CAPÍTULO 5 / EJERCICIOS

movimientos

Características del movimiento

1. Investiga sobre la frase “El movimiento es relativo” y explica lo que significa con tus propias palabras.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Escribe el  nombre del término al que corresponde cada definición.

  • ______________________________: punto o posición desde donde comienza el movimiento.
  • ______________________________: representación gráfica del movimiento.
  • ______________________________: eje de las coordenadas representado con la letra Y.
  • ______________________________: eje de las abcisas representado con la letra X.

rapidez, velocidad y aceleración

1. En las siguientes oraciones, responde con una V si es verdadero o F si es falso. En caso de ser falso, justifica la respuesta.

  • Cuando decimos que un vehículo viaja a 100 km/h nos referimos a su trayectoria.  (   )

______________________________________________________________________________________________________

  • La velocidad incluye la rapidez y la dirección de un móvil.  (   )

______________________________________________________________________________________________________

  • La medida de la velocidad se conoce como vectorial, ya que dispone de un valor escalar y una dirección.  (   )

______________________________________________________________________________________________________

  • En la velocidad media, la dirección y el sentido son diferentes.  (   )

______________________________________________________________________________________________________

2. Realiza con tus propias palabras una definición para cada una las siguientes opciones y explica de qué manera se puede graficar.

  • Velocidad instantánea: _______________________________________________________________________

______________________________________________________________________________________________.

  • Aceleración: _______________________________________________________________________________

______________________________________________________________________________________________.

3. Resuelve los siguientes ejercicios:

  • Un automóvil tiene una velocidad inicial de 30 m/s y 10 segundos más tarde alcanza una velocidad final de 60 m/s ¿Cuál es su aceleración?

Solución:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Una pelota rueda hacia la derecha en línea recta y recorre una distancia de 15 m en 10 s. Calcular la rapidez.

Solución:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

tipos de movimientos

1. Completa las siguientes oraciones:

  • En el movimiento rectilíneo el móvil se desplaza en un solo sentido, con _____________ y _____________ constante, y no pasa por los mismos puntos del recorrido.
  • Todos los cuerpos en caída libre tienen un movimiento _____________.
  • En el _________________________ la velocidad en la que se mueve el vector es invariable en módulo, dirección y sentido.
  • Al movimiento en el que el móvil cae en forma vertical desde cierta altura y sin obstáculos se lo llama ____________________.

2. Describe con un ejemplo los diferentes tipos de movimientos y dibuja su trayectoria.

  • Movimiento rectilíneo uniforme

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

  • Movimiento rectilíneo uniformemente variado

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

  • Caída libre

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

  • Movimiento parabólico

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

  • Movimiento circular

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

  • Movimiento ondulatorio

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

CAPÍTULO 5 / TEMA 3

Tipos de movimiento

Se dice que un cuerpo está en movimiento cuando cambia de posición, pero depende de su trayectoria el tipo de movimiento que realice. En la física hay varios tipos de movimientos que a continuación estudiaremos.

Ver infografía

Descripción del movimiento

A diario somos parte de un entorno que se encuentra en movimiento, lo que se evidencia en nuestras horas de luz y oscuridad por los movimientos del planeta Tierra en su eje de rotación, así como los movimientos de traslación en torno al Sol durante el año y las diferentes estaciones; por lo que todo lo que está en el planeta se mueve y de allí la formación de diferentes fenómenos, como las mareas, las corrientes marinas, el viento, los terremotos y la deriva continental.

¿Sabías qué?
El movimiento de una bala es parabólico, es el ojo del observador quien le da el nombre de Movimiento Rectilíneo Uniformemente Variado (MRUV).

Este proceso físico también se demuestra a niveles microscópicos, en el movimiento de los cromosomas durante la división celular y en el movimiento de los electrones que orbitan los núcleos de los átomos. Sin embargo, a pesar de saber que ningún objeto, factor abiótico o ser vivo está inmóvil, se debe partir de un punto o posición para poder facilitar el estudio del movimiento, este punto se conoce como sistema de referencia, por lo que se dice que el movimiento de un cuerpo se da al cambiar su posición con respecto a un sistema de referencia.

El punto medio del sistema de coordenadas es cero.

Imaginemos que se deja caer un balón desde una altura de 1 metro y que se necesita estudiar el recorrido del movimiento. Para ello se hace una representación gráfica del movimiento a través del sistema de ejes de coordenadas, el cual consta de dos rectas perpendiculares que convergen en un punto denominado origen. La recta vertical corresponde al eje de las coordenadas descrito con la letra Y; y la recta horizontal corresponde al eje de las abscisas descrito con la letra X. Al representar gráficamente el ejemplo anterior podemos conocer la naturaleza del movimiento, es decir, que la dirección del movimiento es vertical, de arriba hacia abajo, por lo que el movimiento es rectilíneo.

El balón está en movimiento.

MOVIMIENTOS RECTILÍNEOS

El movimiento rectilíneo debe su nombre a que su trayectoria es una línea recta, es decir, cuando el móvil se desplaza en un solo sentido, con constante trayectoria y dirección, y no pasa por los mismos puntos del recorrido. Todos los cuerpos en caída libre tienen un movimiento rectilíneo.

Una carrera de 100 metros planos es un movimiento rectilíneo.

Movimiento rectilíneo uniforme (MRU)

Existe un movimiento en el que el vector velocidad es invariable en módulo, dirección y sentido: el movimiento rectilíneo uniforme (o simplemente movimiento uniforme), que es el que tiene un móvil que se mueve en línea recta con velocidad constante.

Si tenemos los puntos P0 y P de la trayectoria que recorre un móvil con movimiento uniforme y tomamos esa recta como eje x, esos puntos quedarán fijados con una única coordenada: su abscisa. Los vectores:

 

Serán:

Y la velocidad media entre P0 y P será:

Como la velocidad instantánea es constante, podemos escribir:

De donde X= X0  + v. (t – t 0)                                                                                                                                                                                                                                                                   

Si empezáramos a medir los tiempos cuando el móvil se halla en el punto P0, sería t0 = 0, y por lo tanto, x = x0 + v·t. Y si además tomásemos el origen de abscisas en el punto P0, se reduciría a x = v·t.

Movimiento rectilíneo uniformemente variado (MRUV)

Según la naturaleza de los movimientos pueden ser regulares o irregulares. El movimiento uniforme se refiere a cuando el móvil recorre distancias iguales en tiempos iguales, mientras que el movimiento variado es el caso contrario. Esto puede demostrarse al comparar el recorrido constante de las manecillas de un reloj al dar la vuelta completa siempre a los 60 minutos, y el recorrido irregular de los atletas de 100 metros planos en las Olimpíadas, en donde todos tienen récords de tiempo diferente a una misma distancia.

