CAPÍTULO 3 / REVISIÓN

MEZCLAS Y SOLUCIONES | ¿qué aprendimos?

Sistemas materiales

En nuestra vida cotidiana entramos en contacto con diversidad de elementos; algunos son sólidos, otros líquidos y otros gaseosos. Si bien parece que todos son diferentes, podemos decir que hay algo que tienen en común: todos están formados por materia. Para estudiar la materia solemos analizar una porción a la que llamamos sistema material. Todo sistema material tiene propiedades generales o extensivas y propiedades específicas o intensivas. Hablamos de “fase” cuando nos referimos a todas aquellas porciones del sistema material que tienen las mismas propiedades intensivas. Por otro lado, los componentes son las sustancias que conforman el sistema material.

Todo el universo visible está formado de materia.

Sistemas homogéneos

Hablamos de sistema homogéneo cuando un sistema material posee las mismas propiedades intensivas en toda su masa. Éste cuenta con una sola fase. Las soluciones son sistemas materiales homogéneos compuestos por uno o más solutos disueltos en un solvente determinado. El soluto es el componente de la solución que se encuentra en menor proporción y se disuelve en el solvente, en tanto, el solvente es el que se encuentra en mayor proporción y tiene la capacidad de disolver el soluto. Las soluciones se pueden clasificar en función de la concentración en insaturadas, saturadas y sobresaturadas. Su concentración puede expresarse cuantitativamente, se establecen diferentes relaciones porcentuales entre las cantidades de sustancias a través de unidades químicas y físicas conocidas como masa (m), volumen (v) y cantidad de sustancia (n).

El agua es el solvente universal.

Sistemas heterogéneos

Un sistema homogéneo cuenta con distintas propiedades intensivas en al menos dos de sus puntos. Un sistema de este tipo tiene dos o más fases. Generalmente, para su separación se utilizan mecanismos físicos y de menor consumo de energía. Existen las mezclas groseras y las mezclas finas o suspensiones. En las primeras los componentes se diferencian fácilmente debido a su gran tamaño, y las suspensiones se forman por una fase sólida con baja solubilidad que se encuentra dispersa en la fase liquida. Las fases son más difíciles de diferenciar debido al ínfimo tamaño de la partícula. Existen diversos métodos de separación de fases, algunos de ellos son: la decantación, la tamización, la filtración y la imantación. Los métodos mecánicos no producen transformaciones en los componentes de la mezcla.

Un sistema heterogéneo fácil de identificar es el del el agua y el aceite.

Agua

El agua es un compuesto químico de vital importancia para los seres vivos. Es la sustancia universal más abundante en la Tierra. Está compuesta por hidrógeno y oxígeno. Nuestro planeta está cubierto en un 70 % por agua. Por otra parte, todas las especies dependen de este líquido vital para la supervivencia. Al igual que el oxígeno, el agua es un elemento de la naturaleza esencial para que todas las formas de vida puedan existir. El agua cuenta con diferentes propiedades que se clasifican en organolépticas y fisicoquímicas. Las primeras son las que percibimos con nuestros sentidos, y las segundas tienen relación con la composición química. El agua es un regulador de temperatura para la mayoría de los seres vivientes, así como también tiene un papel esencial en la regulación de la temperatura atmosférica.

El 70 % de nuestro cuerpo está formado por agua.

Contaminación del agua

La contaminación del agua se produce cuando se introduce un material que altera sus características naturales. El agua contaminada deja de ser apta para el desarrollo de los seres vivos. El mercurio es una fuente natural de contaminación y también los hidrocarburos. Otro agente natural contaminante es el arsénico producido por las actividades volcánicas. El ser humano ha vivido con este tipo de contaminación desde hace miles de años y no es posible evitarla; sin embargo, la contaminación debido a las actividades humanas es mucho mayor. El uso de los fertilizantes en la agricultura, metales pesados en la minería, las aguas residuales de las industrias y los desechos arrojados por el ser humano, ponen en riesgo sanitario al ecosistema del planeta que depende de este importante líquido.

El agua contaminada es cuna de enfermedades.

Mezclas homogéneas y mezclas heterogéneas

Se conoce como mezcla a la combinación de dos o más sustancias puras, siempre y cuando cada una de ellas mantenga sus propiedades químicas individuales. Se pueden clasificar de acuerdo a su uniformidad en mezclas homogéneas y  heterogéneas.

