Galaxias: Vía Láctea

El Universo es inmenso y nosotros ocupamos una mínima porción. Hay galaxias, quásares, estrellas, agujeros negros… Aprendamos más sobre las galaxias y, en particular, sobre la Vía Láctea que es en la que vivimos.

Galaxia en forma de espiral llamada Andrómeda.

Las Galaxias son conjuntos o agrupaciones de estrellas, gas y polvo. Se las conoce también por universos islas. Contienen más de mil estrellas y el diámetro varía de los 1.500 a 3.000 años luz. Las galaxias tienen un movimiento de rotación en torno a su eje. Se clasifican de acuerdo con su forma en tres grupos:

Galaxias elípticas: son las que tienen forma ovalada o de esfera achatada. Aproximadamente el 17% de las galaxias mantienen esta forma, en su mayoría se conforman de estrellas viejas.

Galaxias espirales: el 80% de las galaxias tienen esta forma que es similar a un disco achatado; se distingue un núcleo que es atravesado por varios brazos. Se constituye por estrellas viejas, jóvenes, gas y polvo.

Galaxias irregulares: no tienen un formato específico porque los agregados están revueltos y rodeados por nebulosas. Están constituidas de gas, polvo y estrellas jóvenes. Representan el 3% de las galaxias.

LAS GALAXIAS MÁS CONOCIDAS NÚMERO DE
ESTRELLAS
FORMA DIÁMETRO MEDIO
(años luz)
Pequeña Nube de Magallanes

Gran Nube de Magallanes

Vía Láctea

Andrómeda

1.500 millones

5.000 millones

Entre 200 mil y 400 mil millones

400 billones

Irregular

Irregular

Espiral

Espiral

20.000

30.000

100.000

150.000

Una de las millones de galaxias existentes.

MÁS DATOS SOBRE LAS GALAXIAS

• Las primeras se formaron hace 1.000 millones de años atrás luego de que se produzca la gran explosión (Big-Bang, la explosión que dio origen al Universo).
• Se mueven constantemente y muchas veces generan choques violentos.
• Existen más de 100 mil millones en el universo observable.
• En la actualidad, los astrónomos están descubriendo galaxias muy pequeñas que contienen menos de un millón de estrellas, posiblemente sólo un millar.
• El Observatorio de rayos X Chandra, de la NASA, ha descubierto ricos depósitos de neón, magnesio y silicio en un par de galaxias en colisión llamadas Las Antenas. Los depósitos están localizados en vastas nubes de gas caliente. Cuando las nubes se enfríen, dicen los científicos, se debería formar una gran cantidad de estrellas y planetas. Estos resultados podrían augurar el destino de nuestra propia Vía Láctea y su futura colisión con la galaxia Andrómeda.

LA GALAXIA MÁS LEJANA DEL UNIVERSO

En noviembre de 2012 un equipo de astrónomos descubrió la galaxia más lejana jamás identificada en el Universo con ayuda de los telescopios espaciales Hubble y Spitzer, y una técnica conocida como “lente gravitacional”. La llamaron MACS0647-JD; se localiza a 13.3 mil millones de años luz de la Tierra.

Habría nacido 420 millones de años luz después de que se produjera el Big Bang. Esto permite concluir que la galaxia recién descubierta habría aparecido cuando nuestro Universo tenía sólo 3% de su edad actual (13.700 millones de años).

La galaxia aparece tan pequeña en las imágenes captadas que los científicos piensan que se trata de las primeras etapas de formación de una galaxia. De acuerdo las observaciones, su diámetro es apenas de 600 años luz, lo que no es casi nada, comparado con el diámetro de la Vía Láctea.

Edwin Hubble (1889-1953)

Astrónomo estadounidense. En 1924 demostró por primera vez la existencia de otras galaxias. Mediante un telescopio muy potente de 254 cm (100 pulgadas) en el observatorio del Monte Wilson (California, EE UU), descubrió que un grupo de estrellas considerado como integrante de la Vía Láctea era, en realidad, una galaxia independiente, hoy conocida como Andrómeda. Hubble descubrió también muchas otras galaxias espirales y constató que las galaxias más distantes se alejan de nosotros a mayor velocidad. A partir de esta observación, conocida como ley de Hubble, dedujo que el Universo se encuentra en expansión, hecho que resulta determinante para la naturaleza del mismo.

LA VÍA LÁCTEA

Es una galaxia grande, con forma de espiral donde se concentran entre 200 mil y 400 mil millones de estrellas, entre ellas, el Sol. También dentro de esta galaxia se encuentra la Tierra. La Vía Láctea tiene un diámetro aproximado de 100 mil años luz y cuenta con más de 300 mil millones de estrellas.

La Vía Láctea.

Los griegos la denominaron Vía Láctea (camino de leche), por el aspecto blanquecino y porque supusieron que era leche derramada del pecho de la diosa Hera. En el siglo V a.C, Demócrito, un antiguo griego, supuso que se trataba de una concentración de estrellas. En 1609 d.C aquella vieja teoría de Demócrito es científicamente comprobada tras la invención del telescopio, una herramienta que permite observar al cielo en detalle.

La Vía Láctea tiene forma convexa; en el núcleo, de 8.000 años luz de diámetro, se distingue una zona central de forma elíptica, allí las estrellas están más agrupadas que en los brazos. Cubre a esta galaxia una nube de hidrógeno, algunas estrellas y cúmulos estelares.

Hay un brazo que se distingue de los demás, se llama Orión y en él se ubica el Sistema Solar o planetario donde se encuentra el Sol, los planetas, los satélites naturales, los asteroides, los cometas, gas y polvo.

El Sistema Solar forma parte de La Vía Láctea.
¿Sabías qué...?
Hoy orbitan la Tierra más de mil satélites artificiales.

¿Cómo es?

Para decirlo con palabras sencillas: es una porción de Universo con forma de espiral. Posee un núcleo y un disco aplastado que recubre al núcleo. Además se compone de un sistema esférico o halo.