La rapidez o velocidad en el movimiento es una magnitud escalar que permite determinar mediante una comparación si un movimiento es rápido o lento con respecto a otro, por lo que dependerá de la distancia y del tiempo que tarda en realizar el recorrido. Si se repitiese el ejemplo del balón de básquet, el móvil, es decir el balón, realiza desplazamientos iguales en diferentes tiempos con cambios constantes en la rapidez, por lo que el movimiento es variado. En el movimiento variado la velocidad no es constante, mientras que el uniforme sí lo es, por ello la trayectoria en éste último siempre será rectilínea mientras que en el variado será rectilínea y curvilínea.

Un vehículo realiza un MRUV ya que su velocidad no es constante.

La caída libre

En este movimiento, el móvil cae de forma vertical desde cierta altura sin ningún obstáculo. Es un tipo de movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) porque su aceleración es constante y coincide con el valor de la gravedad.

El lanzamiento de paracaídas es una caída libre y además un MRUV.

La gravedad

Al encontrarse cerca de la superficie terrestre, los cuerpos experimentan una fuerza de atracción que les confiere una aceleración. Cuando una manzana cae de un árbol, lo hace por acción de dicha fuerza. En el caso de la Tierra, la gravedad puede considerarse constante y su dirección es hacia abajo. Generalmente se designa con la letra g y sus valores aproximados para algunos sistemas de medición son:

Sistema M.K.Sg = 9,8 m/s²

Sistema c.g.sg = 980 cm/s²

Sistema inglésg = 32 ft/s² (pies por segundo)

¿Sabías qué?
En 1687, el físico, filósofo, teólogo, inventor, alquimista y matemático inglés Isaac Newton propuso la ley de gravitación universal o teoría de la gravedad.

MOVIMIENTO CURVILÍNEO

El movimiento curvilíneo se llama de esta manera ya que su trayectoria es una línea curva, que puede ser circular, parabólica, elíptica y ondulatoria.

Movimiento circular: en el movimiento circular la trayectoria siempre es una circunferencia, y son variables el desplazamiento y el sentido del móvil, que repite su trayectoria al pasar por los mismos puntos. Un ejemplo de este movimiento lo observamos en las ruedas de una bicicleta en movimiento o una piedra unida a una cuerda girando.

Aunque la rapidez y la magnitud de la velocidad son constantes, a cada momento cambia de dirección.

Movimiento parabólico: en este tipo de movimiento la trayectoria siempre es una parábola, un arco con sentido variable; un ejemplo del movimiento curvilíneo parabólico se observa en un chorro de agua que sale de un conducto.

Este movimiento es realizado por un objeto en dos dimensiones o sobre un plano.

Movimiento elíptico: debe su nombre a que la trayectoria es una elipse, es decir, una curva cerrada y simétrica como la que se forma por la órbita que se observa de la Tierra alrededor el Sol. El desplazamiento y sentido se mantienen constantes, pasa por los mismos puntos del recorrido.

El movimiento de la Tierra alrededor del Sol es elíptico y produce las estaciones del año.

Movimiento oscilatorio: este movimiento se da cuando la trayectoria, en este caso una curva, se repite mientras varía el sentido sucesivamente. Un ejemplo se ve en el vaivén de un columpio, en donde el movimiento está impulsado por el peso del móvil.

Este movimiento se produce en torno a un punto de equilibrio estable.

Movimiento ondulatorio: es aquel en donde una oscilación se propaga de un punto a otro, por lo que se transporta energía, siendo su trayectoria rectilínea, mientras que el desplazamiento y sentido permanecen hasta que la onda disminuye o presenta un obstáculo. El movimiento ondulatorio puede definirse también como un movimiento vibratorio, por lo que puede darse en los diferentes estados de la materia: sólido, líquido y gaseoso. Un ejemplo de este movimiento se da al caer una gota de agua en un espacio acuático en reposo.

RECURSOS PARA DOCENTES

Artículo “Dinámica”

Artículo destacado donde se diferencia la cinemática de la dinámica.

VER

Artículo “Lanzamiento vertical”

Artículo destacado con más información sobre este movimiento inverso a la caída libre.

VER

CAPÍTULO 4 / TEMA 6

Fenómenos ondulatorios

Las ondas pueden comportarse de distintas maneras según el medio en el que se encuentren. Así, la manera de propagarse varía según los obstáculos, los choques o los cuerpos a atravesar. Esto produce varios fenómenos que veremos a continuación.

¿QUÉ ES UNA ONDA?

Es una oscilación o perturbación que se caracteriza por propagarse en el espacio y por transportar energía, no materia.

Por ejemplo, al tomar una soga de un extremo y sacudirla se puede observar que se genera un movimiento ondulatorio, pero la soga no ha sido modificada. En consecuencia, al imaginar que la soga está compuesta por infinitos puntos uno al lado del otro, se puede decir que cada uno de ellos es desplazado verticalmente por el movimiento. En otras palabras, la soga vibra.

A diario, las ondas se pueden observar en el mar, al tirar una piedra en un cuerpo tranquilo de agua, al tocar las cuerdas de una guitarra o al hablar.

¿Cuáles son las características de una onda?

Elongación (y): es la distancia que existe en cualquier instante entre la posición de equilibrio y la posición de la partícula. En el SI se mide en metros (m).

Amplitud (A): es la elongación máxima que puede alcanzar una partícula con respecto a la línea de equilibrio. En el SI se mide en metros (m).

Cresta y Valle: la cresta es el punto más alejado de la línea de equilibrio del medio donde se propaga la onda, y el valle es el punto más alejado de la línea de equilibrio donde se propaga la onda, pero opuesta a la ubicación de la cresta.

Longitud de onda (λ): es la distancia existente entre dos puntos de la onda que se encuentra en un instante dado en el mismo estado de vibración, es decir, es la distancia que la onda recorre en un ciclo, puede ser entre dos valles sucesivos o dos crestas sucesivas y se mide en metros (m).

Periodo (T): es el tiempo que tarda una oscilación que se propaga en recorrer un espacio igual a la longitud de onda. Se mide en segundos (s).

Velocidad de propagación (v): es la velocidad con la que puede propagarse una onda. Se mide en m/s.

Frecuencia (f): es el número de oscilaciones o vibraciones completas que se realizan en un segundo. Es la inversa de periodo. Se mide en hercios (Hz).

¿QUÉ ES EL MOVIMIENTO ONDULATORIO?

Para comprender mejor la definición de onda hay que saber que la materia que nos rodea, como el agua, el aire o una mesa, está formada por partículas. Éstas están más apretadas en los sólidos y más dispersas en los líquidos o gases. Sin embargo, en todos los casos la vibración de una partícula puede transmitirse a una partícula contigua.

Partículas en una cuerda.

