CAPÍTULO 3 / TEMA 1

Sistemas materiales

Al momento de estudiar la materia, por lo general analizamos una porción de ésta a la que llamamos sistema material. Todo sistema material tiene propiedades generales o extensivas y propiedades específicas o intensivas.

VER INFOGRAFÍA

PROPIEDADES EXTENSIVAS E INTENSIVAS

Propiedades extensivas: dependen de la cantidad de materia, por ejemplo: el peso, la masa y el volumen. Todas las sustancias de manera general presentan estas propiedades, pero no son tan útiles para identificar un material respecto de otro. Sin embargo, sirven para saber cuánta sustancia presente hay. Se trata de una identificación cuantitativa.

Con las propiedades extensivas no se puede describir un material de manera cualitativa.

Propiedades intensivas: no cambian al variar la cantidad de materia analizada. Por ejemplo: la densidad, el punto de ebullición, el punto de fusión y el índice de refracción, entre otras propiedades. En general, las propiedades intensivas brindan mucha información sobre los materiales y sirven para identificar un material respecto de otro.

El punto de fusión es una propiedad útil para identificar los metales.

¿QUÉ SON LOS SISTEMAS MATERIALES?

Un sistema material es una porción de materia que se aísla para ser estudiada. Hablamos de fase cuando nos referimos a todas aquellas porciones del sistema material que tienen propiedades intensivas iguales. Por otro lado, los componentes son las sustancias que conforman el sistema material.

Tipos de fase

Las fases que pueden estar presentes en un sistema son: sólida, líquida y gaseosa.

La fase sólida, representada con la letra “s” en el subíndice de la sustancia a estudiar (X(s)), es aquella en donde los átomos y las moléculas se encuentran unidos fuertemente, por lo que se trata de una estructura muy ordenada.

La fase líquida, representada con la letra “l” en el subíndice de la sustancia a estudiar (X(l)), es aquella fase en donde los átomos y las moléculas no se encuentran unidos tan fuertemente, como en el caso de los sólidos. Por lo tanto, se trata de una sustancia capaz de mantener cierto orden y libertad de movimiento.

La fase gaseosa, representada con la letra “g” en el subíndice de la sustancia a estudiar (X(g)), es aquella fase en donde los átomos y las moléculas no se encuentran unidos fuertemente, es decir, son uniones muy débiles, por lo que las partículas se mueven libremente y en forma aleatoria.

Fases del agua

El agua es la sustancia más versátil del planeta. En la vida cotidiana la podemos encontrar en sus tres fases: sólida, líquida y gaseosa.

CLASIFICACIÓN SEGÚN EL NÚMERO DE FASES DEL SISTEMA

Sistema homogéneo: cuando un sistema posee las mismas propiedades intensivas en toda su masa, significa que es un sistema homogéneo. Un sistema homogéneo cuenta con una sola fase.

Sistema heterogéneo: cuando un sistema material cuenta con distintas propiedades intensivas en por lo menos dos de sus puntos, se trata de un sistema heterogéneo. Un sistema de este tipo tiene dos o más fases.

El medioambiente

Si salimos al patio o vamos a un parque nos daremos cuenta que el suelo que pisamos es un sistema heterogéneo de distintos componentes de sólidos. Tierra, pequeñas piedras, y partículas con distintos tamaños y características son sólo algunas de las fases que podemos encontrar.

 

Por otro lado, no podemos ver a nuestro alrededor el aire que respiramos. Sin embargo, éste es una mezcla de compuestos gaseosos que da como resultado un sistema homogéneo.

CLASIFICACIÓN SEGÚN SU RELACIÓN CON EL MEDIO

Sistema abierto: es el caso más común; es un sistema que permite el intercambio de energía y masa con el medioambiente.

Sistema cerrado: no permite el intercambio de masa con el medioambiente, pero sí la transferencia de energía con el medio.

Sistema aislado: no permite ni la transferencia de energía, ni de masa con el medioambiente.

Sistemas según su relación con el medio 

Un lago y el ciclo del agua son un ejemplo de sistema abierto.
Una botella de gaseosa en el refrigerador es un ejemplo de sistema cerrado.
Un termo de café es un ejemplo de sistema aislado.

SUSTANCIAS PURAS

Las sustancias puras son aquellas cuyos componentes no pueden separarse mediante procesos físicos; en algunos casos solo es posible mediante procesos químicos. El agua es una sustancia pura. Si la analizamos en forma sólida, líquida o gaseosa, descubriríamos que su composición es la misma en todos los estados. Si la calentamos, la enfriamos o la congelamos (todos estos son procesos físicos) siempre tendremos los mismos componentes.