Halo y núcleo: se componen de estrellas viejas aisladas entre sí y de aglomeraciones globulares menores. Aquí se concentran el 99% de las estrellas de la galaxia, esto sería entre 100 mil millones y 200 mil millones de estrellas.

Disco: presenta una estructura en espiral y brazos que parecen brotar del núcleo. Los brazos están compuestos de gases que son despedidos del núcleo de la galaxia y de un polvo que oscurece el plano central de la galaxia y de casi mil millones de estrellas. Por la rotación diferencial de la galaxia, los brazos se forman y deshacen continuamente, a pesar de los campos magnéticos que tienden a conservarlos.

Sol: se encuentra cerca del borde exterior de uno de los brazos espirales, llamado Brazo de Orión.

¿Cómo se formó?

Nuestra galaxia se formó en su mayor parte en un proceso rápido, que duró entre 500 y 1.000 millones de años, sólo un 5 por ciento de su edad total. Estos datos contradicen lo que sostenían algunos resultados científicos publicados en los últimos años, que establecían períodos de hasta 4.000 ó 5.000 millones de años. Investigadores del grupo de Poblaciones Estelares del Instituto de Astrofísica de Canarias (IAC) y del grupo de Cúmulos Estelares de la Universidad de Padua (Italia) han llegado a esta conclusión, que ayuda a esclarecer el debate sostenido en los últimos veinte años entre quienes opinaban que la Vía Láctea se formó lentamente y los defensores de un esquema de formación rápida. El estudio aporta además nuevos datos sobre las características del Universo primitivo. Los resultados, efectivamente, concluyen que la Vía Láctea se formó en unos pocos cientos de millones de años -entre 500 y 1.000- y que la mayor parte de nuestra galaxia se originó a partir del rápido colapso de una protogalaxia primigenia. Los investigadores han establecido estas cifras tras estudiar las edades de 52 cúmulos globulares de nuestra galaxia, los conjuntos de estrellas más viejos conocidos.

¿Qué dimensión tiene?

Durante mucho tiempo se pensó que la vía láctea no tenía límites, sin embargo, entre 1920 y 1924 el astrónomo estadounidense Edwin P. Hubble demostró que algunas nubes galácticas, manchas de luz apenas visibles entre la multitud de estrellas, eran en realidad grandes universos estelares situados mucho más allá de la Vía Láctea. Hubble demostró especialmente que la nebulosa de Andrómeda es otra galaxia formada por sus propias estrellas. Esto permitió calcular también su longitud, que resultó ser de 700.000 años luz (mediciones actuales proponen una distancia mucho mayor). Así, se demostró que la Vía Láctea no se extiende hasta el infinito, como algunos astrólogos pensaban, y que no era todo el universo, sino sólo una parte casi despreciable en comparación con las distancias intergalácticas. Aún antes de Hubble, entre 1916 y 1919, se había descubierto que el Sol no se encuentra en el centro de la galaxia, como había supuesto Herschel, sino que ocupa una posición periférica.

¿Se mueve? ¿Cómo?

Sí, lógicamente se perciben movimientos. Pero no como un todo, sino a diversas velocidades, según la distancia del centro. Así, mientras que el Sol y las estrellas próximas a él presentan una velocidad de 220 km/s, y emplean unos 250 millones de años en realizar un giro completo en torno del centro, las estrellas más próximas a éste son más veloces, en tanto que las más lejanas son más lentas.
Por tanto, el Sol y las estrellas próximas viajan conjuntamente en un gran torbellino espiral, con muchas diferencias en la dirección y la velocidad. Estas diferencias, de varias decenas de kilómetros por segundo, producen un cambio gradual en el aspecto de las constelaciones actuales.

Compañeras de la Vía Láctea

Recientemente se ha descubierto que existen dos galaxias, muy débiles y oscuras, bastante cerca de la Vía Láctea. La primera fue encontrada por el investigador Daniel Zucker, en la Universidad de Cambridge (Reino Unido) y la otra por Vasily Belokurov, compañero de Zucker. Zucker explica que estaba observando detenidamente el nuevo mapa de estrellas distantes en el cielo galáctico boreal, cuando notó una sobredensidad en Canes Venatici. Analizándola con mayor detalle, descubrió que es una galaxia enana previamente desconocida. Está aproximadamente a 640.000 años-luz de nosotros. Esto la hace una de las más distantes galaxias compañeras de la Vía Láctea.

Zucker envió un correo electrónico a Belokurov con la noticia, y en uno de esos casos en los que un descubrimiento propicia otro, Belokurov le respondió en otro mensaje unas horas después, anunciándole el descubrimiento de otra galaxia enana nueva, y más débil. Esta otra galaxia, en la constelación del Boyero, que Belokurov llamó “Boo”, muestra una estructura distorsionada que sugiere que está siendo desgarrada por las mareas gravitatorias de la Vía Láctea.

Júpiter

El quinto planeta de nuestro Sistema Solar es también el de mayores dimensiones, siendo desde la antigüedad un objeto de veneración que se podía ver en el cielo. Aquí conocemos un poco más a este auténtico gigante gaseoso.

El nombre parece decirlo todo: Júpiter es similar a Zeus en la mitología griega, es decir, el dios principal, padre de dioses y de hombres, al que el cónsul romano Cicerón no dudó en llamar como “la sobrecogedora presencia de una mente suprema”. La importancia y lo imponente que resulta parecen ser los argumentos por los cuales el quinto planeta de nuestro Sistema Solar es llamado de esta forma. El segundo cuerpo celeste de mayor tamaño después del Sol resulta aún un territorio lleno de misterios, al que la ciencia ha ido develando gracias a las últimas expediciones.

Comparación a escala del tamaño de Júpiter respecto al de la Tierra.

Estructura del planeta

A pesar de contar con un volumen que equivale a 1.317 planetas Tierra, la masa sólida es solamente 318 veces mayor a la de nuestro planeta. No tiene una superficie sólida y se encuentra rodeado por anillos, no tan visibles como los de Saturno, y varios satélites que se clasifican en tres grupos distintos. La composición del planeta es principalmente gaseosa, formando parte del grupo de planetas conocidos como “gigantes gaseosos”, aquellos que se encuentran en la parte externa del Sistema Solar y se caracterizan, además de por su composición ligera y un núcleo pequeño, por las turbulentas actividades meteorológicas y procesos gravitacionales.