Por lo tanto, cuando se propaga una onda, las partículas vibran alrededor de sus posiciones pero no se mueven con la onda. Por ejemplo: cuando se tira una piedra en el agua, las partículas de agua no avanzan lateralmente sino que suben y bajan al mismo tiempo que transmiten energía a las partículas vecinas. De este modo se forman pequeñas olas: son ondas que viajan a través del agua y transmiten la energía de un sitio a otro.

Radio AM

La radio AM es un medio de comunicación que transmite con amplitud modulada (AM): una manera de transmitir información por medio de una onda transversal. Se usa también en radios de aviones y torres de control.

¿CUÁLES SON LOS TIPOS DE ONDAS?

Ondas según la dirección de propagación

Longitudinales: la alteración o perturbación es paralela al desplazamiento de la onda.

Transversales: la alteración o perturbación es perpendicular al desplazamiento de la onda.

Ondas según la dimensión de propagación

Unidimensionales: se propagan en una sola dirección.

Por ejemplo: la propagación de movimiento en una cuerda.

Bidimensionales: se propagan sobre una superficie en dos dimensiones.

Por ejemplo: las olas en la superficie de un líquido.

Tridimensionales: Se propagan por el espacio en tres dimensiones.

Por ejemplo: el sonido.

Según el medio que necesitan para propagarse

Mecánicas: necesitan un medio material para propagarse. Por ejemplo: las ondas sonoras y las generadas en la superficie del agua.

Electromagnéticas: pueden propagarse en medios materiales y en el vacío. Por ejemplo: la luz, los rayos x y el láser.

¿CUÁLES SON LOS FENÓMENOS ONDULATORIOS?

Fenómenos ondulatorios
Reflexión Refracción Difracción Interferencia
Es el cambio de dirección en la onda cuando choca con una superficie lisa. No cambia el medio de propagación. Es el cambio de dirección y velocidad de la onda cuando pasa de un medio de propagación a otro. Es la desviación de la onda cuando llega a una abertura de tamaño comparable con su longitud. Es la adición o superposición de dos o más ondas.
Ejemplo Ejemplo Ejemplo Ejemplo
Espejo. Lápiz sumergido en agua. Rompeolas. Varios objetos lanzados al agua.

 

Ejemplo de refracción: lápiz dentro de un vaso de agua.

ONDA SONORA

Las ondas sonoras son ondas longitudinales.

Son las responsables de producir un efecto que al llegar al oído identificamos como sonido. Estas ondas corresponden al grupo de las ondas mecánicas, porque requieren de un medio para propagarse.

¿Qué es el sonido?

 

El sonido es una onda, es decir, una perturbación que “viaja” en el espacio y propaga energía. Las ondas sonoras tienen la capacidad de transmitirse a través de la materia, es por eso que cuando una persona habla, el sonido se mueve por el aire o a través de alguna pared.

 

VER INFOGRAFÍA

Cualidades del sonido

VER INFOGRAFÍA

Intensidad

Es la energía que se transmite por la onda al atravesar una superficie por unidad de tiempo. Se mide en J/m2s o W/m2.

Sonoridad

La sonoridad es una cualidad que permite diferenciar entre los sonidos fuertes y débiles. Su unidad es el belio (B) y se mide en decibelios (dB).

Tono

Es la frecuencia de vibración que tienen las ondas sonoras. Éstas permiten determinar si un sonido es grave o agudo. Se mide en hercio (Hz).

Sonidos

Sonidos graves: 20 a 256 Hz.

Sonidos medios de 256 a 2.000 Hz.

Sonidos agudos de 2.000 a 16.000 Hz.

Timbre

Es propio de cada fuente sonora. Cada material o voz humana vibra de una forma diferente y provoca ondas sonoras complejas que identifican el sonido.

Reflexión

Se produce cada vez que las ondas se encuentran con un cuerpo que no puede traspasar, y por lo tanto rebotan y se expanden o reflejan.

Fenómenos sonoros de la reflexión
Resonancia Reverberación Eco
Es el aumento de la amplitud y expansión de un sonido debido a los estímulos recibidos por parte de una fuente de ondas externas. Es el alargamiento de un sonido causado por repetidos procesos de reflexión. Se produce comúnmente en lugares cerrados y vacíos. Es producido por el choque directo de un sonido contra algún cuerpo. Este reflejo tarda más de una décima de segundo en ser escuchado.

Refracción

Cuando las ondas sonoras se desplazan y cambian de posición, la distancia y el movimiento producen una variación en el sonido.

¿Sabías qué?
Las ondas sonoras también se consideran ondas de compresión u ondas de compresibilidad porque producen compresión (zonas de alta presión y densidad) y rarefacción (zonas de baja presión y densidad) cuando viajan a través de un medio.

Propagación del sonido

El sonido se propaga de manera tridimensional, por lo que puede llegar a cualquier sitio del espacio. De este modo, la velocidad de su propagación depende del medio: si las partículas están muy próximas y de las fuerzas de cohesión.

Dirección de una onda de sonido

El sonido puede considerarse como una serie de ondas de compresión y de rarefacción propagadas por el aire.

En consecuencia, la velocidad de propagación de una onda sonora es mayor en los sólidos que en los líquidos, y en los líquidos es mayor que en los gases.

¿Sabías qué?
La velocidad del sonido a condiciones normales de presión y temperatura es de 5.600 m/s en el acero, 1.460 m/s en el agua y 340 m/s en el aire.

Efecto Doppler

Este efecto se percibe cuando se acerca al observador una onda sonora, su longitud de onda se acorta y el sonido se percibe a un mayor volumen. Es por este motivo que la altura de una fuente que se aleja, se reduce. Este efecto se puede percibir siempre que la fuente de ondas se mueva con respecto al observador o viceversa. Como resultado se podrá observar una aparente variación de la altura del sonido.

Efecto Doppler en la calle

Al escuchar a lo lejos la sirena de una ambulancia, la intensidad del sonido de su sirena aumenta a medida que el vehículo se acerca a nosotros a toda velocidad, pero justo después de que nos pasa por un lado y se aleja de nosotros su intensidad disminuye y la frecuencia de pulsos de sonidos se hace más larga, este fenómeno se conoce como efecto Doppler.

 

LUZ

VER INFOGRAFÍA

En 1817, un físico inglés llamado Thomas Young afirmó que la luz tiene las propiedades de una onda. En su experimento calculó la longitud de onda de la luz a partir de un patrón de interferencia y descubrió no sólo que la longitud de onda es una millonésima de metro (1 μm) o menos, sino también que la luz es una onda transversal. Este fenómeno no se puede explicar a menos que la luz se considere una onda.

Las ondas electromagnéticas son ondas transversales.