Mezclas homogéneas Mezclas heterogéneas
Definición Son aquellas en las que sus componentes no se pueden diferenciar a simple vista, es decir, son uniformes. Son aquellas en las que sus componentes se pueden diferenciar a simple vista, es decir, no están distribuidos de manera uniforme.
Número de fases 1 Al menos 2.
¿Sus componentes se pueden distinguir a simple vista? No. Sí.
Solubilidad Sus componentes son miscibles, es decir, son solubles entre ellos. Sus componentes son inmiscibles, es decir, no son solubles entre ellos. Por eso se forman al menos dos fases.
Métodos de separación Destilación simple, destilación fraccionada, cristalización y cromatografía. Tamizado, centrifugación, levigación, decantación, filtración e imantación.
Ejemplos Aire, mezcla de cemento, agua con azúcar o sal y tinta con agua, entre otros.

Agua y aceite, arena y oro; y arroz con granos, entre otros.

 

Alcanos, alquenos y alquinos

Los hidrocarburos son el grupo más diverso y amplio de los compuestos orgánicos y se clasifican en alifáticos o aromáticos. Dentro de los hidrocarburos alifáticos encontramos a los alcanos, los alquenos y los alquinos, todos compuestos que constituyen mayormente cadenas abiertas de carbono e hidrógeno.

Alcanos Alquenos Alquinos
Tipo de compuesto orgánico Hidrocarburo. Hidrocarburo. Hidrocarburo.
Tipo de hidrocarburo Alifático. Alifático. Alifático.
Otros nombres Parafinas. Oleofinas. Acetilenos.
Fórmula general CnH2n+2

 

Donde n es igual a la cantidad de carbonos.

n= 1,2,3…

CnH2n

 

Donde n es igual a la cantidad de carbonos.

n= 2,3…

CnH2n-2

 

Donde n es igual a la cantidad de carbonos.

n= 2,3…

Saturaciones Saturado. No saturado. No saturado.
Tipo de enlace característico Covalente simple. Covalente doble. Covalente triple.
Hibridación sp3

(en todos sus carbonos)

sp2

(en los carbonos del doble enlace)

sp

(en los carbonos del triple enlace)

Molécula más simple Metano

Eteno

Etino

 Estado físico Hasta C4H10 son gases.

 

De C5H12 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Hasta C4H8 son gases.

 

De C5H10 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Hasta C4H6 son gases.

 

De C5H8 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Punto de ebullición
  • Aumenta con el número de carbonos.
  • Es mayor en alcanos no ramificados.
  • Aumenta con el número de carbonos.
  • Es mayor en alquenos no ramificados.
  • Muy similar al de su alcano correspondiente.
  • Aumenta con el número de carbonos.
  • Es mayor en alquinos no ramificados.
  • Ligeramente más elevados que su alcano o alqueno correspondiente.
Solubilidad Insoluble en agua, pero solubles en solventes orgánicos. Insoluble en agua, pero solubles en solventes orgánicos. Insoluble en agua, pero solubles en solventes orgánicos.
Densidad Menor a 1 g/mL. Mayor a la de los alcanos. Mayor a la de sus correspondientes alcanos y alquenos.
Fuente Petróleo y gas natural.

 

Procesos de craking del petróleo natural. Deshidrogenación y deshalonación de derivados de alquenos.
Ejemplo Propano

 

Propeno

Propino

 

Compuestos orgánicos e inorgánicos

Los compuestos químicos pueden clasificarse en dos grandes grupos: compuestos orgánicos y compuestos inorgánicos. Cada grupo presenta un conjunto de características muy particulares que hacen posible diferenciarlos fácilmente. A continuación se comparan estos dos tipos de compuestos.