La composición gaseosa de Júpiter tiene importantes semejanzas con la de una estrella, formada por altos porcentajes de hidrógeno (81 %) y helio (17%), conteniendo también pequeñas cantidades de amoníaco, metano, vapor de agua y sulfuro de hidrógeno. El núcleo sólido de Júpiter es diez veces el tamaño de nuestro planeta y el estado del hidrógeno, el principal elemento de este planeta, cambia de acuerdo a variables como la profundidad, la densidad o la presión.

¿Sabías qué...?
Los cuatro planetas más grandes del Sistema Solar son Júpiter, Saturno, Urano y Neptuno.
Datos de Júpiter
Diámetro 142.984 kilómetros
Masa 1899 x 1027 kg.
Gravedad 24,79 m/s2 (2,4 veces la de nuestro planeta)
Densidad 1,33 gr/cm3
Cantidad de satélites 67
Periodo de rotación (tiempo que demora un día) 9 horas y 50 minutos
Temperatura media -121,15 °C
Distancia promedio del Sol 778,4 millones de km.
Tiempo orbital sideral (tiempo que demora un planeta en dar la vuelta alrededor del Sol) 11 años, 315 días

El interior de Júpiter

Su interior se encuentra compuesto principalmente por hidrógeno, helio y argón. El hidrógeno se comprime de tal manera que a medida que nos adentramos en su interior se transforma en una sustancia líquida a la cual se la denomina como hidrógeno metálico y tiene excelentes propiedades conductivas. Si bien no se tienen suficientes precisiones, se cree que el planeta cuenta con un núcleo rocoso del cual se desconoce su composición, así como las propiedades de los materiales a esas profundidades. Se considera que la presión y la temperatura se incrementan a medida nos acercamos al núcleo, contando con una temperatura de 10.000° K (9726,85°centígrados) y una presión de 200 GPa (gigapascales) en el momento en que el hidrógeno se transforma en hidrógeno metálico, mientras que en las zonas próximas al núcleo se estiman temperaturas de 36.000° K (35.726,85° centígrados) y una presión que se encuentra entre los 3.000 y los 4.500 GPa (para tener una referencia, las enormes presiones que se encuentran en el núcleo de nuestro planeta son de apenas 360 GPa).

Representación de la NASA del interior de Júpiter
Representación tridimensional de la región ecuatorial de Júpiter, de acuerdo a los estudios de la sonda Galileo.

Un clima turbulento

Las condiciones de Júpiter son, como mencionamos, turbulentas, lo cual obliga a pensar lo dificultoso que sería un aproximamiento humano a su atmósfera. En primera instancia hay que mencionar a los llamativos colores que se pueden ver en las imágenes de Júpiter: la razón por la que los vemos refiere a reacciones químicas y restos de elementos en la atmósfera, en los cuales incidiría directamente el azufre. Los matices refieren a la altura donde se dan estas reacciones: el azul corresponde a las alturas más bajas, mientras que los colores marrones y rojos aparecen en las más altas.

La veloz rotación de Júpiter y el calor del núcleo interno dan lugar a un clima donde los vientos en el ecuador pueden alcanzar los 360 km/h, mientras que en la región correspondiente a la Banda Ecuatorial Norte alcanzan los 600 km/h. Para tener una idea aproximada de lo que esto significa tengamos en cuenta que el viento más veloz registrado sobre la superficie terrestre alcanzó los 372 km/h en Monte Washington (Estados Unidos) y que duró apenas unos minutos, que el huracán más destructivo alcanzó los 380 km/h en Guam y que el tornado con los vientos más intensos jamás registrado promedia entre los 510 y los 610 km/h. En el caso de Júpiter, esas condiciones que son atípicas en nuestro planeta se mantienen de forma constante en prácticamente la totalidad de su superficie, haciéndolo un lugar sumamente hostil.

En esta imagen tomada por la sonda Voyager 1 vemos la acción de los vientos en Júpiter. Las líneas naranjas bien definidas que van de sudoeste a noroeste representan a corrientes de vientos que alcanzan los 432 km/h.

Por otro lado, a las bajas temperaturas que promedian los -121,15 °C y alcanzan mínimas de -163,15°C y máximas de apenas los -75,15°C, se le suman relámpagos que son mucho más brillantes que los de nuestro planeta y rayos mucho más destructivos. El envío de la sonda Galileo en 1989, que llegó al planeta en el mes de diciembre 1995, otorgó no sólo mayores nociones de la composición atmosférica de Júpiter, sino que demostró la imposibilidad de un aproximamiento a este planeta, al menos con la tecnología actual: al tan sólo internarse 200 kilómetros en la atmósfera joviana, y permanecer por aproximadamente una hora, la sonda fue completamente destruida por la acción de la presión de 22 bar y las intensas tempestades.

Las grandes tempestades de Júpiter

Representación de la Gran Mancha Roja de Júpiter.

Sin lugar a dudas, la tempestad más conocida de Júpiter es la que se conoce como la Gran Mancha Roja (del inglés Great Red Spot). La observación de este fenómeno meteorológico del planeta data del siglo XVII, siendo observado por el científico inglés Robert Hooke en 1664 y descrito por el astrónomo y matemático italiano Giovanni Domenico Cassini en un periodo entre 1665 y 1713, siendo definido como una “mancha permanente”. El considerable tamaño de la misma es lo que permitió que pueda ser observada con mayor precisión por telescopios del siglo XIX, como lo testimonian los casos de los astrónomos Samuel Heinrich Schwabe y Carr Walter Pritchett. Tras las imágenes obtenidas por el observatorio astronómico norteamericano Yerkes a finales del siglo XIX, se abandonó la teoría que indicaba que podía tratarse de una montaña, principalmente tras los descubrimientos de la composición atmosférica de Júpiter. Las observaciones realizadas a lo largo del siglo XX permitieron tener mayores conocimientos de la naturaleza de esta “mancha”. La sonda espacial Voyager 1 fue la primera en proporcionar imágenes detalladas de este fenómeno en 1979.