Más tarde, en 1864, el físico escocés James Clerk Maxwell estableció que la luz es una forma de energía electromagnética que viaja en ondas. La razón de cómo lo hace en ausencia de un medio se explica por la naturaleza de las vibraciones electromagnéticas.

La luz se comporta como una onda, sufre reflexión, refracción y difracción.

Reflexión Refracción  Difracción
El reflejo de las ondas de luz en una superficie da como resultado la formación de una imagen. Cuando la luz pasa de un medio a otro se observa una desviación debido a las velocidades de propagación que difieren entre sí. Si la luz encuentra un obstáculo en su camino, éste la bloquea y tiende a causar la formación de una sombra en la parte de atrás del mismo.

Espectro electromagnético

VER INFOGRAFÍA

La luz está compuesta por ondas electromagnéticas que pueden poseer diversas frecuencias, que se clasifican y conforman el denominado espectro electromagnético.

La luz visible es una pequeña parte del espectro electromagnético que comprende longitudes de onda entre 380 nm y 740 nm. Un elemento de las ondas electromagnéticas es su longitud de onda, la cual determina el color; por ejemplo: el violeta posee una longitud de onda más corta y el rojo una más larga.

Espectro electromagnético.

Propagación de la luz

La luz puede propagarse en el vacío así como en otros medios, por lo tanto, su velocidad dependerá de dicho medio. Asimismo, la luz se propaga tridimensionalmente en el espacio.

¿Sabías qué?
La velocidad de propagación de la luz en el vació o en el aire es de 3 · 108 m/s.

Si el medio es homogéneo, la luz se propagará linealmente y se podrán distinguir:

  • Las áreas de sombra que no reciben luz.
  • Las áreas de penumbra que reciben parte de la luz.
  • Las áreas iluminadas que reciben todos los rayos de luz.
La sombra es una zona donde la luz es obstaculizada.
RECURSOS PARA DOCENTES

Video “Efecto Doppler”

Recurso audiovisual que explica cómo se produce este efecto relacionado con la variación de frecuencia en las ondas.

VER

Artículo destacado “Acústica y sonido: cualidades del sonido”

Este artículo diferencia acústica y sonido, y describe las cualidades de este último: intensidad, altura o tono y timbre.

VER

Artículo destacado “El sonido: Fenómeno vibratorio”

Recurso que ahonda en detalle en las particularidades del fenómeno vibratorio, el sonido y su transmisión.

VER

Artículo destacado “Ondas electromagnéticas”

Artículo que describe las características y tipos de ondas electromagnéticas.

VER

CAPÍTULO 4 / TEMA 4

Energía mecánica

A diario estamos en presencia de objetos que se mueven y cambian de posición. Esto se debe a la energía mecánica que poseen los cuerpos y que resulta de la suma de dos formas de energía: la cinética (movimiento) y la potencial (posición).

TRABAJO MECÁNICO

Aunque el concepto de trabajo se relaciona normalmente con actividades laborales e intelectuales, en física tiene una concepción diferente y más concreta.

El trabajo es un principio de la mecánica que comprende una fuerza y un desplazamiento; al trabajo (W) lo usamos para describir cuantitativamente lo que se obtiene cuando una fuerza hace mover a un cuerpo a lo largo de una distancia.

Empujar un objeto es un ejemplo de trabajo. Al inicio el cuerpo está en reposo y, después de ejercer la fuerza paralela al suelo, se desplaza y se acelera en la dirección de la fuerza.
¿Sabías qué?
El valor del trabajo mecánico indica la energía que se transfiere en el empuje a la mesa.

El trabajo mecánico (W) puede expresarse matemáticamente de la siguiente forma:

Donde:

F = fuerza.

Δx = desplazamiento.

El trabajo mecánico es una magnitud escalar y su unidad, según el Sistema Internacional de Unidades, es el joule (J).

Energía mecánica

En un cuerpo, la energía mecánica será igual a la suma de las energía cinética, potencial gravitatoria y potencial elástica.

ENERGÍA CINÉTICA

Es la energía que poseen los cuerpos en movimiento. En otras palabras, es el trabajo que hace falta para que un cuerpo con una masa determinada se acelere desde el reposo hasta una velocidad señalada.

Además, la energía cinética forma parte de todos los materiales conocidos, ya que cada uno de ellos se encuentra constituido por un conjunto innumerable de moléculas en constante movimiento. La cantidad de energía cinética aumenta en proporción al tamaño y a la velocidad del cuerpo: cuanto más grande sea y más rápido se mueva, ésta será mayor.

Cuanto más rápido se mueve un cuerpo, mayor energía cinética posee.

La energía cinética se mide en joule (J) y puede representarse de la siguiente forma:

Donde:

m = masa (en kg).

v = velocidad (m/s).

Las olas del mar desplazan a un surfista porque el agua en movimiento (cuerpo con energía cinética) choca contra la tabla de surf y realiza trabajo al moverla.

Ejemplo práctico

  1. Un carro tiene una masa de 1.200 kg. Si se desplaza con una rapidez de 20 m/s, ¿cuál es su energía cinética?

Solución:

  1. ¿Cuál es la masa de un cuerpo si su energía cinética es de 250 J y se desplaza a 5 m/s?

Solución:

¿Sabías qué?
William Thomson, mejor conocido como Lord Kelvin, fue el primero en acuñar el término “energía cinética” en sus trabajos.

Trabajo y energía cinética

Al aplicar una fuerza neta sobre un cuerpo, cambia su velocidad, se acelera y por lo tanto también cambia su energía cinética.

Esta relación se denomina Teorema de trabajo y energía cinética, cuyo enunciado establece que:

El trabajo mecánico de la suma de todas las fuerzas aplicadas sobre un cuerpo es igual a la variación de la energía cinética que experimenta dicho cuerpo.

Matemáticamente se expresa:

El Teorema de trabajo y energía cinética se aplica, por ejemplo, en una pelota de fútbol al impactar sobre los guantes del arquero, que se mueven hacia atrás al recibirla.

ENERGÍA POTENCIAL GRAVITATORIA   

Es la energía que tienen los cuerpos que se encuentran a una altura cercana a la superficie terrestre, es decir que esta energía la poseen todos los cuerpos que se ubican en un campo gravitatorio. Éste es de intensidad constante cada vez que el cuerpo está cerca de la Tierra o de un cuerpo celeste.

¿Sabías qué?
La gravedad en la Tierra tiene un valor de 9,806 m/s2.
La gravedad

Es una de las fuerzas esenciales del universo: gracias a ella, por ejemplo, la Tierra orbita alrededor del Sol. Del mismo modo, permite que la atmósfera no se pierda en el espacio o incluso que simplemente podamos caminar.