El diamante es una sustancia pura, ya que está conformado por moléculas de carbono muy unidas entre sí.

MEZCLAS

Una mezcla está compuesta por la unión de distintas sustancias puras que mantienen propiedades independientes. Pueden ser:

  • Mezclas homogéneas

Son aquellas producidas de manera directa entre moléculas, en las cuales no se diferencias los componentes. En este caso, mantienen las propiedades constantes. Otro nombre por el cual se conoce a esta mezcla es disolución. Se diferencia de una sustancia pura debido a que sus componente poseen distintas temperaturas de fusión o ebullición. Es partir de esta diferencia que se pueden separar los componente a través de la aplicación de calor, que permite modificar el estado de la sustancia que se busca aislar del resto. La acción de separar los componentes de una disolución implica medios más sofisticados y un gasto energético mayor en relación a la separación de componentes en el caso de una mezcla heterogénea.

Los jugos son un ejemplo de disolución.

Si bien está formada por dos o más componentes, a simple vista sólo podemos ver un componente. Por ejemplo, el agua con sal es un sistema material de dos sustancias, pero sólo vemos una. En cualquier porción de la muestra homogénea que tomemos veríamos que presenta las mismas propiedades e igual composición química.

El agua de mar

Si decidimos investigar sobre la composición del agua de mar, veríamos que también hay sal. Esto nos indica que el agua de mar no es una sustancia pura, pues es una mezcla de agua y sal que se puede separar mediante un proceso físico (evaporación).

  • Mezclas heterogéneas

Sus componentes se pueden diferenciar ópticamente. A su vez, estos se pueden aislar de manera simple, por ejemplo, mediante el uso de herramientas que posibilitan su separación mecánica. Algunos modos de separación de este tipo de mezclas son sistemas como el filtrado, que permite quitar partículas sólidas de un líquido o de un gas, y la decantación, a partir de la cual se pueden separar líquidos con distinta densidad.

Un ejemplo de mezcla heterogénea es el agua y el aceite. Es decir, no es una sustancia uniforme. Además, si tomáramos distintos puntos de esta mezcla veríamos que presentan composición y propiedades distintas.

El agua y el aceite conforman una mezcla heterogénea.
RECURSOS PARA DOCENTES

Infografía “Mezclas homogéneas y heterogéneas”

Material visual con mayor información de los tipos de mezclas en los sistemas materiales.

VER

 

Enciclopedia virtual “Materia”

Este recurso audiovisual exclusivo para docentes contiene la definición de la materia, sus propiedades y cómo se describen los sistemas materiales.

VER

 

CAPÍTULO 3 / REVISIÓN

MEZCLAS Y SOLUCIONES | ¿qué aprendimos?

Sistemas materiales

En nuestra vida cotidiana entramos en contacto con diversidad de elementos; algunos son sólidos, otros líquidos y otros gaseosos. Si bien parece que todos son diferentes, podemos decir que hay algo que tienen en común: todos están formados por materia. Para estudiar la materia solemos analizar una porción a la que llamamos sistema material. Todo sistema material tiene propiedades generales o extensivas y propiedades específicas o intensivas. Hablamos de “fase” cuando nos referimos a todas aquellas porciones del sistema material que tienen las mismas propiedades intensivas. Por otro lado, los componentes son las sustancias que conforman el sistema material.

Todo el universo visible está formado de materia.

Sistemas homogéneos

Hablamos de sistema homogéneo cuando un sistema material posee las mismas propiedades intensivas en toda su masa. Éste cuenta con una sola fase. Las soluciones son sistemas materiales homogéneos compuestos por uno o más solutos disueltos en un solvente determinado. El soluto es el componente de la solución que se encuentra en menor proporción y se disuelve en el solvente, en tanto, el solvente es el que se encuentra en mayor proporción y tiene la capacidad de disolver el soluto. Las soluciones se pueden clasificar en función de la concentración en insaturadas, saturadas y sobresaturadas. Su concentración puede expresarse cuantitativamente, se establecen diferentes relaciones porcentuales entre las cantidades de sustancias a través de unidades químicas y físicas conocidas como masa (m), volumen (v) y cantidad de sustancia (n).

El agua es el solvente universal.

Sistemas heterogéneos

Un sistema homogéneo cuenta con distintas propiedades intensivas en al menos dos de sus puntos. Un sistema de este tipo tiene dos o más fases. Generalmente, para su separación se utilizan mecanismos físicos y de menor consumo de energía. Existen las mezclas groseras y las mezclas finas o suspensiones. En las primeras los componentes se diferencian fácilmente debido a su gran tamaño, y las suspensiones se forman por una fase sólida con baja solubilidad que se encuentra dispersa en la fase liquida. Las fases son más difíciles de diferenciar debido al ínfimo tamaño de la partícula. Existen diversos métodos de separación de fases, algunos de ellos son: la decantación, la tamización, la filtración y la imantación. Los métodos mecánicos no producen transformaciones en los componentes de la mezcla.

