes de sólidos. Tierra, pequeñas piedras, y partículas con distintos tamaños y características son sólo algunas de las fases que podemos encontrar.

 

Por otro lado, no podemos ver a nuestro alrededor el aire que respiramos. Sin embargo, éste es una mezcla de compuestos gaseosos que da como resultado un sistema homogéneo.

CLASIFICACIÓN SEGÚN SU RELACIÓN CON EL MEDIO

Sistema abierto: es el caso más común; es un sistema que permite el intercambio de energía y masa con el medioambiente.

Sistema cerrado: no permite el intercambio de masa con el medioambiente, pero sí la transferencia de energía con el medio.

Sistema aislado: no permite ni la transferencia de energía, ni de masa con el medioambiente.

Sistemas según su relación con el medio 

Un lago y el ciclo del agua son un ejemplo de sistema abierto.
Una botella de gaseosa en el refrigerador es un ejemplo de sistema cerrado.
Un termo de café es un ejemplo de sistema aislado.

SUSTANCIAS PURAS

Las sustancias puras son aquellas cuyos componentes no pueden separarse mediante procesos físicos; en algunos casos solo es posible mediante procesos químicos. El agua es una sustancia pura. Si la analizamos en forma sólida, líquida o gaseosa, descubriríamos que su composición es la misma en todos los estados. Si la calentamos, la enfriamos o la congelamos (todos estos son procesos físicos) siempre tendremos los mismos componentes.

El diamante es una sustancia pura, ya que está conformado por moléculas de carbono muy unidas entre sí.

MEZCLAS

Una mezcla está compuesta por la unión de distintas sustancias puras que mantienen propiedades independientes. Pueden ser:

  • Mezclas homogéneas

Son aquellas producidas de manera directa entre moléculas, en las cuales no se diferencias los componentes. En este caso, mantienen las propiedades constantes. Otro nombre por el cual se conoce a esta mezcla es disolución. Se diferencia de una sustancia pura debido a que sus componente poseen distintas temperaturas de fusión o ebullición. Es partir de esta diferencia que se pueden separar los componente a través de la aplicación de calor, que permite modificar el estado de la sustancia que se busca aislar del resto. La acción de separar los componentes de una disolución implica medios más sofisticados y un gasto energético mayor en relación a la separación de componentes en el caso de una mezcla heterogénea.

Los jugos son un ejemplo de disolución.

Si bien está formada por dos o más componentes, a simple vista sólo podemos ver un componente. Por ejemplo, el agua con sal es un sistema material de dos sustancias, pero sólo vemos una. En cualquier porción de la muestra homogénea que tomemos veríamos que presenta las mismas propiedades e igual composición química.

El agua de mar

Si decidimos investigar sobre la composición del agua de mar, veríamos que también hay sal. Esto nos indica que el agua de mar no es una sustancia pura, pues es una mezcla de agua y sal que se puede separar mediante un proceso físico (evaporación).

  • Mezclas heterogéneas

Sus componentes se pueden diferenciar ópticamente. A su vez, estos se pueden aislar de manera simple, por ejemplo, mediante el uso de herramientas que posibilitan su separación mecánica. Algunos modos de separación de este tipo de mezclas son sistemas como el filtrado, que permite quitar partículas sólidas de un líquido o de un gas, y la decantación, a partir de la cual se pueden separar líquidos con distinta densidad.

Un ejemplo de mezcla heterogénea es el agua y el aceite. Es decir, no es una sustancia uniforme. Además, si tomáramos distintos puntos de esta mezcla veríamos que presentan composición y propiedades distintas.

El agua y el aceite conforman una mezcla heterogénea.
RECURSOS PARA DOCENTES

Infografía “Mezclas homogéneas y heterogéneas”

Material visual con mayor información de los tipos de mezclas en los sistemas materiales.

VER

 

Enciclopedia virtual “Materia”

Este recurso audiovisual exclusivo para docentes contiene la definición de la materia, sus propiedades y cómo se describen los sistemas materiales.

VER

 

CAPÍTULO 3 / REVISIÓN

MEZCLAS Y SOLUCIONES | ¿qué aprendimos?

Sistemas materiales

En nuestra vida cotidiana entramos en contacto con diversidad de elementos; algunos son sólidos, otros líquidos y otros gaseosos. Si bien parece que todos son diferentes, podemos decir que hay algo que tienen en común: todos están formados por materia. Para estudiar la materia solemos analizar una porción a la que llamamos sistema material. Todo sistema material tiene propiedades generales o extensivas y propiedades específicas o intensivas. Hablamos de “fase” cuando nos referimos a todas aquellas porciones del sistema material que tienen las mismas propiedades intensivas. Por otro lado, los componentes son las sustancias que conforman el sistema material.