 

VER INFOGRAFÍA

Los cuerpos que se ubican a una altura sobre la superficie de la Tierra tienen cierta cantidad de energía que usan como trabajo mecánico al caer. Esto se manifiesta si deforma el lugar donde cae.

La energía potencial gravitatoria se mide en joule (J) y se expresa matemáticamente como:

Donde:

g = aceleración gravitatoria (m/s2).

m = masa (en kg).

h = altura (en m) con respecto al cero de referencia escogido.

Trabajo y energía potencial gravitatoria

Por lo general se considera la superficie terrestre como el nivel cero. De este modo, si dos cuerpos se ubican a la misma altura, el cuerpo con mayor masa tendrá la mayor energía potencial gravitatoria. Caso contrario, si ambos cuerpos tienen la misma masa, pero se encuentran en diferentes alturas, el cuerpo con altura mayor tendrá la mayor energía potencial gravitatoria.

Para que un cuerpo llegue a una posición elevada hace falta que realice un trabajo contra la gravedad y puede expresarse simbólicamente así:

Donde:

W = trabajo mecánico.

F = fuerza necesaria para equilibrar el peso.

Δy = desplazamiento vertical.

 

Ejemplo práctico

  1. Si la energía potencial en el suelo es 0, ¿cuál sería la energía potencial gravitatoria que tiene un ascensor con una masa de 1.000 kg ubicado a 400 m sobre esta superficie?

Solución:

  1. Si se coloca una bola de madera y una de acero, ambas del mismo tamaño, a la misma altura sobre el suelo, ¿cuál de la dos bolas tendrá mayor energía potencial gravitatoria?

Solución:

Los valores de la gravedad y de altura son iguales para ambas bolas. Sin embargo, la masa no. A pesar de tener el mismo tamaño, la bola de acero tendrá más masa que la bola de madera y, por lo tanto, más densidad. Así, la bola de acero es la que tiene mayor energía potencial gravitatoria.

ENERGÍA POTENCIAL ELÁSTICA

Este tipo de energía la poseen los cuerpos que sufren deformaciones. Esto sucede por una fuerza que le permite estirarse, acortarse, achatarse, sufrir una pequeña deformación o cambiar completamente su forma.

¿Qué es la deformación?

Es el cambio en la forma de un objeto cuando se encuentra sometido a una o varias fuerzas. Por ejemplo, al aplastar un pedazo de plastilina se aplica una fuerza y se puede ver que su forma cambia, es decir, se deforma como resultado de dicha fuerza.

 

Un resorte tiene energía potencial elástica cuando se estira y se comprime.

La energía potencial elástica se mide en joule (J) y puede representarse matemáticamente como:

Donde:

k = constante elástica (en N/m).

Δx = elongación del resorte (en m).

Cuando se estira una goma elástica, almacena energía potencial elástica. Al soltarla, recuperará su posición y liberará la energía.

Trabajo y energía potencial elástica

El trabajo mecánico que realiza la fuerza elástica ejercida por un resorte sobre un cuerpo es igual a la diferencia entre la energía potencial de los puntos entre los cuales actúa. Se expresa de la siguiente manera:

Donde:

W = trabajo mecánico.

Fe = fuerza elástica.

A y B = puntos entre los cuales actúa el trabajo.

Epe = energía potencial elástica.

La intensidad de la fuerza elástica se expresa matemáticamente así:

Donde:

k = constante elástica (en N/m).

Δx = elongación del resorte (en m).

Ejemplo práctico

A un resorte se le aplica una fuerza de 18 N, lo que hace que se comprima 6 cm. ¿Cuál es la energía potencial elástica del resorte en esa posición?

Solución:

a) Calcular constante de elasticidad.

b) Calcular valor de energía potencial elástica.

RECURSOS PARA DOCENTES

Artículo “Movimiento y trabajo mecánico”

Este artículo explica los conceptos de trabajo desde el punto de vista físico, así como las unidades y fórmulas.

VER

 

Video “Energía de un oscilador mecánico”

Este recurso audiovisual le permitirá comprender los parámetros de movimiento oscilatorio armónico.

VER

 

 

 

 

Rapidez y velocidad

Tanto la rapidez como la velocidad son dos magnitudes cinemáticas que a menudo se confunden. Ambas están relacionadas con la distancia recorrida o el desplazamiento efectuado, magnitudes que frecuentemente se usan como sinónimo, pero son diferentes. 

Rapidez Velocidad
Tipo de magnitud Magnitud escalar. Magnitud vectorial.
¿Qué relaciona? Distancia recorrida con el tiempo. Desplazamiento (cambio de posición) con el tiempo.
Considera la dirección del movimiento No tiene en cuenta la dirección del movimiento. Tiene en cuenta la dirección del movimiento.
Unidades En el Sistema Internacional la unidad de medida es m/s. En el Sistema Internacional la unidad de medida es m/s.
¿Depende de la dirección? No. Sí.
Fórmula v = \frac{d}{t}

 

Donde:

d = distancia

t = tiempo

\overrightarrow{v} = \frac{\overrightarrow{d}}{t}

 

Donde:

d = desplazamiento

t = tiempo

MRU y MRUV

Los movimientos rectilíneos se caracterizan por tener una trayectoria en forma de línea recta respecto al observador y son el tipo de movimiento más sencillo en mecánica. Pueden ser uniformes, designados bajo el acrónimo MRU; o uniformemente variados, conocidos por el acrónimo MRUV.

Movimiento rectilíneo uniforme (MRU) Movimiento rectilíneo uniformemente variado (MRUV)
Trayectoria Línea recta. Línea recta.
Velocidad Constante. Variada. Puede ser acelerada y retardada.
Ecuación de velocidad \overrightarrow{V} = \frac{\Delta\overrightarrow{X}}{\Delta t}

 

Donde:

ΔX: desplazamiento.

Δt: intervalo de tiempo.

Movimiento rectilíneo uniformemente acelerado (MRUA)

\overrightarrow{V} = \overrightarrow{V_{0}} + a.t

 

Movimiento rectilíneo uniformemente acelerado (MRUR)

\overrightarrow{V} = \overrightarrow{V_{0}} - a.t

Aceleración Nula. Constante. Puede ser positiva o negativa.
Ecuación de aceleración a = 0 a = \frac{V_{f} - V_{0}}{t}
Desplazamiento Puede ser positivo o negativo. Puede ser positivo o negativo.
Ecuación de desplazamiento X = \overrightarrow{V}.t

 

Donde:

V: velocidad

t: tiempo

Movimiento rectilíneo uniformemente acelerado (MRUA)

X = V_{0}.t + (0,5)at^{2}

 

Movimiento rectilíneo uniformemente acelerado (MRUR)

X = V_{0}.t - (0,5)at^{2}

 

Rayo, trueno y relámpago

Las tormentas eléctricas son fenómenos meteorológicos que producen rayos, relámpagos y truenos. Estos términos generalmente son utilizados sin distinción para mencionar descargas eléctricas, sin embargo, designan distintos fenómenos. El rayo se produce por una descarga eléctrica que genera una luz llamada relámpago y posteriormente un trueno.  