Un sistema heterogéneo fácil de identificar es el del el agua y el aceite.

Agua

El agua es un compuesto químico de vital importancia para los seres vivos. Es la sustancia universal más abundante en la Tierra. Está compuesta por hidrógeno y oxígeno. Nuestro planeta está cubierto en un 70 % por agua. Por otra parte, todas las especies dependen de este líquido vital para la supervivencia. Al igual que el oxígeno, el agua es un elemento de la naturaleza esencial para que todas las formas de vida puedan existir. El agua cuenta con diferentes propiedades que se clasifican en organolépticas y fisicoquímicas. Las primeras son las que percibimos con nuestros sentidos, y las segundas tienen relación con la composición química. El agua es un regulador de temperatura para la mayoría de los seres vivientes, así como también tiene un papel esencial en la regulación de la temperatura atmosférica.

El 70 % de nuestro cuerpo está formado por agua.

Contaminación del agua

La contaminación del agua se produce cuando se introduce un material que altera sus características naturales. El agua contaminada deja de ser apta para el desarrollo de los seres vivos. El mercurio es una fuente natural de contaminación y también los hidrocarburos. Otro agente natural contaminante es el arsénico producido por las actividades volcánicas. El ser humano ha vivido con este tipo de contaminación desde hace miles de años y no es posible evitarla; sin embargo, la contaminación debido a las actividades humanas es mucho mayor. El uso de los fertilizantes en la agricultura, metales pesados en la minería, las aguas residuales de las industrias y los desechos arrojados por el ser humano, ponen en riesgo sanitario al ecosistema del planeta que depende de este importante líquido.

El agua contaminada es cuna de enfermedades.

Punto de fusión y punto de ebullición

La materia tiene propiedades características y no características. Las primeras son particulares para cada sustancia ya que dependen de la naturaleza del átomo que la constituye, por lo que permiten identificar sustancias. Entre las propiedades características de la materia están el punto de fusión y el punto de ebullición.

Punto de fusión Punto de ebullición
¿Qué es? Temperatura a la cual una sustancia cambia de estado sólido a líquido. Temperatura a la cual una sustancia cambia de estado líquido a gaseoso.
Condición Presión = 1 atm. Presión = 1 atm.
Tipo de magnitud Constante física. Constante física.
Fases en equilibrio Sólida y líquida. Líquido y gaseoso.
¿Qué sucede durante el equilibrio? La temperatura permanece constante a pesar de que el tiempo de calentamiento aumenta. La temperatura permanece constante a pesar de que el tiempo de calentamiento aumenta.
¿De qué depende? Tipo de enlace químico, polaridad e intensidad de las fuerzas de atracción intermolecualres. Principalmente de la presión atmosférica. También influye el tipo de enlace, polaridad e intensidad de las fuerzas de atracción intermolecualres.
En sustancias covalentes Bajo. Bajo.
En sustancias iónicas Muy alto. Muy alto.
¿Cómo determinarlo? Los aparatos más usados son:

  • Tubo de Thiele.
  • Aparato Fisher-Jhons.
  • Aparato Melt-Temp.
Los métodos más usados son:

  • Método por destilación.
  • Método de Siwoloboff.

 

Representación gráfica temperatura/tiempo
Ejemplo del proceso
  • Derretimiento de un hielo.
  • Derretimiento de una vela.
  • Fundición del hierro.
  • Hervir agua para espagueti.
  • Cocinar una sopa.
  • Hacer café.
En algunas sustancias Agua: 0 °C

Mercurio: – 38,87 °C

Etanol: – 117,3 °C

Cobre: 1.083 °C

Hierro: 1.535 °C

Agua: 100 °C

Mercurio: 356,58 °C

Etanol: 64,96 °C

Cobre: 2.595 °C

Hierro: 3.000 °C

 

Solublidad y polaridad

Al adicionar una sustancia en un agua, ésta se puede disolver o no. Lo que determina que ocurra un hecho u otro es la solubilidad del soluto, la cual a su vez depende diferentes factores, entre ellos, la polaridad.

Solubilidad

La solubilidad es la capacidad que tiene una sustancia de disolverse en otra, por ejemplo: la sal se disuelve en el agua, por tanto la sal es soluble en agua.