Todo el universo visible está formado de materia.

Sistemas homogéneos

Hablamos de sistema homogéneo cuando un sistema material posee las mismas propiedades intensivas en toda su masa. Éste cuenta con una sola fase. Las soluciones son sistemas materiales homogéneos compuestos por uno o más solutos disueltos en un solvente determinado. El soluto es el componente de la solución que se encuentra en menor proporción y se disuelve en el solvente, en tanto, el solvente es el que se encuentra en mayor proporción y tiene la capacidad de disolver el soluto. Las soluciones se pueden clasificar en función de la concentración en insaturadas, saturadas y sobresaturadas. Su concentración puede expresarse cuantitativamente, se establecen diferentes relaciones porcentuales entre las cantidades de sustancias a través de unidades químicas y físicas conocidas como masa (m), volumen (v) y cantidad de sustancia (n).

El agua es el solvente universal.

Sistemas heterogéneos

Un sistema homogéneo cuenta con distintas propiedades intensivas en al menos dos de sus puntos. Un sistema de este tipo tiene dos o más fases. Generalmente, para su separación se utilizan mecanismos físicos y de menor consumo de energía. Existen las mezclas groseras y las mezclas finas o suspensiones. En las primeras los componentes se diferencian fácilmente debido a su gran tamaño, y las suspensiones se forman por una fase sólida con baja solubilidad que se encuentra dispersa en la fase liquida. Las fases son más difíciles de diferenciar debido al ínfimo tamaño de la partícula. Existen diversos métodos de separación de fases, algunos de ellos son: la decantación, la tamización, la filtración y la imantación. Los métodos mecánicos no producen transformaciones en los componentes de la mezcla.

Un sistema heterogéneo fácil de identificar es el del el agua y el aceite.

Agua

El agua es un compuesto químico de vital importancia para los seres vivos. Es la sustancia universal más abundante en la Tierra. Está compuesta por hidrógeno y oxígeno. Nuestro planeta está cubierto en un 70 % por agua. Por otra parte, todas las especies dependen de este líquido vital para la supervivencia. Al igual que el oxígeno, el agua es un elemento de la naturaleza esencial para que todas las formas de vida puedan existir. El agua cuenta con diferentes propiedades que se clasifican en organolépticas y fisicoquímicas. Las primeras son las que percibimos con nuestros sentidos, y las segundas tienen relación con la composición química. El agua es un regulador de temperatura para la mayoría de los seres vivientes, así como también tiene un papel esencial en la regulación de la temperatura atmosférica.

El 70 % de nuestro cuerpo está formado por agua.

Contaminación del agua

La contaminación del agua se produce cuando se introduce un material que altera sus características naturales. El agua contaminada deja de ser apta para el desarrollo de los seres vivos. El mercurio es una fuente natural de contaminación y también los hidrocarburos. Otro agente natural contaminante es el arsénico producido por las actividades volcánicas. El ser humano ha vivido con este tipo de contaminación desde hace miles de años y no es posible evitarla; sin embargo, la contaminación debido a las actividades humanas es mucho mayor. El uso de los fertilizantes en la agricultura, metales pesados en la minería, las aguas residuales de las industrias y los desechos arrojados por el ser humano, ponen en riesgo sanitario al ecosistema del planeta que depende de este importante líquido.

El agua contaminada es cuna de enfermedades.

Concepto de Arrehnius

Arrhenius propuso definiciones precisas de ácido, base y sal basadas en su teoría de la disociación electrolítica.

Para Arrhenius, un ácido es cualquier sustancia que en disolución acuosa da iones H+ (o, para ser más precisos y puesto que estos iones se hidrolizan, iones H3O+), es decir que contiene hidrógeno reemplazable por un metal o por un radical positivo para formar sales; una base es cualquier sustancia que en disolución da iones hidroxilo OH- , es decir que contiene uno más grupos hidroxilo reemplazables por radicales ácidos negativos para formar sales; y una sal es un compuesto que se ioniza dando aniones distintos al ion OH- y cationes distintos al ion H3O+.

Arrehnius se encargó de darle difiniciones a los ácidos, las bases y las sales.

Una sal ácida (NaHSO4, KHCO3, etc.) es la que, además de dar cationes de uno o más metales (sales dobles), da iones H3O+; análogamente, una sal básica (ClSbO, Cl(OH)Ca, etc.) es aquella que, además de los aniones que corresponden a su radical ácido, da aniones OH-. Por oposición a las sales ácidas y a las básicas, las sales normales se denominan sales neutras.