En primera instancia debemos tener en cuenta que la Gran Mancha Roja es una enorme y persistente tormenta anticiclónica que se encuentra a los 22° sur del ecuador de Júpiter, manteniéndose habitualmente entre 183 y 348 días de forma constante. La razón por la cual se ve con facilidad con los instrumentos adecuados son sus dimensiones: esta tempestad abarca una superficie que puede contener la superficie de entre dos o tres planetas Tierra. Pero no es sólo su tamaño lo que impresiona, se calcula que la tempestad tiene una antigüedad de más de quinientos años y esa es la razón por la cual fue observada numerosas veces por el ser humano a lo largo de su historia. Sin embargo, se cree que últimamente su extensión ha ido disminuyendo, aunque se desconocen las causas de tales variaciones.

A través de distintos estudios y observaciones se pudo confirmar que las nubes que conforman la Gran Mancha Roja se encuentran elevadas, a al menos 8 km por encima del resto de las nubes de la atmósfera. Se calcula que los vientos que soplan en la mancha promedian los 430 km/h y durante algunos intervalos de tiempo desaparece de vista.

Retrato color tomado en el 2007 de la Pequeña Mancha Roja.

Otra tempestad conocida es la Pequeña Mancha Roja (del inglés Little Red Spot) que, acorde a las dimensiones de Júpiter, poco tiene de “pequeña”. La mancha se formó tras la convergencia de tres óvalos blancos que indicaban a tres tormentas blancas más pequeñas. La fusión de los tres óvalos fue un proceso que se dio a lo largo de 50 años, finalmente adquiriendo uniformidad en marzo del 2000. Hacia el 2005, tras las observaciones del astrónomo filipino Christopher Go, se descubrió que el gran ovalo blanco estaba adquiriendo una coloración rojiza, razón por la cual la bautizaron como la “Pequeña Mancha Roja”, a pesar de que sus dimensiones son de la superficie de nuestro planeta. En el 2006 las dos manchas se entrecruzaron pero, contra lo que creían los astrónomos, la más chica no se fusionó con la Gran Mancha Roja sino que simplemente pasaron. De acuerdo a observaciones realizadas con el telescopio espacial Hubble en el año 2007, la Pequeña Mancha Roja se está haciendo cada vez más fuerte, con vientos que alcanzan la velocidad de 618 km/h.

Además de los grandes sistemas de tormentas, Júpiter cuenta con cientos de vórtices que se encuentran distribuidos por todo el planeta dando lugar a ciclones y anticiclones.

El campo magnético

Júpiter cuenta con el campo magnético más poderoso de todos los planetas del Sistema Solar, siendo hasta 18.000
veces más fuerte que el de nuestro planeta y extendiéndose hasta 7 millones de kilómetros en dirección al Sol, es decir, superando parcialmente la órbita de Saturno. El descubrimiento de esta enorme estructura, que es la segunda de mayor tamaño tras la Heliosfera (la región influenciada por los vientos solares), se le atribuye a la sonda estadounidense Pioneer 10 en 1973.

Representación de la NASA del campo magnético de Júpiter y su distribución.

Se cree que el origen de la magnetosfera de Júpiter se encuentra en el interior del planeta, donde el hidrógeno se comportaría como un metal por las altas presiones que tiene que soportar. Debido a las cualidades conductivas del metal, y la electricidad generada por la rotación del planeta, se originaría este campo magnético de enorme poder que atrae a los 67 satélites jovianos conocidos hasta el momento, además de afectar directamente la actividad de algunas de las lunas, como Ío. A raíz del intenso campo magnético Júpiter atrae partículas energéticas y las acelera, dando lugar a cinturones de radiación semejantes a los cinturones de Van Allen, pero hasta miles de veces más potentes. Esto dificulta el aproximamiento de sondas al planeta, habiendo generado graves daños en la mencionada Galileo, también destacándose otros cinturones de radiación que se encuentran entre los anillos del planeta.

Debido a las interacciones y emisiones del campo magnético se producen auroras similares a las que vemos en la Tierra que son persistentes y brillantes en ambos polos, permaneciendo con una intensidad variable a lo largo del tiempo. La observación de estas auroras se puede ver en prácticamente todo el espectro electromagnético, destacándose las emisiones en el infrarrojo y el ultravioleta. Otro efecto del campo magnético del planeta se encuentra en que es una fuente de ondas de radio que van de unos pocos kilohertzios (KHz) a decenas de mega hertzios (MHz), dándole las propiedades de un púlsar (una estrella de neutrones que emite radiación de forma periódica y que cuenta con un fuerte campo magnético). Las corrientes de electrones e iones que expulsa pueden alcanzar la órbita de la Tierra periódicamente.

Captura de una aurora de Júpiter.

Los anillos de Júpiter

A pesar de no ser tan notables como los anillos de Saturno, Júpiter cuenta con anillos que rodean el planeta y fueron descubiertos por la sonda estadounidense Voyager 1 en 1979. Los sistemas de anillos comprenden a tres estructuras distintas:

Representación de la NASA de los anillos que circundan a Júpiter.

• Por un lado se encuentra el anillo más próximo al planeta, el halo o anillo halo, que no tiene forma de anillo sino de toro. Es el más grueso de los anillos y debido a su brillo pudo ser fotografiado por sondas como la Galileo. Sin embargo, la estructura de este anillo no es fácilmente visible debido a que está conformado por polvo micrométrico que se cree que proviene del anillo principal. El radio del anillo es de entre 92.000 y 122.500 kilómetros.