El vinagre es soluble en agua. Los términos soluble, ligeramente soluble e insoluble son utilizados como medida cualitativa de la solubilidad.

Dicho de otra forma, la solubilidad es la máxima cantidad de soluto que se puede disolver en un determinado solvente y se expresa como:

Solubilidad = (g soluto ÷ g solvente) x 100

¡Recuerda!

Una sustancia tiene una solubilidad diferente para cada solvente.

¿Cuál es la solubilidad de una sustancia en 140 g de agua si sólo se disuelven 5 g de la misma?

Solubilidad = (5 g soluto ÷ 140 g) x 100 = 3,6


La presión influye en la solubilidad de los gases, ejemplo de ello es el CO2 contenido en las bebidas gaseosas cuya disolución es posible gracias al aumento de la presión.

Polaridad

La polaridad es una propiedad de las moléculas que se manifiesta cuando existe una separación de cargas en las mismas que da lugar a la formación de un dipolo eléctrico.

En este sentido se distinguen dos tipos de moléculas: polares y apolares. Las primeras son aquellas que poseen dipolos eléctricos, es decir, tienen un extremo positivo y otro negativo. En tanto, las segundas no poseen dipolo eléctrico.

¿Polares o apolares?

Solubilidad y polaridad

La solubilidad de una sustancia en un determinado solvente dependerá de la polaridad de ambos componentes. En general, la solubilidad en función de la polaridad está determinada por la siguiente regla: “Lo semejante disuelve a lo semejante”.

La anterior premisa significa que una sustancia polar se disuelve en un solvente polar, en tanto, un soluto apolar se disuelve en un disolvente apolar.

  • Etanol en agua

El etanol y el agua son sustancias polares que forman enlaces o puentes de hidrógeno (fuerza intermolecular), de manera que cuando el etanol se añade al agua, inicia el proceso de solvatación, es decir, las moléculas de etanol y agua empiezan a interactuar entre sí y dan como resultado la formación de puentes de hidrogeno entre estas.

Se denomina solvatación al proceso en el cual las moléculas del soluto interaccionan con las moléculas del solvente y dan lugar una asociación de las mismas.

 

 

  • Hexano en agua

El agua es una sustancia polar capaz de formar puentes de hidrógeno, mientras que el hexano es una sustancia apolar cuyas fuerzas dispersión de London son más débiles. Entonces, considerando la regla de “lo semejante disuelve a lo semejante”, se puede deducir que el hexano no se disuelve en agua.

A nivel molecular, lo que ocurre es que la interacción agua-agua es más fuerte que la interacción agua-hexano y como resultado el hexano no se disuelve en el agua.

La solubilidad también depende de la temperatura. Generalmente, la solubilidad de un sólido se incrementa con el aumento de la temperatura, mientras que para un gas se observa el efecto contrario.

Miscible e inmiscible

Los términos miscibles e inmiscibles son utilizados frecuentemente para describir la solubilidad de un líquido en otro. Dos líquidos son miscibles cuando forman una solución o mezcla homogénea, en tanto, son inmiscibles cuando no forman una solución.

 

 

Ejercicios:

1) Resuelve los siguientes problemas.

a) En 150 g de agua se disolvieron 40 g de una sustancia. ¿Cuál es la solubilidad de la sustancia?
b) La solubilidad de una sustancia A en 120 g de agua es igual a 3. ¿Cuántos gramos de de A se disolvieron en el agua?

 

2) Una con flecha los elementos de las columnas A y B según corresponda.

A B
Metanol
Cloroformo Polar
Agua No polar
Hexano
Glicerina

 

3) Predice la solubilidad de las siguientes sustancias en agua.

a) Tolueno
b) Ácido acético
d) Metanol
e) Acetona

 

4) Predice la solubilidad de las siguientes sustancias en tolueno.

a) Hexano
b) Cloruro de sodio
c) Etanol
d) Agua

Reacción ácido-base

Una reacción-ácido base se puede observar en la vida cotidiana, como es el caso de los antiácidos que son usados para tratar la acidez en algunas personas. Su principio es sencillo, comúnmente son compuestos básicos que sirven para neutralizar la acidez de los jugos gástrico, por esta razón las reacciones ácido-base son conocidas también como reacciones de neutralización.

Conceptos básicos

  • Reacción química

Proceso en el cual una o varias sustancias (denominadas reactivos o reactantes) sufren una transformación en su estructura molecular y en los enlaces, de manera que originan otras sustancias diferentes o productos.

  • Ácido

Compuesto químico que al disolverse en agua origina un incremento en la concentración de los iones de hidrógeno.