Steve August Arrehnius (1859-1927) fue un reconocido científico sueco.

Concepto de Bronsted y Lowry

Los iones H3O+ y OH-, cuya presencia caracteriza respectivamente las disoluciones acuosas de ácidos y de bases, se forman en realidad a partir de moléculas de agua que, respectivamente, incorporan o pierden un ion H+ o, lo que es lo mismo, un protón. Con otros disolventes distintos del agua, los ácidos y las bases se comportarían del mismo modo, es decir cediendo o aceptando protones, pero los iones formados serían distintos en cada caso.

Razonando a partir de estas y similares consideraciones, en 1923, Brönsted y Lowry propusieron, independientemente uno de otro, las siguientes definiciones de ácido y de base: Ácido es toda sustancia que puede ceder protones, y base toda sustancia que puede ganar protones. Es decir, un ácido es propiamente un dador de protones, mientras que una base es un aceptor de protones. Pero, puesto que el proceso de perder o ganar un protón es reversible, el ácido, al perder un protón, se transforma en una base y, a su vez, ésta, al ganarlo, se transforma en un ácido. Así, pues, un ácido y su base correspondiente forman un sistema conjugado.

Ácido Protón + Base

Como un protón no puede tener una existencia libre en disolución, debe incorporarse a otra sustancia que se comporta así como base. Los equilibrios se establecen pues en sistemas conjugados dobles del tipo:

Ácido1 + Base2 Ácido2 + Base1

En los que, cuanto más fuerte es un ácido, más débil es su base conjugada y, cuanto más fuerte es una base, más débil es su ácido conjugado. Ejemplos:

HCl + NH3 NH4 + + Cl-

H2SO4 + H2O H3O+ + HSO4 –

HSO4 – + H2O H3O+ + SO4 –

Es importante saber que se considera un ácido a toda sustancia que puede ceder protones, y base a toda sustancia que puede ganar protones.

Según la teoría de Brönsted y Lowry, un ácido y una base pueden ser tanto compuestos moleculares como iones, y una misma sustancia molecular o iónica puede actuar en un caso como ácido y en otro como base. Por ejemplo, el agua actúa como base frente al cloruro de hidrógeno y como ácido frente al amoníaco. En disoluciones no acuosas se forman iones distintos de los iones H3O+ y OH-, pero el proceso es esencialmente el mismo; así, disueltos en amoníaco, NH3, sustancia que como disolvente tiene un comportamiento muy similar al del agua, los ácidos dan lugar a la formación de iones amonio, NH4 +, y las bases a la formación de iones amida, NH2.

Thomas Martin Lowry (1874-1936)
Johannes Nicolaus Bronsted (1879-1947)

Concepto de Lewis

La principal dificultad de las definiciones de ácido y base de Brönsted y Lowry es que sólo pueden aplicarse a reacciones que implican la transferencia de un protón, por lo que para que una sustancia pueda actuar como un ácido en el sentido de la definición de Brönsted-Lowry debe contener en su molécula un átomo de hidrógeno ionizable.

Sin embargo, hay muchas reacciones en las que una sustancia que de acuerdo con la teoría de Brönsted-Lowry no sería un ácido se comporta realmente como tal en el sentido más clásico del término (el de formador de sales). Así, por ejemplo, en ausencia de disolvente y, por lo tanto, sin que exista transferencia de protones, el dióxido de carbono, CO2, reacciona con un óxido básico como el óxido de calcio, CaO, para formar una sal:

CaO + CO2 CaCO3

El problema estriba esencialmente en el injustificado papel especial que la teoría de Brönsted-Lowry otorga al protón. Para superar esta dificultad, Lewis propuso en 1923 un innovador concepto de ácido y base. El nuevo punto de vista no tuvo apenas eco en el mundo científico hasta que el propio Lewis volvió a presentar sus ideas más ampliamente desarrolladas en 1938. De acuerdo con esta teoría, un ácido es toda sustancia (molecular o iónica) que puede aceptar un par de electrones, y una base toda sustancia que puede ceder un par de electrones. En otras palabras, un ácido debe tener su octeto de electrones incompleto y una base debe poseer un par de electrones solitarios. Entonces, la unión de un ácido y una base corresponde a la formación de un enlace covalente dativo o coordinado.

El concepto de Lewis propuso corregir los errores de la teoría de Bronsted y Lowry.