Rayo Relámpago Trueno
Tipo de fenómeno Eléctrico Lumínico Sonoro
Fenómeno meteorológico que lo genera Lluvias y tormentas eléctricas. Lluvias y tormentas eléctricas. Lluvias y tormentas eléctricas.
Formación  Ocurre cuando una región de una nube adquiere un exceso de carga eléctrica, ya sea positiva o negativa, que es suficiente para romper la resistencia del aire y producir una descarga eléctrica. La descarga eléctrica producida por el rayo genera una emisión de luz conocida como relámpago. Es un sonido que ocurre como consecuencia del calentamiento por encima de los 28.000 °C que genera un rayo en el aire.
Velocidad a la que viaja Aproximadamente

200.000 km/h.

300.000 km/s 1234,8 Km/h
Contacto con la superficie  No No

 

Huracán, tornado y torbellino

Los fenómenos atmosféricos se pueden definir como eventos naturales que ocurren en la troposfera como resultado de cambios en los patrones climáticos. En algunos de ellos el viento interviene de manera directa y decisiva, tal es el caso de los huracanes, tornados y torbellinos.

Huracán Tornado Torbellino
Tipo de fenómeno Meteorológico Meteorológico Meteorológico
Parámetro atmosférico
Viento Viento Viento
Rango 160 a 1.600 km 0,8 a 4 km hasta 100 km
Velocidad 119 a 250 km/h 65 a 180 km/h 200 km/h
Duración Días o semanas. Unos pocos segundos, hasta unas pocas horas. Unos pocos minutos.
Lugar Se forma en el océano. Se forma en las nubes y llega al suelo o al mar. Cuando ocurre en el mar o en un lago se denomina tromba. Se forma en el suelo.
Potencial destructivo De medio a alto Alto Bajo

 

Atletismo

En esta disciplina conviven el pasado remoto y el presente, siendo una actividad milenaria en la que se han contado un sinnúmero de hazañas desde hace más de 5.000 años. Parte fundamental de los Juegos Olímpicos y un deporte que aún despierta desafíos entre miles de deportistas, el atletismo continúa siendo el deporte por excelencia.

En el atletismo se abarca una amplia cantidad y variedad de disciplinas, entre las que se encuentran carreras, saltos, lanzamientos, pruebas combinadas y marcha. Su denominación proviene de la palabra griega -athlos, que significa lucha.

En estas competiciones, el objetivo está centrado exclusivamente en la superación constante de la aptitud física del deportista. Esto generará que el atleta termine alcanzando los resultados que le brindarán la victoria. Así, las pruebas están supeditadas a diversos factores, como la velocidad, la resistencia, la distancia o la altura.

En la actualidad todas las competiciones están regidas por reglamentos, que pueden encontrar variantes según vayan cambiando las categorías de la prueba: cadete, infantil, juvenil, junior, veterano y profesional.

¿Sabías qué...?
Anthony Scott Weiland, de 27 años, corrió la maratón de Detroit hacia atrás en 4 horas, 7 minutos y 54 segundos en 1982.

Desde hace ya gran cantidad de años el atletismo es uno de los pocos deportes que son practicados alrededor de todo el mundo. Esto se debe a los pocos requerimientos materiales que posibilitan la efectiva realización de algunas de las prácticas allí englobadas.

Las pruebas atléticas se estructuran en dos grandes bloques:

a) Las pruebas de pista, entre las que se incluyen las carreras de velocidad, las carreras de vallas y las de fondo.
b) Las pruebas de campo, que engloban las realizadas en el césped del estadio: lanzamientos y saltos.

Las pruebas de pista

La carrera es considerada un movimiento instintivo y natural, como consecuencia de la aceleración de la marcha. En el desplazamiento interviene una fuerza muscular interna que actúa contra la resistencia del suelo y contra fuerzas externas como la gravedad y la resistencia del aire. Todas las modalidades adaptadas por el atletismo tienen como objetivo recorrer una distancia en el menor tiempo posible. Las carreras se estructuran en dos grandes bloques: de velocidad y de resistencia.

En el caso de las carreras de velocidad, las competencias se encuentran subdivididas de la siguiente forma:

a) Carreras de velocidad lisas: La velocidad de carrera depende de la potencia muscular provocada en cada impulso y de la rapidez en la secuenciación de los movimientos. En las pruebas de velocidad la salida es muy importante: es primordial mantener una buena concentración para intuir y reaccionar lo más rápidamente posible a la señal. Se incluyen en este apartado las competiciones de 60, 100, 200 y 400 metros lisos. El reglamento determina la utilización de tacos para todas las carreras de velocidad, incluidos los 400 metros, con el objetivo de favorecer la salida y mejorar el control por parte de los jueces en las salidas nulas.

b) Carreras de relevos: Se desarrollan por equipos de cuatro componentes, en 100 y 400 metros. En el relevo de 4 x 400 el paso del testigo se realiza por calle libre a partir de la primera curva.
En las dos distancias (100 y 400 metros) cada relevista debe pasar el relevo al siguiente componente del equipo en una zona de transferencia delimitada claramente. Es un movimiento sincronizado entre los dos atletas y se puede hacer de dos formas diferentes: con la técnica de abajo arriba o bien de arriba abajo. La técnica usada es importante debido a que la menor demora de tiempo en el paso del relevo condiciona el desenlace final de la carrera.

c) Carreras de velocidad con vallas: Los 100 metros vallas en las mujeres y los 110 y 400 metros en los hombres son las pruebas más características, en las cuales tanto la altura de las vallas como la distancia entre ellas dependerá de la prueba y de la categoría de los corredores. El vallista debe ser un atleta completo, con la velocidad de un esprínter y unas extremidades inferiores lo suficientemente largas que le permitan una amplia zancada, y el mínimo esfuerzo con la menor pérdida de tiempo posible en el paso del obstáculo. La salida y la posición de los tacos se modifican en función de la pierna con que se ataca la primera valla y se condiciona a los pasos necesarios para atacar la valla correctamente.