El fisicoquímico Gilbert N. Lewis, por su parte, lo define de manera más amplia como aquella especie química capaz de aceptar un par de electrones de otra especie.

Los ácidos tienen un sabor es agrio, un ejemplo es el jugo de limón que contiene ácido cítrico, de hecho, la palabra ácido proviene del término latino acidus que significa “ágrio”.

El vinagre es un tipo de ácido usado en la cocina y se denomina ácido acético.
  • Base

A lo largo de la historia se han realizado numerosos esfuerzos para definir a estos compuestos. Una de las definiciones más recientes es la de Lewis, que lo describe como aquella sustancia capaz de donar un par de electrones.

Las bases son resbalosas al tacto y su sabor es amargo, un ejemplo se observa en el jabón que es un tipo de base.

Las bases son solubles en el agua.

Reacciones ácido-base

De la misma forma en la que se han planteado diferentes definiciones para los ácidos y para las bases con el paso del tiempo, también han surgido descripciones alternativas para las reacciones de ácido-base. Uno de los primeros en estudiar a este tipo de reacciones fue el químico sueco Svante Arrhenius, quién sostenía que eran reacciones en las que los ácidos formaban cationes de hidrógeno H+ (que luego se demostró que no existen de forma aislada sino en la forma de H3O+ o ión hidronio) y las bases formaban aniones OH.

Definición según Svante Arrhenius

Es aquella reacción química producida entre un ácido y una base para formar una sal y agua.

Cumple la siguiente forma: Ácido+ + base-→ sal + agua

Por ejemplo: HCl + NaOH → NaCl +H2O

Aunque la definición de Arrhenius era sencilla, tenía sus limitaciones, por ejemplo se cumplía solamente en una solución acuosa. Por esta razón, los científicos Johannes Nicolaus Brønsted y Thomas Martin Lowry plantearon una definición en función de la capacidad que tienen las bases de aceptar protones y los ácidos de cederlos, desde este punto de vista se consideran tanto al concepto planteado por Arrehnius como a las reacciones de ácido-base en soluciones no acuosas.

El planteamiento Brønsted-Lowry no se limita a un medio acuso pero se enfoca únicamente a los ácidos que contienen hidrógeno.
Definición según Johannes Nicolaus Brønsted y Thomas Martin Lowry

Reacción química en la que la que se elimina un catión hidrógeno del ácido el cual se adiciona posteriormente a la base.

Como fórmula general se tiene: AH + B → base conjugada + ácido conjugado

Dónde:

AH = ácido B = base

Base conjugada: ión o molécula que resulta del ácido y cede el protón.

Ácido conjugado: ión o molécula resultante de la base que gana el protón.

Por ejemplo: CH3COOH(ácido) + H2O(base)→ CH3COO(base conjugada) + H3O+(ácido conjugado)

 

El agua (H2O) es una sustancia anfótera, es decir, puede comportarse como ácido o como base según el caso.

Posteriormente, el fisicoquímico estadounidense Gilbert N. Lewis no se fundamentó ni en la ionización en un medio acuoso planteada por Arrhenius ni en la transferencia de protones de Brønsted-Lowry, sino que por su parte analizó la transferencia de electrones que se produce en las reacciones de ácido-base. En este sentido, se define a la base como el compuesto capaz de donar un par electrónico y al ácido como el compuesto capaz de recibirlo. A través de este planteamiento se pudieron incluir sustancias que anteriormente no se consideraban en las definiciones anteriores.

Todas las sustancias catalogadas como ácidos en el planteamiento Brønsted-Lowry también son ácidos para Lewis ya que aceptan el par electrónico.
Definición según Lewis

Reacción química que se produce como producto de la donación del par electrónico de la base al ácido. El resultado es un enlace covalente entre los dos compuestos.

Tiene por fórmula general: A + :B → A—B+

Dónde:

A = ácido de Lewis

B = base de Lewis

A-—B+ = compuesto resultante

Por ejemplo: AlCl3 (ácido) + :NH3 (base)→ [Al(NH3)Cl3]

Según la definición de Lewis, la molécula de amoníaco cede su par de electrones sobrante al ácido para producir con este un enlace covalente.

El pH

Permite indicar el grado de acidez o basicidad de soluciones acuosas, sus siglas provienen del fránces pouvoir hydrogène que significa “poder del hidrógeno” debido a que mide la concentración de iones de hidrógeno en dichas disoluciones.

Las sustancias con pH menor a 7 se consideran ácidas, por el contrario de las que tienen un pH superior a 7 que son consideradas como alcalinas.

Las disoluciones se consideran neutras cuando su pH es igual a 7 como es el caso del agua.