El concepto de base propuesto por Lewis coincide esencialmente con el de Brönsted-Lowry, ya que para que una sustancia pueda aceptar un protón (es decir, comportarse como base en el sentido de Brönsted-Lowry) debe poseer un par de electrones no compartidos. Por ejemplo, la molécula de agua, H2O, y el ion cloruro, Cl-, que pueden aceptar un protón, tienen las siguientes estructuras electrónicas:

O sea, que poseen un par de electrones no compartidos que pueden emplear para aceptar un protón, formando, respectivamente, el ion H3O+ y la molécula HCl:

Evidentemente, tanto el agua como el ion cloruro pueden comportarse como bases de Lewis cediendo un par de electrones no compartidos a un ácido. Vemos, pues, que, respecto al concepto de base de la teoría de Brönsted-Lowry, el concepto propuesto por Lewis no amplía de forma significativa el número de compuestos que pueden ser considerados como bases.

Sin embargo, el caso es radicalmente distinto para el concepto de ácido. Para empezar, hay sustancias que son ácidos de acuerdo con la definición de Brönsted-Lowry y que no lo son en el sentido de Lewis. Por ejemplo, para Lewis el HCl no es realmente un ácido sino la combinación de un ácido (H+) y una base (Cl-); ya vimos que el ion Cl- es una base tanto según la definición de Brönsted-Lowry como de Lewis y ahora justificaremos que el ion H+ es un ácido en el sentido de Lewis mediante la reacción:

H+ + H2O H3O+

En la que el H+ acepta un par de electrones de la molécula de agua para formar un ion H3O+, comportándose, por lo tanto, como un ácido. También deben ser considerados como ácidos en el sentido de Lewis los cationes metálicos, que aceptan pares de electrones al hidratarse o solvatarse. Y, volviendo a la reacción que escribimos más arriba entre el dióxido de carbono y el óxido de calcio:

CaO + CO2 CaCO3

También aquí debemos considerar que el CO2 es un ácido en el sentido de Lewis, ya que en esta reacción el átomo de carbono del CO2 acepta en covalencia dativa un par de electrones cedidos por el átomo de oxígeno del CaO:

El modelo de Lewis se utiliza en química orgánica para explicar el comportamiento catalítico de algunos compuestos que son ácidos de Lewis, pero, en general, cuando se estudian reacciones que tienen lugar en disolución acuosa o simplemente que implican una transferencia de protones, la generalización propuesta por Lewis resulta innecesaria y los químicos razonan en estos casos a partir de los conceptos de Arrhenius o de Brönsted-Lowry.

Gilbert Newton Lewis (1875-1946) fue un reconocido fisicoquímico estadounidense.

Propiedades y nomenclatura de aminas

Las aminas son compuestos orgánicos nitrogenados conocidos por su importancia a nivel biológico y medicinal. Ejemplo de ello es la serotonina, un neurotransmisor involucrado en diversos procesos de tipo afectivo a nivel del sistema nervioso central.

Las aminas son compuestos orgánicos derivados del amoniaco, conformados por uno o más grupos alquilo o arilo enlazados al átomo de hidrógeno mediante un enlace simple.


En función del número de grupos alquilo o arilo unido al nitrógeno las aminas se clasifican en:

Amina primaria: están constituidas por un grupo amino unido a un sustituyente alquilo o arilo (R- NH2).

Amina secundaria: están formadas por dos grupos alquilo o arilo (R-NH-R´) unidos al átomo de hidrógeno.


Amina terciaria: tienen tres grupos alquilo o arilo unidos al nitrógeno (NR3).


IMPORTANCIA BIOLÓGICA DE LAS AMINAS

En el cuerpo humano hay diferentes aminas que cumplen funciones vitales en el organismo, entre las cuales se encuentran:

Histamina: es la sustancia responsable de las reacciones típicas de la alergia como la dilatación de los vasos sanguíneos, también es un importante neurotransmisor.

Niacina: es una vitamina que ayuda al buen funcionamiento de órganos como la piel, además interviene en procesos del sistema digestivo y nervioso.

Dopamina: es un neurotransmisor del sistema nervioso central y periférico.

PROPIEDADES DE LAS AMINAS

Las propiedades de las aminas están asociadas a su estructura química y la forma en que ésta determina las interacciones moleculares. En general, las aminas son polares y presentan interacciones del tipo dipolo-dipolo, además, aquellas que contienen enlaces de N-H pueden interactuar mediante enlaces de hidrógeno. Debido a que el nitrógeno es menos electronegativo que el oxígeno presente en los alcoholes (R-OH), los puentes de hidrógeno en las aminas son más débiles y por tanto sus puntos de ebullición suelen ser menores a los de los alcoholes de igual masa molecular.