• El anillo principal es el más brillante de todos. Sin embargo, al igual que el anillo halo, es tenue y se encuentra compuesto por partículas de polvo. Su órbita coincide con la del satélite interior Adrastea y se encuentra situado a 129.000 km. del centro de Júpiter. Las numerosas incursiones y observaciones permitieron definir que, de acuerdo a la iluminación con la que se cuente, las dimensiones del anillo aparecerán de distinta forma. Entre las partículas de polvo se cree que puede haber satélites que aún no han sido identificados.

• Finalmente se encuentra el más exterior de los anillos, el anillo Gossamer, que en verdad está compuesto por dos anillos denominados “difusos”. Por un lado está el anillo Amaltea Gossamer que se encuentra a 182.000 kilómetros de Júpiter y que, al igual que el resto de los anillos de Júpiter, está compuesto por pequeñas partículas de polvo. El otro anillo que forma parte de Gossamer es Tebe. Se encuentra a 226.000 kilómetros del centro de Júpiter y es el más tenue y débil del sistema, teniendo sus bordes poco definidos. Se cree que el origen del polvo de ambos anillos corresponde al material de los satélites que le dan el nombre respectivamente: Amaltea y Tebe.

Los satélites de Júpiter

Si bien el número de satélites descubiertos hasta el momento alcanza el número de 67, siendo de esta forma el planeta con mayor cantidad de lunas del Sistema Solar, los más estudiados y conocidos han sido desde que fueron descubiertos por Galileo Galilei en 1610 los que conocemos como galileanos, en honor a su descubridor. Estos satélites son también los de mayor dimensión, representando con su masa total casi ¾ del total de la masa de los satélites del planeta. La nomenclatura de los satélites de Júpiter está vinculada a la figura mitológica en la tradición grecorromana, siendo la mayoría figuras femeninas con la excepción de Ganímedes. Se los agrupa de acuerdo a cualidades generales que presentan de la siguiente manera:

• Grupo de Amaltea: El primero de los grupos de satélites comprende a cuatro cuerpos pequeños que son los más próximos al planeta. Se trata de Metis, Adrastea, Amaltea y Tebe, que cuentan con orbitas circulares y han dado forma a algunos de los anillos del planeta con sus partículas.

Europa.
Ío.

• Satélites galileanos: Se trata de cuatro satélites que se encuentran entre los cuerpos más estudiados del Sistema Solar. En primera instancia se encuentra Ío, que da la vuelta al planeta cada 42,5 horas y se encuentra fuertemente influenciado por el campo magnético de Júpiter. Se caracteriza por tener un vulcanismo muy activo que renueva constantemente su superficie con erupciones. Se trata del cuerpo más volcánico de todo el Sistema Solar y su superficie está cubierta de azufre. En segunda instancia se encuentra Europa, que es el más pequeño de este grupo de satélites y cuenta con una capa de hielo y escasos cráteres. Se cree que debajo de esta capa puede haber una franja de agua líquida que albergue vida y estiman la posibilidad de que haya oxígeno en su atmosfera. Luego se encuentra Ganimedes, el satélite más grande del Sistema Solar con 5.562 km de ancho. Está compuesto por silicato y hielo, contando con una corteza helada que se cree que también cuenta con un océano en su interior. Finalmente se halla Calisto, el satélite más viejo de este grupo, al cual se lo puede describir como una bola de hielo y roca.

Calisto.

• Satélites irregulares: Se trata de cuerpos que se encuentran en orbitas lejanas del planeta, siendo afectados en su trayectoria por la gravedad del Sol. Es el grupo más numeroso y por lo general no tienen un tamaño considerable, con la excepción de Himalia, que cuenta con un diámetro de 170 km. Se cree que el origen de estos satélites consiste en cuerpos capturados por el poder magnético del planeta.

Ganimedes.

Características del sistema Tierra-Luna

La Tierra es el único planeta cuyo nombre en inglés no se deriva de la mitología griega o romana. El nombre deriva del inglés antiguo y germánico, hay, por supuesto, cientos de otros nombres para el planeta en otros idiomas.

La Tierra, como los demás planetas, recorre desde hace millones de años su órbita alrededor del Sol, y lo seguirá haciendo durante otros miles de millones de años sin cambios notables. Es el Sol, con un volumen 1.000 veces mayor que todos los planetas juntos, quien la retiene y regula, además, el sistema solar. Si existiese otra estrella cercana, es decir, si el Sol perteneciese a un sistema binario, o si los planetas tuviesen masas mucho mayores, las órbitas de sus componentes sufrirían variaciones continuas. En ningún planeta habría posibilidad de vida porque pasaría demasiado cerca o demasiado lejos de su estrella y, por tanto, no existiría una sucesión regular de las estaciones.

¿Sabías qué...?
La Luna es el cuerpo celeste más fácil de ubicar en el cielo y es el único sitio, más allá de la Tierra el cual el hombre ha sido capaz de pisar.

La Luna está dotada también de un movimiento de rotación y otro de traslación alrededor de la Tierra (que se cumplen en tiempos iguales); por consiguiente, las posiciones relativas de la Tierra y la Luna respecto al Sol varían periódicamente. Ello explica que la Luna presente a la Tierra siempre la misma cara y las fases lunares.

La superficie lunar, explorada por varias misiones del programa Apolo, y cartografiada con todo detalle por la sonda estadounidense Clementine, presenta un aspecto caracterizado por una gran cantidad de accidentes geográficos.

No es del todo exacto afirmar que la Luna gira alrededor de la Tierra. Ambas giran alrededor del punto de equilibrio del sistema Tierra-Luna, o sea el centro de gravedad o centro de masa. Y como la Tierra es 81 veces mayor que la Luna, este centro está situado a 1.600 km por debajo de la superficie terrestre, del lado más próximo a la Luna. De esto se deduce que no es la Tierra la que sigue una verdadera órbita elíptica alrededor del Sol, sino que es el centro de gravedad del sistema el que lo hace, mientras que la Tierra oscila ligeramente de un lado a otro.

Fases de la Luna.

¿Por qué la Tierra no se cae?