Por su parte, las carreras de resistencia, que también pueden ser lisas o de obstáculos, se dividen en:

a) Carreras de medio fondo: La distancia establecida se sitúa entre las pruebas de 800 metros, 1.500 metros y 3.000 metros. Suelen ser carreras tácticas en las que es muy importante estar bien situado en los grupos de cabeza. El corredor mediofondista debe ser una mezcla perfecta entre el velocista de 400 metros. y el corredor de fondo, con una buena resistencia para prolongar el esfuerzo en situaciones sub máximas.

b) Carreras de fondo: Se encuentran en este grupo los 3.000 metros femeninos, los 5.000 metros masculinos, los 10.000 metros y el maratón, con sus 42.195 metros. Las exigencias físicas de todo fondista se basan en una gran capacidad de resistencia aeróbica, conseguida con un entrenamiento continuado a lo largo de toda la temporada. La prueba de maratón es, después de los 50 kilómetros marcha, la prueba más larga del calendario olímpico. Durante la carrera los corredores cuentan con puestos de avituallamiento a intervalos de 5 kilómetros, con el objetivo de reponer fuerzas y evitar la deshidratación de los atletas.

c) Marcha: La marcha es una modalidad muy característica que consiste en desplazarse a paso ligero de forma que siempre debe haber un pie en contacto con el suelo. Se consigue mediante un movimiento de rotación de la cadera, secuenciando el contacto del pie con el suelo desde el talón hasta la punta. A nivel competitivo se desarrolla sobre tres distancias: 10 km. para las mujeres y 20 km. y 50 km. para los hombres. Los jueces de carrera se encargan de controlar a lo largo del recorrido que los marchadores realicen correctamente la técnica manteniendo siempre un pie en contacto con el suelo, so pena de descalificación.

d) Carreras de resistencia con obstáculos: Los 3.000 metros obstáculos es una especialidad que se disputa sólo en la categoría masculina. Los atletas deben dar siete vueltas y media al perímetro de la pista y franquear en total 28 obstáculos y 7 rías, una por vuelta. Esta prueba es una de las más duras y exigentes de la competición atlética, en la que los corredores combinan una excelente resistencia y una gran capacidad para soportar los cambios de ritmo.

Carrera de resistencia con obstáculos.

Records de carreras lisas de velocidad

• En los 60 metros el norteamericano Maurice Greene ostenta el record con un tiempo de 6.39 segundos desde 1998. En las mujeres el record es de la rusa Irina Privalova desde el año 1993, con 6.92 segundos.
• En los 100 metros la mejor marca la ha mantenido desde el 2009 el jamaiquino Usain Bolt con 9.58 segundos. En las mujeres el record es de la norteamericana Florence Griffith-Joyner desde 1988, con 10.49 segundos.
• En los 200 metros la marca record corresponde nuevamente a Usain Bolt desde el 2009, con 19.19 segundos. En el caso de las mujeres el record también es de Florence Griffith-Joyner desde 1988, con 21.34 segundos.
• En los 400 metros el record es del norteamericano Michael Johnson desde 1999, con un tiempo de 43.18 segundos. En la categoría mujeres el record es de la alemana Marita Koch desde 1985.

El origen del maratón

La denominación se remonta a la leyenda generada a partir de la Batalla de Maratón en el 490 a.C., cuando para evitar que ocurriera una tragedia Filípides corrió los 42 km. que separaban a la ciudad de Maratón de la de Atenas después de la agotadora batalla contra los persas. La razón era que, a pesar de haber ganado la batalla, los griegos demoraron más de lo previsto y se había acordado para evitar la violación y la esclavización de sus familias que, en caso de que los persas ganasen, las mujeres maten a sus hijos y luego se suiciden. Temiendo que por la demora las mujeres de Atenas llevaran a cabo lo previsto creyendo que habían ganado los persas, se envío a Filípides que al dar la noticia de la victoria en Atenas cayó muerto del agotamiento, salvando a mujeres y niños.

Las pruebas de campo

Los lanzamientos

Los lanzamientos son gestos técnicos específicos, cuyo objetivo está en impulsar un artefacto. El lanzador debe conseguir la máxima eficacia en la aplicación de su fuerza, una buena velocidad en los movimientos preliminares, y un buen ángulo de proyección con el objeto de conseguir un buen lanzamiento, lo más aerodinámico posible. Los lanzamientos se pueden clasificar por la forma de lanzar, ya sea en traslación (peso y jabalina), o en rotación (disco y martillo); o por el peso del artefacto, clasificados en pesados (martillo y peso) y ligeros (disco y jabalina).
En el lanzamiento de disco se desarrolla un movimiento rotatorio sobre el propio eje, con el objetivo de acumular la energía suficiente para propulsar el disco a la mayor distancia posible. El disco tiene un diámetro de 22 cm. y 2 kg. de peso para los hombres, y 18,1 cm. y 1 kg. para las mujeres.

Por otra parte, el lanzamiento de jabalina es otra destacada disciplina del atletismo. La jabalina es una lanza con la parte central más ancha. Mide 2,60 m para los hombres y 2,20 m para las mujeres. Su peso es de 800 y 600 gramos, respectivamente.

El centro de gravedad está desplazado hacia la parte delantera, para que pueda caer de punta y no planee tantos metros.

¿Sabías qué...?
La mayor carrera sin parar que se registra es de 568 km en 121 horas y 54 minutos, por Bertil Järlaker (Suecia) en 1980.

Los saltos

Las pruebas de saltos en atletismo constan de las siguientes disciplinas: salto de altura, triple salto, salto de longitud y salto con pértiga. En la ejecución de los saltos, todo atleta debe ser capaz de conseguir una buena velocidad lineal en su carrera de aceleración y paralelamente aprovechar el máximo impulso para elevarse y desplazarse en el aire, en contra de la fuerza de gravedad, todo su cuerpo, ya sea por sus propios medios, o bien utilizando una pértiga. Las cuatro fases de todos los saltos son: la carrera, la batida, el vuelo y la caída.

En el caso del salto de altura se tiene el objetivo de superar una barra horizontal entre dos soportes verticales que se encuentran separados por 4 metros, aumentando la altura progresivamente y contando con tres ocasiones para superar cada altura. En el caso del salto de longitud el atleta corre por una pista e intenta cubrir la mayor distancia posible tras saltar desde una línea marcada con plastilina, arrojando sus piernas hacia delante para lograr un salto más largo. En el triple salto el objetivo es cubrir la máxima distancia posible a partir de tres saltos que se entrelazan luego de correr una corta distancia en la pista para ganar impulso. Quizá el más llamativo y espectacular es el salto con pértiga, donde el atleta debe superar un listón situado a una altura considerable utilizando una pértiga flexible que mide entre 4 y 5 metros.

Salto de altura.
Salto en longitud.
Salto en pértiga.

Para el olvido

La competencia atlética ha dado lugar a rendimientos que lejos de resultar competitivos se han convertido en marcas donde figura más el valor de la voluntad de participar que el ansia de victoria.

• Samoa Americana registra algunos de los peores tiempos en competencias atléticas con Sogelau Tuvalu que en 100 metros hizo 15.66 segundos y en mujeres Savannah Sanitoa que hizo la misma distancia en 14.56 segundos.