Compuestos orgánicos Compuestos inorgánicos
Base de construcción Átomo de carbono. Mayoría de los elementos conocidos.
Tipo de enlace Enlace covalente. Predomina el enlace iónico.
Isómeros La mayoría presenta isómeros. Muy pocos presentan isómeros, son raros.
Formación estructural Átomos organizados en largas cadenas basadas en carbono, sobre las que se insertan otros elementos. No es común la formación de cadenas.
Tipo de estructura Complejas, de alto peso molecular. Simples, de bajo peso molecular.
Solubilidad La mayoría son insolubles en agua y solubles en solventes apolares. La mayoría son solubles en agua e insolubles en solventes apolares.
Punto de ebullición y fusión Bajos. Altos.
Densidad Baja. Alta.
Conductividad eléctrica No son conductores de la electricidad. Son conductores de la electricidad.
Velocidad de reacción Reacciones lentas. Reacciones muy rápidas.
Estabilidad Poco estables, se descomponen fácilmente. Muy estables.
Clasificación principal
  • Óxidos
  • Hidróxidos
  • Ácidos
  • Sales
  • Hidrocarburos
  • Oxigenados
  • Nitrogenados
Variedad Mayor a la de los compuestos inorgánicos. Menor a la de los compuestos orgánicos.
Ejemplos
  • Óxido de aluminio (Al2O3)
  • Hidróxido de sodio (NaOH)
  • Ácido fosfórico (H3PO4)
  • Bicarbonato de sodio (NaHCO3)
  • Ácido acético (CH3COOH)
  • Etanol (CH3OH)
  • Octano (C8H18)
  • Benceno (C6H6)

 

Proteínas, carbohidratos y lípidos

Los carbohidratos, los lípidos y las proteínas constituyen los tres macronutrientes. Sus requerimientos dietéticos son altos en relación con los micronutrientes. Las macromoléculas biológicas son orgánicas, lo que significa que contienen carbono y además, pueden contener hidrógeno, oxígeno, nitrógeno y elementos menores adicionales.

Proteínas Carbohidratos Lípidos
Monómero Aminoácidos Monosacárido Glicerol y ácido graso.
Formado por 20 aminoácidos. Átomos de carbono, hidrógeno y oxígeno. Cadenas de carbono e hidrógeno principalmente.
Tipos Simples y conjugadas. Simples y complejos. Grasas, fosfolípidos y colesterol.
Digestión Rápida. Lenta. Muy lenta.
¿Dónde se digieren? Intestino. Intestino. Intestino.
Solubles en agua Algunas. Todas. Ninguna.
Almacenamiento de energía A largo plazo. A corto plazo. A largo plazo.
Funciones Componentes básicos de la vida, almacenamiento de energía, movimiento muscular, soporte estructural, defensa y medio de transporte celular. Almacenamiento de energía, soporte estructural y ayudan a la comunicación entre células. Almacenamiento de energía, protección y  como mensajeros químicos.
Alimentos que lo contienen Mariscos, carnes magras, aves de corral, huevos, frijoles y guisantes, productos de soya, nueces y semillas sin sal. Frutas, granos, lácteos, harinas refinadas y bebidas gaseosas, entre otros. Lácteos, carnes, aves, mariscos, huevos, semillas, nueces, aguacates y cocos.
Ejemplos Enzimas y algunas hormonas. Glucosa, fructosa, almidón, glucógeno y celulosa. Aceites y colesterol.
Estructura

 

Enlace iónico y enlace covalente

Los enlaces químicos son las interacciones que existen entre los átomos que conforman una molécula. Estas interacciones son de naturaleza variable, es decir, no son iguales para todos los compuestos y depende de las características propias de cada átomo que forma el enlace. Los enlaces químicos pueden ser iónicos o covalentes. 

Enlace iónico Enlace covalente
Tipo de unión Por electrones transferidos. Por electrones compartidos.
Átomos implicados Metálicos con no metálicos. No metálicos con no metálicos.
Atracción entre: Iones (átomos con carga positiva o cationes, y átomos con carga negativa o aniones). Núcleos y electrones compartidos.
Tipo de estructura Red cristalina.

Moléculas simple o gigantes.

Direccionalidad No direccional. Direccional.
Diferencia de elctronegatividad Elevada.

Mayor a 1,7.

Baja.

Menor a 1,7. Puede ser 0.

Punto de fusión de sus compuestos Elevado. Bajo.
Punto de ebullición de sus compuestos Elevado. Bajo.
Solubilidad de sus compuestos Solubles en agua. Generalmente insolubles.
Conductividad de sus compuestos Conductores de corriente eléctrica en disolución. No conducen corriente eléctrica.
Representación de cómo se forma cada enlace

Cloruro de sodio (NaCl)

Agua (H2O)

Ejemplos NaCl, MgO, CuSO4,LiF, MgCl2, AgNO3, K2SO4,KOH, K2Cr2O7 O2, F2, H2O, N2, NH3, CH4, CO2, SiO2, SO3, PCl5, CO, C2H2, C3H8

 

Conceptos de ácido y base: el producto de solubilidad 

La solubilidad de una sustancia en un disolvente depende de la temperatura y de la presión, la influencia de esta última es muy pequeña cuando el soluto es un sólido. Puede expresarse en cualquiera de las diversas maneras (normalidad, molaridad, gramos de soluto por litro de disolvente, etc.) que ya conocemos.