La fuerza de la gravedad es la responsable de que los gases que componen la atmósfera no escapen al espacio y de que la Tierra permanezca estable en su órbita, relacionándose con el resto de cuerpos del universo y manteniendo unidas a los miles de millones de estrellas que pueblan la galaxia. La fuerza de la gravedad del Sol es casi 28 veces el valor de la gravedad terrestre y es la que mantiene en sus órbitas a todos los planetas y demás cuerpos que integran el sistema solar.

Color y luminosidad

Una característica de los planetas es reflejar una parte de la luz solar incidente (el porcentaje de luz reflejada se llama albedo y es un dato físico importante para todos los cuerpos del sistema solar, pues facilita el conocimiento de características como la dimensión y el material que recubre su superficie). La Tierra tiene un albedo de 0,40, o sea que refleja al espacio un 40 % de la luz solar que recibe; ello se debe a que los océanos, los casquetes polares y la capa de nubes actúan como espejos.

Heng Zhang

El astrónomo y geofísico chino Heng Zhang (78-139 d.C.), reconocido como el inventor del primer sismógrafo, fue asimismo el astrónomo oficial de la corte china. Descubrió y registró que la luz emitida por la Luna era, en realidad, luz procedente del Sol reflejada por la superficie de ésta.

El albedo terrestre está sujeto a variaciones estacionales porque la Tierra difunde más luz entre marzo y junio, y entre octubre y noviembre que entre julio y septiembre. El color de la Tierra también varía, es más azulado en los períodos que refleja más luz. En cuanto a las relaciones entre la Tierra y la Luna, la primera se ve desde la Luna 100 veces más luminosa que la Luna llena vista desde la Tierra.

Dimensiones

La distancia media entre la Tierra y la Luna es de 384.403 km. Esta distancia puede alcanzar 406.697 km en el apogeo, cuando la velocidad orbital de la Luna es de 3.474 km/h, o bien reducirse a 356.410 km en el perigeo, cuando la velocidad orbital es de 3.959 km/h. Mientras que la Tierra tiene como diámetro ecuatorial 12.756 km y como diámetro polar 12.713 km, con un achatamiento polar de 1/298, la Luna tiene un diámetro de 3.476 km y forma casi esférica. La Tierra tiene una masa de 5,977 x 1027 t y una densidad media de 5,52 veces la del agua, frente a 3,36 veces la densidad de la Luna, que posee también una masa mucho más baja: 1/81 de la terrestre. De la masa y las dimensiones se deduce la fuerza de gravedad en la superficie de ambos cuerpos, y también puede calcularse el peso de un objeto sobre la Luna, que es, un 1/6 de su peso sobre la Tierra.

Eclipses de Sol y de Luna

Durante su trayectoria alrededor del Sol, la Luna se encuentra periódicamente situada entre el Sol y la Tierra.

Las diferentes fases de un eclipse de Sol total, en este caso el acaecido el 11 de julio de 1991, permiten apreciar la secuencia de desaparición y reaparición del disco solar tras la silueta de la Luna, que en la fase central del fenómeno cubre por completo al astro rey.

El interés científico del eclipse de Sol depende de que la Luna oculte al Sol por completo (eclipse total); en el brevísimo período que puede durar el eclipse total, desde pocos segundos hasta un máximo de 7,30 minutos, se puede ver la parte más externa del Sol, la cromosfera, con las protuberancias, y la tenue corona con sus penachos. Debido a que la sombra de la Luna llega con dificultad a alcanzar la Tierra, la zona de sombra sobre la superficie terrestre no es superior a 275 km. Alrededor de esta zona el eclipse es parcial, o sea que se ve el disco del Sol parcialmente, no pudiéndose observar la corona ni la cromosfera.

Existe eclipse anular cuando el disco lunar no es lo suficientemente grande como para ocultar por completo al Sol. Esto se debe a que las distancias de la Luna a la Tierra y de la Tierra al Sol no son constantes, dado que las órbitas lunar y terrestre no son exactamente circulares. El disco negro de la Luna aparece entonces rodeado de un sutil anillo brillante, cuya luminosidad es suficiente para impedir la visión de la cromosfera y de la corona.

Los eclipses totales de Sol (y de Luna) se reproducen en el mismo orden después de un período de 18 años y 11 días, denominado saros (igual a 223 lunaciones), pero no en los mismos lugares. Por ejemplo: el 20 de julio de 1963 se observó un eclipse total en Canadá, y el 31 de julio de 1981 otro en Siberia (Rusia). El 11 de agosto de 1999 pudo verse un eclipse total de sol desde Gran Bretaña hasta la India. El 29 de marzo de 2006 tuvo lugar un eclipse solar total que comenzó a manifestarse al noreste del Brasil y acabó en la frontera noreste de Mongolia.

Eclipse lunar

Los eclipses de Luna se producen cuando ésta penetra en el cono de sombra de la Tierra, lo que sucede sólo durante la Luna llena. Contrariamente a los eclipses de Sol, los de Luna son visibles en todos los lugares de la Tierra donde pueda observarse la Luna por encima del horizonte. El cono de sombra está rodeado de un cono de penumbra, que intercepta una parte de la luz solar. Los eclipses de Luna pueden ser también totales o parciales. El eclipse es total si la Luna penetra completamente en el cono de sombra, y parcial si penetra sólo en parte; por último, el eclipse de penumbra se produce cuando la Luna penetra sólo en el cono de penumbra. En un año se observan de dos a cinco eclipses de Luna.

La Tierra y la Luna: su formación

El análisis radiactivo de las rocas superficiales de la Tierra indica una edad de por lo menos 3.500 millones de años. La corteza terrestre se solidificó lentamente, debido a la gran cantidad de potasio radiactivo que generaba calor en el interior. El Sol, cuya edad se estima en 5.000 millones de años, había nacido ya, aun cuando era invisible por estar oculto en el interior de la primitiva nebulosa de materia estelar, particularmente densa sobre el plano de la eclíptica. En efecto, la nube bloqueaba todas las radiaciones solares a escasa distancia del Sol. A causa de la temperatura excesivamente baja (quizá -260 °C), los gases de agua, el amoníaco, el nitrógeno, el dióxido de carbono, el monóxido de carbono y el metano formaron, junto con el polvo, la nieve y el hielo, unos cuerpos que serían los planetas. Debió de ser una tempestad permanente, en cuyo seno se formaron masas cada vez más grandes, que se rompían y agregaban de nuevo.