• El maratonista Abdul Baser Wasiqi de Afganistán logró la peor marca de la historia en esta especialización llegando a su objetivo en la marca de 4 horas y 24 minutos. También es célebre el caso de la mongola Luvsanlkhündegiin Otgonbayar que completó la maratón de Atenas 2004 en 3 horas y 48 minutos.

• Tras no encontrar su especialidad de lanzamiento de martillo en el itinerario de los primeros Juegos Olímpicos de la
era moderna (1896), el estadounidense George Stuart Robinson decidió participar en lanzamiento de bala y disco,
consiguiendo la peor marca jamás lograda hasta la actualidad en disco con 25.20 metros.

Movimiento ondulatorio

Gracias a la propagación de las ondas podemos escuchar sonidos, iluminar objetos, comunicarnos mediante un teléfono móvil o establecer transmisiones de radio y televisión.

Para comprender mejor la definición de onda hay que saber que la materia que nos rodea, como el agua, una mesa, etc. está formada por partículas. Éstas están más apretadas en los sólidos y más dispersas en los líquidos o gases. Sin embargo, en todos los casos la vibración de una partícula puede transmitirse al de una partícula contigua.

Por lo tanto, cuando se propaga una onda, las partículas vibran alrededor de sus posiciones, pero no se mueven con la onda. Por ejemplo: cuando tiramos una piedra en el agua, las partículas de agua no avanzan lateralmente sino que suben y bajan al mismo tiempo que transmiten energía a las partículas vecinas. De este modo se forman pequeñas olas; éstas son ondas que viajan a través del agua y transmiten la energía de un sitio a otro.

Una onda es una perturbación que se propaga en el espacio y que se caracteriza por un transporte de energía, pero no de materia.

El movimiento de cualquier objeto material en un medio (aire, agua, acero, etc.) puede ser considerado como una fuente de ondas. Al moverse perturba el medio que lo rodea y esta perturbación, al propagarse, puede originar un pulso o un tren de ondas.

Un pulso es una onda que transporta una perturbación que dura un corto intervalo de tiempo. Por ejemplo, una vibración en el extremo de una cuerda. En este caso cada trozo de cuerda, al principio en reposo, oscila brevemente cuando llega el pulso y luego la cuerda vuelve a quedar en reposo.

En un tren de ondas la perturbación transportada es de larga duración. Por ejemplo: una serie continua e interrumpida de sacudidas que se propagan a lo largo de una cuerda o de un resorte.

¿Sabías qué...?
Las ondas electromagnéticas que emiten los teléfonos móviles afectan a la capacidad de orientación y memorización de las hormigas, según un estudio realizado por la Universidad Libre de Bruselas.

Clasificación de las ondas

Magnitudes básicas de una onda

Longitud de onda (λ): es la distancia entre dos puntos de la onda en un mismo estado de oscilación.

Elongación (y): es la distancia que existe en cualquier instante entre la posición de la partícula y la posición de equilibrio. Se mide en metros.

Amplitud (A): es la elongación máxima. Cuanta más amplitud tenga una onda, más energía trasportará.

Período (T): es el tiempo transcurrido entre dos puntos equivalentes de la onda.

Frecuencia (f): es el número de vibraciones u oscilaciones completas que se realizan en un segundo.

Velocidad (v): es la relación que existe entre un espacio recorrido igual a una longitud de onda y el tiempo empleado en recorrerlo. V= λ / T

Propiedades

Reflexión
Si una onda incide sobre un cuerpo que obstaculiza su propagación, como una pared, se refleja. Cierta cantidad de energía que transporta la onda es absorbida por el cuerpo sobre el cual incide, y otra parte de energía vuelve como una onda de igual frecuencia y velocidad.

Refracción
La refracción se produce cuando una onda llega a una superficie que separa dos medios de propagación distintos. Una determinada cantidad de energía se transfiere al mismo medio, pero otra parte se propaga en el otro medio, se dice que la onda se refracta.

Difracción
La difracción se produce cuando una onda llega a una ranura o un obstáculo de tamaño comparable con su longitud de onda. La onda se desvía como si el obstáculo emitiese una onda esférica.

Interferencia
Puede ocurrir que existan varias fuentes emisoras en un mismo lugar, por lo cual se produce una superposición de ondas.

¿Qué son las microondas y cómo consiguen calentar la comida?

Las microondas son ondas electromagnéticas de la misma naturaleza que las ondas de radio, luz visible o rayos X. Se utilizan para emitir señales telefónicas de larga distancia, programas de televisión e información de ordenadores a través de la Tierra o a un satélite en el espacio.

Una de las aplicaciones más conocidas de las microondas es el horno microondas, que usa un magnetrón para producir ondas a una frecuencia de aproximadamente 2,45 GHz. Estas ondas agitan las moléculas de agua que contienen los alimentos produciendo calor dentro de sustancias orgánicas. Dependiendo del tiempo de exposición, el alimento absorbe cierta cantidad de energía, que puede descongelar, calentar y hasta cocer o quemar.

¿Qué tipo de onda es el sonido?

El sonido es una onda longitudinal y se produce cuando un cuerpo vibra rápido. La frecuencia es el número de vibraciones u oscilaciones completas que se efectúan en 1 segundo.

Los sonidos son audibles cuando un cuerpo vibra con una frecuencia comprendida entre 20 y 20000 Hz (Hercio, unidad de medida para la frecuencia).

Para que el sonido pueda llegar a nuestros oídos necesita un espacio o medio de propagación que normalmente suele ser el aire, la velocidad de propagación del sonido en el aire es de unos 334 m/s y a 0º es de 331,6 m/s.

La intensidad del sonido está relacionada con la amplitud de onda; esto significa que a mayor amplitud el sonido es más fuerte.

Una onda sonora irradia diferentes cantidades de energía por unidad de tiempo y por unidad de área. Para medir la intensidad de un sonido se utiliza el decibelio, que se abrevia dB.

El ser humano tiene capacidad para oír sonidos entre 0 y 140 dB. Aquellos sonidos que están comprendidos entre los 120 dB y 140 dB generan dolor y puede ocasionar lesiones auditivas.

¿Y la luz?

Al igual que el sonido, la luz se propaga mediante un movimiento ondulatorio. Sin embargo, la luz es de tipo transversal y se pude propagar en el vacío los que significa que es una radiación electromagnética.

En el vacío la luz se propaga a una velocidad aproximada de 3.10⁸ m/s. Cuando se propaga en otros medios, su velocidad disminuye.

Los objetos que reciben la luz se llaman cuerpos iluminados. Los mismos pueden ser de diferentes colores porque la luz blanca en realidad está compuesta por siete colores. De acuerdo al tipo de luz que absorben y que reflejan, será su color.