Para el caso de las sales poco solubles resulta además muy útil definir el producto de solubilidad. Para definir este concepto, consideremos la disolución en agua de una sal muy poco soluble, tal como el sulfato de bario, BaSO4.

En una disolución de esta sal, parte de las moléculas de BaSO4 estarán disociadas en iones, según la ecuación:

Si se trata de una disolución diluida podremos aplicar a ese equilibrio la fórmula de la constante de ionización. Tendremos:

Pero puesto que el sulfato de bario es muy poco soluble en agua, la ecuación anterior puede aplicarse también a la disolución saturada, ya que el BaSO4 disuelto se encontrará en equilibrio con el BaSO4 precipitado. El denominador es en este caso constante y puede escribirse:

. [BaSO4] = [Ba2+] . [SO4 2-]

Esta expresión se denomina producto de solubilidad. Su símbolo es Ks.

Ks = [Ba2+] . [SO4 2-]

El valor del producto de solubilidad es constante para cada temperatura.

Ejemplos:

1) Las concentraciones de las sustancias que participan en la reacción con H2 son:

-De H2 igual a 0,002 molar

-De I2 igual a 0,002 molar

-De IH igual a 0,014 molar

Hallar el valor de la constante de equilibrio.

Solución:

La fórmula de la constante de equilibrio es:

Por tanto, sustituyendo valores, será:

2) Si en la reacción anterior, a una cierta temperatura, la constante de equilibrio es 0,50 y en 40 litros de disolución hay 2 moles de hidrógeno y 8 de yodhídrico, hallar los moles de yodo que existen.

Solución:

De la fórmula:

conocemos:

K = 0,50

[H2] = 2 moles de hidrógeno / 40 litros de disolución = 0,05 molar

[IH] = 8 moles de á. yodhídrico / 40 litros de disolución = 0,2 molar

[I2] = x moles de yodo / 40 litros de disolución = x / 40 molar

En consecuencia:

es decir,

3) En la reacción PCl5   PCl3 + Cl2   32Kcal/mol

que se desarrolla a presión constante, se tiene que [PCl5] = 0,2 molar; [PCl3] = [Cl2] = 0,01 molar. a) Calcular la constante de equilibrio; b) indicar qué ocurriría si se elevase la temperatura; c) qué sucedería si se redujese la presión; d)y qué si se incrementase la concentración de PCl5 a 0,5 molar, permaneciendo constantes tanto la presión como la temperatura.

Solución:

a)

b) Por tratarse de una reacción endotérmica, al elevar la temperatura se favorece la formación de PCl5 y, en consecuencia, la disminución de las concentraciones de PCl3y de Cl2 (desplazamiento del equilibrio hacia la izquierda).

c) Al haber más moles gaseosos en el segundo miembro de la reacción que en el primero, una disminución de la presión hace aumentar las concentraciones de PCl3 y de Cl2 en detrimento de la concentración de PCl5 (desplazamiento del equilibrio hacia la derecha).

d) Si se aumenta la concentración de PCl5, correlativamente han de incrementarse la de PCl3 y la de Cl2 para que la constante de equilibrio no se modifique.

Para averiguar cuánto valen las nuevas concentraciones utilizaremos la fórmula de K:

4) Hallar la concentración de iones hidronio en una disolución de ácido acético, CH3  COOH, 1M sabiendo que la constante de disociación vale 1,8·10-5.

Solución:

La reacción de ionización es:

por lo que la constante de ionización será:

Sustituyendo:

Resolviendo esta ecuación de segundo grado, resulta:

x = 0,0043 molar.

5) Hallar la molaridad de una disolución de HCl cuyo pH es 2.

Solución:

pH = log10 1 / [H3O] = -log10 [H3O+] = 2

Es decir,

log10 [H3O+] = -2.

y, tomando antilogaritmos:

[H3O+] = 10-2 = 0,01 molar

6) Hallar el producto de solubilidad del BaSO4 sabiendo que a la temperatura de 50 °C su concentración es 1,4 · 10-5 molar.