La Tierra pudo nacer así, o sea, por acumulaciones sucesivas y, a medida que aumentaba de masa, atraía a otros cuerpos menores. El calor generado, además de disolver los hielos y producir vapor, eliminó las sustancias más ligeras y volátiles, dejando sólo las más pétreas y metálicas.

En realidad, sobre el origen de la Luna hay muchas dudas. Según H. C. Urey, se formó también en frío, por acumulación de pequeños cuerpos. Fred Whipple sostiene que esto quizá sucedió cuando la Tierra empezó a perder el anillo que la rodeaba (similar al que todavía hoy circunda a Saturno). El núcleo de la Luna comenzó a calentarse poco a poco a causa de la presencia de elementos radiactivos; sin embargo, es probable que no se calentase lo suficiente como para producir un núcleo de hierro, como ocurrió en el caso de la Tierra.

Pequeños cuerpos siguieron cayendo sobre la Luna durante centenares de miles de años, y provocaron cráteres. Mientras, el calor interior aumentaba y fundía las capas más próximas a la superficie. En este período crítico, las grandes depresiones lunares que ahora se denominan mares, los valles y las grietas se inundaron de lava. Ese período fue breve, así como fueron también rápidos la expansión y el enfriamiento sucesivos, que produjeron tensiones, hundimientos, relieves y formaciones de diverso tipo. La acción de los volcanes es evidente en diversas regiones de la Luna, pero muchos cráteres, y especialmente los mayores, fueron producidos por impactos de meteoritos, como sucedió también en la Tierra; sin embargo, en el caso de esta última las fuerzas geológicas han rellenado, erosionado y destruido los cráteres, excepto algunos de los más recientes. Los picos centrales de muchos cráteres lunares, más bajos que los bordes de los cráteres mismos, se formaron en el período durante el cual la Luna estaba parcialmente fundida; el meteoro que originó el cráter rompió el centro de la superficie, de la cual brotó la lava que creó estas montañas. También los mares fueron producidos, siempre en el mismo período, por el impacto de grandes meteoros que, al romper la costra, provocaron intensas expulsiones e inundaciones de lava.

Asteroides, cometas y meteoritos

Los asteroides son cuerpos celestes de dimensiones reducidas que se mueven en órbitas de tipo planetario. Los cometas son pequeños cuerpos celestes esferoidales constituidos por polvo cósmico y partículas de hielo y gases. Los meteoritos son vestigios del material con el que se constituyó el sistema solar.

Asteroides

El primer asteroide fue descubierto por el astrónomo italiano G. Piazzi en enero de 1801: se trataba de Ceres, desde 2006 considerado un planeta enano. Hoy se conocen varios miles de asteroides, pero con seguridad existen centenares de miles. En general, describen órbitas ligeramente alargadas y están situados en una zona entre Marte y Júpiter, si bien algunos penetran dentro de la órbita de Marte y otros llegan hasta las órbitas de Venus y de Mercurio.

Giuseppe Piazzi

Astrónomo italiano (1746-1826). Descubrió los cuerpos que pueblan el llamado cinturón de asteroides (nombre propuesto por Herschel). En la primera observación (1801) descubrió el asteroide Ceres (llamado planeta enano a partir de 2006), que orbita alrededor del Sol.

Los asteroides se ubican únicamente en el cinturón de asteroides.

A causa de sus pequeñas dimensiones, las fuerzas de gravitación internas son demasiado débiles para proporcionarles forma esférica; por consiguiente es probable que la mayoría de los asteroides tenga estructuras irregulares.

Los asteroides no están distribuidos de manera uniforme en orden de distancia al Sol. Ocupan una zona en la cual se encuentran espacios vacíos, que han sido atribuidos a las perturbaciones provocadas por Júpiter. Los planetoides Troyanos son una familia particular de asteroides. Se trata de 12 planetoides cuyos períodos de revolución son más o menos iguales a los de Júpiter (unos 12 años). Esta configuración permanece inmutable, es decir, los planetoides se mueven siempre equidistantes del Sol o de Júpiter, y aunque se desvían ligeramente, retornan a la posición de equilibrio. Siete de los planetoides Troyanos están próximos al vértice del triángulo equilátero que precede a Júpiter, y cinco están en el vértice que sigue Júpiter en su órbita.

¿Sabías qué...?
Palas es el asteroide con mayor tamaño del cinturón de asteroides. Fue encontrado por H. W. Olbers en marzo de 1802.
Cinturón de asteroides

La sonda Dawn, lanzada en septiembre de 2007, es la encargada de recoger datos sobre la naturaleza física y dinámica del cinturón de asteroides.

Los asteroides próximos

Se conocen varios asteroides que penetran en la órbita de Marte y pasan cerca de la órbita terrestre. Eros circula a unos 22 400 millones de kilómetros de ésta. Otros asteroides han pasado también muy cerca de la Tierra: en 1932, Amor pasó a unos 16 000 millones de kilómetros y Apolo a 10 500 millones de kilómetros. En 1936 Adonis lo hizo a unos 2 000 millones de kilómetros de las órbitas de Venus, la Tierra y Marte, y un año después, Hermes llegó aún más cerca: a casi 776 000 km, o sea dos veces la distancia a la Luna. Algunos cálculos muestran que Hermes se podría acercar directamente hasta 355 000 km. En las últimas décadas se han enviado sondas espaciales para la exploración de asteroides.

Posibilidades de colisión

Para los asteroides del grupo Apolo parece que la posibilidad de choque con la Tierra debe excluirse por un período de unos 200 millones de años, pero sería posible que cualquier asteroide menor cayera sobre la Tierra en los próximos dos millones de años. En el pasado las colisiones eran frecuentes, pero con el tiempo el número de los asteroides ha disminuido, especialmente entre Mercurio y la Tierra. Existe mucha mayor abundancia de ellos entre Marte y Júpiter; puesto que es donde se encuentra el cinturón de asteroides, y por ello, Marte está continuamente bombardeado por estos cuerpos celestes.