¿Sabías que incluso las aminas terciarias pueden interaccionar con otras moléculas que formen enlaces de hidrógeno? Esto debido al par de electrones libre del nitrógeno.

En cuanto a la solubilidad, las aminas con menos de siete átomos de carbono son solubles en agua, propiedad que disminuye al aumentar el número de carbonos.

Las aminas se comportan como bases débiles en presencia de un ácido, tal como muestra el siguiente ejemplo:


AMINAS MEDICINALES

En la medicina hay drogas o fármacos que pertenecen al grupo de las aminas, como son los antihistamínicos recetados en los casos de alergias y gripes, también la morfina administrada en dosis pequeñas a pacientes que sufren dolor crónico y agudo.

Sin embargo, algunas aminas como la cocaína, la nicotina y la metanfetamina generan adicción y demás efectos negativos sobre el sistema nervioso central y la salud en general.

¿Sabías que el nombre de vitaminas se debe a que inicialmente se creía dichas biomoléculas eran todas aminas?

NOMENCLATURA DE AMINAS

Las aminas se nombran como alcanoaminas o alquilaminas, es decir, se nombran utilizando el nombre del alcano o sustituyente alquilo, respectivamente. En ambos casos se utiliza la terminación –amina.


En aquellos casos donde hay más de un sustituyente se deben nombrar en orden alfabético, así mismo, si alguno de estos se repite varias veces se utilizan los prefijos de cantidad: di, tri y tetra, entre otros.


También es posible nombrar los sustituyentes empleando la letra N como localizador, siempre que los sustituyentes estén unidos al átomo de nitrógeno.


En compuestos donde la prioridad corresponde a otra función química, las aminas se nombran empleando el término amino- precedido por el localizador.


SALES CUATERNARIAS

Las sales cuaternarias se forman cuando una amina reacciona con un ácido. Se utilizan como producto de limpieza y en medicamentos, ya que son más estables y resistentes que las aminas de las cuales provienen.



¡Aplica lo aprendido!

Indica el nombre del siguiente compuesto.


  1. Enumera la cadena carbonada más larga.

  1. Identificar los sustituyentes.

  1. Nombrar el compuesto.

Nutrición infantil – Bebés de 6 meses

A partir de esta edad, los niños comienzan a desenvolverse motrizmente y estar más activos, por lo que necesitan más cantidad de alimentos.

Por eso, se debe empezar a complementar la leche materna, agregándole de a poco otros alimentos diferentes.

¿Qué alimentos se pueden dar y cómo ofrecerlos?

Se puede comenzar a darle al bebé una vez al día unas cucharaditas de papillas de cereales: arroz, fécula de maíz, harina de maíz, tapioca. Por ejemplo, arroz bien cocido y pisado con tenedor; polenta con zapallo, o purés de hortalizas (combinar papa sin brotes, batata, mandioca, zapallo y zanahoria, enriquecidos con leche materna o leche en polvo fortificada).

NO hace falta agregar sal. Los alimentos ya contienen, naturalmente, suficiente sal y no conviene que los niños se acostumbren desde pequeños a los sabores muy salados.

Es aconsejable agregar en cada comida una cucharadita de aceite o manteca.

Una semana más adelante se puede agregar un pequeño trozo de carne sin grasa –de vaca o de pollo, de conejo, de cerdo–, muy bien cocida –a la plancha, a la parrilla o hervida– y bien desmenuzada –picada finamente o rallada–. Una vez por semana se puede reemplazar la carne por hígado bien cocido y molido o morcilla tamizada (sólo la parte cremosa, sin piel ni partes duras).

A los purés se les puede agregar: salsa blanca, ricota o queso tipo cremoso.

Como postre, se pueden ofrecer purés de pulpas de frutas maduras (manzana, banana, peras, durazno), bien lavadas y peladas.

Como bebida, lo ideal es el agua hervida y enfriada; también jugos de frutas naturales, colados y diluidos con un poco de agua. No es necesario ni conveniente agregarles azúcar. Los sabores naturales son siempre más saludables.

Para tener en cuenta:

– Es recomendable amamantar primero y después ofrecer los alimentos distintos a la leche.

– Las comiditas deben ser espesas. Las preparaciones líquidas (sopas, caldos, jugos) no contienen suficientes elementos nutritivos porque tienen mayor cantidad de agua.

Fuente: Ministerio de Salud – Presidencia de la Nación (Argentina)

http://msal.gob.ar/index.php/component/content/article/48/142-nutricion-bebes-de-6-meses#sthash.B6gBWOtB.dpuf