Solución:

De la reacción:

se deduce que el producto de solubilidad vale:

Ks = [Ba2+] . [SO4 2-]

Por tanto,

Ks = (1,4 · 10-5)·(1,4 · 10-5) = 1,96·10-10.

Propiedades y nomenclatura de aminas

Las aminas son compuestos orgánicos nitrogenados conocidos por su importancia a nivel biológico y medicinal. Ejemplo de ello es la serotonina, un neurotransmisor involucrado en diversos procesos de tipo afectivo a nivel del sistema nervioso central.

Las aminas son compuestos orgánicos derivados del amoniaco, conformados por uno o más grupos alquilo o arilo enlazados al átomo de hidrógeno mediante un enlace simple.


En función del número de grupos alquilo o arilo unido al nitrógeno las aminas se clasifican en:

Amina primaria: están constituidas por un grupo amino unido a un sustituyente alquilo o arilo (R- NH2).

Amina secundaria: están formadas por dos grupos alquilo o arilo (R-NH-R´) unidos al átomo de hidrógeno.


Amina terciaria: tienen tres grupos alquilo o arilo unidos al nitrógeno (NR3).


IMPORTANCIA BIOLÓGICA DE LAS AMINAS

En el cuerpo humano hay diferentes aminas que cumplen funciones vitales en el organismo, entre las cuales se encuentran:

Histamina: es la sustancia responsable de las reacciones típicas de la alergia como la dilatación de los vasos sanguíneos, también es un importante neurotransmisor.

Niacina: es una vitamina que ayuda al buen funcionamiento de órganos como la piel, además interviene en procesos del sistema digestivo y nervioso.

Dopamina: es un neurotransmisor del sistema nervioso central y periférico.

PROPIEDADES DE LAS AMINAS

Las propiedades de las aminas están asociadas a su estructura química y la forma en que ésta determina las interacciones moleculares. En general, las aminas son polares y presentan interacciones del tipo dipolo-dipolo, además, aquellas que contienen enlaces de N-H pueden interactuar mediante enlaces de hidrógeno. Debido a que el nitrógeno es menos electronegativo que el oxígeno presente en los alcoholes (R-OH), los puentes de hidrógeno en las aminas son más débiles y por tanto sus puntos de ebullición suelen ser menores a los de los alcoholes de igual masa molecular.

¿Sabías que incluso las aminas terciarias pueden interaccionar con otras moléculas que formen enlaces de hidrógeno? Esto debido al par de electrones libre del nitrógeno.

En cuanto a la solubilidad, las aminas con menos de siete átomos de carbono son solubles en agua, propiedad que disminuye al aumentar el número de carbonos.

Las aminas se comportan como bases débiles en presencia de un ácido, tal como muestra el siguiente ejemplo:


AMINAS MEDICINALES

En la medicina hay drogas o fármacos que pertenecen al grupo de las aminas, como son los antihistamínicos recetados en los casos de alergias y gripes, también la morfina administrada en dosis pequeñas a pacientes que sufren dolor crónico y agudo.

Sin embargo, algunas aminas como la cocaína, la nicotina y la metanfetamina generan adicción y demás efectos negativos sobre el sistema nervioso central y la salud en general.

¿Sabías que el nombre de vitaminas se debe a que inicialmente se creía dichas biomoléculas eran todas aminas?

NOMENCLATURA DE AMINAS

Las aminas se nombran como alcanoaminas o alquilaminas, es decir, se nombran utilizando el nombre del alcano o sustituyente alquilo, respectivamente. En ambos casos se utiliza la terminación –amina.


En aquellos casos donde hay más de un sustituyente se deben nombrar en orden alfabético, así mismo, si alguno de estos se repite varias veces se utilizan los prefijos de cantidad: di, tri y tetra, entre otros.


También es posible nombrar los sustituyentes empleando la letra N como localizador, siempre que los sustituyentes estén unidos al átomo de nitrógeno.


En compuestos donde la prioridad corresponde a otra función química, las aminas se nombran empleando el término amino- precedido por el localizador.


SALES CUATERNARIAS

Las sales cuaternarias se forman cuando una amina reacciona con un ácido. Se utilizan como producto de limpieza y en medicamentos, ya que son más estables y resistentes que las aminas de las cuales provienen.



¡Aplica lo aprendido!

Indica el nombre del siguiente compuesto.


  1. Enumera la cadena carbonada más larga.

  1. Identificar los sustituyentes.

  1. Nombrar el compuesto.