Cometas

Aunque sigan las leyes de la gravitación, las órbitas de los cometas cruzan las de los planetas en todas direcciones. Existen cometas periódicos que vuelven con frecuencia al perihelio; otros con órbitas tan alargadas que pasan una vez cada millón de años alrededor del Sol, y otros que orbitan también en los confines del sistema solar, a la velocidad de unos centímetros por segundo, y que no se alejan de esas regiones. Estos últimos tardan de 10 a 50 millones de años en realizar una órbita alrededor del Sol. Los cometas están constituidos por una mezcla de hielo, polvo, rocas y gas en estado sólido, condensados en un núcleo, encerrado a su vez en un envoltorio de polvo meteórico. Tales núcleos, que tienen masas tan pequeñas que se necesitarían millares para igualar la masa terrestre, se describen como “bolas de nieve sucia” y han sido estudiados desde la proximidad, sobre todo en el caso del cometa Halley, por diversas series de sondas, entre las cuales destaca la Giotto, de la Agencia Europea del Espacio (ESA). Esta sonda se aproximó en marzo de 1986 a menos de 1 000 km del núcleo del cometa, obteniendo datos valiosísimos acerca de la composición de estos cuerpos. Los datos que recogió la sonda NEAR (de la NASA), en 2000, del asteroide Eros serán muy valiosos para comprender la composición originaria del sistema solar.

Los cometas están formados por polvo, hielo y roca.

¿Sabías que el cometa Halley pasa regularmente cerca de la Tierra?

Este cometa describe una órbita alrededor del Sol, lo que permite predecir el momento en que pasará cerca de la Tierra, hecho que ocurre aproximadamente cada 76 años desde, al menos, el 240 a.C. Desde entonces ha pasado más de treinta veces por la órbita terrestre.

Cometa Halley

Al aproximarse al Sol, los cometas periódicos sufren ciertas modificaciones. En primer lugar, la radiación solar comienza a vaporizar los hielos. Estos materiales que se liberan son impelidos por la presión del viento solar, dando lugar a la característica cabellera de gas y polvo que siempre apunta en dirección contraria a la del Sol.

Los cometas con períodos más breves son los que se extinguen antes. Duran algunos millares de años y, en su lugar, aparecen nuevos cometas provenientes de los confines del sistema solar, de donde son arrancados por las perturbaciones cósmicas. Llegados a las proximidades de los planetas mayores, el campo de gravitación de éstos modifica sus órbitas, haciéndolas menos alargadas, y los transforma en cometas periódicos. Pero a veces puede suceder también lo contrario. Si el cometa encuentra al planeta tangencialmente, es lanzado como una honda fuera del sistema solar, en una órbita hiperbólica.

Una flotilla al encuentro de Halley

El estudio directo de los cometas, que habría parecido una misión imposible a los científicos de las primeras décadas del siglo xx, fue sin embargo la misión que la Agencia Espacial Europea se planteó como bautismo de fuego en el campo de la exploración del espacio. Para ello se propuso el desarrollo y construcción de una sonda interplanetaria, a la que se bautizó con el nombre de Giotto en recuerdo del pintor italiano Giotto di Bondone (1267-1337) -que representó el cometa en su famoso cuadro La adoración de los Magos-, que permitiese a la Agencia Espacial Europea colaborar activamente en el esfuerzo internacional de observación del cometa Halley durante su paso por las proximidades de la Tierra en 1986. Apoyada por una flotilla compuesta por los ingenios rusos Vega I y II y las naves japonesas Suisei y Sakigake, la sonda Giotto logró llevar a cabo la máxima aproximación al núcleo del cometa y realizar hasta un total de once experimentos cruciales que permitieron estudiar en detalle la estructura y composición de estos cuerpos procedentes de los confines remotos del sistema solar.

La sonda Giotto quedó “aparcada” en órbita hasta 1992, cuando llevó a cabo el estudio del cometa Grigg-Skjellerup.

Meteoritos

Como ya se ha dicho, los cometas están formados por polvo. A este propósito se puede decir que el polvo y los meteoritos son uno de los principales constituyentes del universo. Los planetas y las estrellas nacen alrededor de un núcleo de polvo. Los meteoritos que se observan en la actualidad son restos del material con que fue construido nuestro sistema solar. A los meteoritos que entran en la atmósfera terrestre se les denomina estrellas fugaces. A veces llegan como si se tratara de una lluvia; en este caso se pueden contar hasta cien en una hora, aunque se han registrado récords de millares de meteoros por hora durante las famosas lluvias de las Leónidas, Jacobínidas, etc. Sin embargo, la mayoría de ellos están aislados, y se llaman esporádicos. Su origen es muy diverso: o son partículas residuales de la nebulosa originaria, que poco a poco caen sobre el Sol al ser frenadas en sus órbitas por la presión de la radiación solar, o provienen de los espacios interestelares.

Cuando un meteoroide alcanza la superficie del planeta sin desintegrarse, se denomina meteorito.

Mientras que los pequeños meteoritos que penetran en la atmósfera terrestre se disgregan, hay meteoritos mucho mayores que alcanzan el suelo. Éstos pueden tener dimensiones considerables y pesar muchas más. Mientras que los meteoros pequeños son semejantes a copos de nieve y están constituidos por un material como el de los planetas, los meteoritos más grandes son petreoferrosos y están formados a elevadas presiones (a unas 50 000 atmósferas). De ello se deduce que sólo pueden formarse en el interior de los planetas.

De todos modos, es conveniente advertir que los meteoritos, aparte de haber experimentado la alteración normal durante su recorrido por el universo, han sufrido la importante acción de la atmósfera al producirse su penetración en la Tierra. Por ello, al estudiar este tipo de materiales, es necesario tratar de distinguir entre su propia naturaleza y los efectos sufridos, subsiguientes a su formación.