CAPÍTULO 13 / REVISIÓN

CATÁSTROFES NATURALES | ¿qué aprendimos?

Análisis de riesgo

Al realizar un análisis de riesgo se considera la probabilidad de que ocurran eventos adversos causados ​​por procesos naturales o ​​por actividades humanas. Se presentan dos términos relacionados: el peligro, que se refiere a cualquier cosa que tiene el potencial de causar daño, y el riesgo, que es la probabilidad de que un peligro cause daño. Entre los peligros naturales y posibles desastres se encuentran: temblores, erupciones volcánicas, tsunamis, derrumbes, inundaciones, sequías, huracanes y tornados. Los seres humanos a veces pueden influir en los desastres naturales y otras veces los desastres son generados por su acción directa, como en los derrames de petróleo y materiales tóxicos.

La contaminación, los accidentes masivos de automóviles o trenes y los choques de aviones son algunos de los desastres generados por la acción humana.

Catástrofes naturales e inducidas

Las catástrofes naturales como las inundaciones, las tormentas, los terremotos, los huracanes, los incendios forestales, las sequías y las erupciones volcánicas pueden causar grandes pérdidas económicas y humanas. Sin embargo, algunos desastres son causados por el hombre, como las explosiones, la mayoría de los incendios y la liberación de sustancias tóxicas al medio ambiente. Ejemplos de grandes catástrofes fueron los bombardeos atómicos sobre Hiroshima y Nagasaki en 1945, el accidente de Chernóbil en 1986, el terremoto de Valdivia en 1960 y el terremoto de Japón en 2011.

Los accidentes industriales, los actos de terrorismo y los incidentes de violencia masiva son algunos ejemplos de catástrofes inducidas.

Los sismos

El movimiento en zonas estrechas a lo largo de los límites de las placas causa la mayoría de los terremotos. La mayor parte de la actividad sísmica ocurre en tres tipos de límites de placa: divergentes, convergentes y transformantes. La escala de Mercalli describe la intensidad de un terremoto en función de sus efectos observados y la escala de Richter describe la magnitud del terremoto según las ondas sísmicas que lo causan. Un tsunami es una serie de grandes olas generadas por un movimiento brusco en el fondo del océano. Todas las regiones oceánicas del mundo pueden experimentar tsunamis, pero en el océano Pacífico y en sus mares secundarios hay una ocurrencia mucho más frecuente de tsunamis grandes y destructivos.

En los planes de evacuación se deben también tener en cuenta a las mascotas.

Los huracanes

Los huracanes son sistemas de tormentas masivas que se forman sobre las cálidas aguas del océano y se mueven hacia la tierra. Las posibles amenazas de huracanes incluyen poderosos vientos, fuertes lluvias, inundaciones costeras e interiores, tornados y deslizamientos de tierra. La anatomía de un huracán es simple: ojo, pared del ojo, bandas de lluvia, diámetro y altura. Los ciclones tropicales se clasifican según la velocidad (mph) de los vientos sostenidos en: depresión tropical, tormenta tropical y huracán. Los ciclones tropicales ocurren sobre el océano en áreas cercanas al ecuador. Esto se debe a la influencia del agua cálida.

Una medida de prevención que se puede tomar después que pase el huracán es no caminar, nadar o manejar a través de aguas de inundación.

Los tornados

Los tornados son fenómenos violentos de la naturaleza formados por una gran columna giratoria de aire con vientos que alcanzan hasta 480 km/h. Antes de que se desarrollen las tormentas eléctricas, se genera un cambio en la dirección del viento por el aumento en la velocidad y en la altura que crea un efecto de giro horizontal invisible en la atmósfera inferior. La escala de Fujita se utiliza para asignar a un tornado una calificación basada en la velocidad estimada del viento y los daños relacionados. Hay 6 categorías de tornados desde F0 hasta F5 en términos del daño que hacen. El país con mayor ocurrencia de tornados durante el año es Estados Unidos.

Cuando comienza un tornado lo ideal es moverse rápidamente a un sótano o área designada.

El vulcanismo

Un volcán es un respiradero o fisura en la corteza terrestre a través del cual se expulsan materiales como lava, cenizas, rocas y gases. Las partes de un volcán son: cráter, magma, flanco, conducto, cumbre y garganta. Se pueden formar diferentes tipos de volcanes, entre ellos están los estratovolcanes, los volcanes en escudo, los respiraderos de fisuras, los conos de ceniza y las calderas. América Latina es una de las regiones volcánicas más activas, con más de 3.000 volcanes en su territorio de los cuales 14 están activos. A largo plazo, la emisión de gases volcánicos modifica la composición de la atmósfera y si los gases alcanzan altitudes más altas, los efectos son particularmente fuertes y duraderos.

El monte Vesubio es mundialmente conocido por la erupción en el año 79 que destruyó las ciudades de Pompeya y Herculano.

CAPÍTULO 5 / TEMA 5

EL SOL, LA TIERRA Y LA LUNA

EL LUGAR DONDE VIVIMOS, NUESTRO PLANETA, SE LLAMA LA TIERRA. EL SOL ES LA ESTRELLA MÁS CERCANA, QUE NOS DA LUZ Y CALOR TODOS LOS DÍAS. LA LUNA ES LA QUE GIRA ALREDEDOR DE LA TIERRA Y SALE DE NOCHE, A VECES VEMOS SÓLO UNA PARTE Y OTRAS VECES LA VEMOS LLENA. ¿LISTO PARA APRENDER MÁS SOBRE LA TIERRA, EL SOL Y LA LUNA?

UNA ESTRELLA MUY BRILLANTE

SABEMOS QUE ES DE DÍA “CUANDO SALE EL SOL”, PERO ALGUNA VEZ TE HAS PREGUNTADO ¿QUÉ ES EL SOL?. EL SOL ES UNA ESTRELLA BRILLANTE Y ENORME, LLENA DE GAS CALIENTE, QUE PODEMOS VER EN EL CIELO. ES LA QUE NOS PROVEE DE LUZ SOLAR O LUZ ULTRAVIOLETA Y AYUDA A QUE PODAMOS VIVIR EN NUESTRO PLANETA.

¿Sabías qué?

EL SOL BRILLA DESDE HACE APROXIMADAMENTE 4 BILLONES Y MEDIO DE AÑOS, UN NÚMERO QUE ES TAN GRANDE QUE ES DIFÍCIL DE IMAGINAR. Y PUEDE SEGUIR ASÍ POR MUCHOS BILLONES DE AÑOS MÁS.

¿QUÉ ES EL SISTEMA SOLAR? ES UN GRUPO DE PLANETAS QUE GIRAN ALREDEDOR DEL SOL, ENTRE ELLOS SE ENCUENTRA LA TIERRA, NUESTRO HOGAR.

EL SOL ES EL CENTRO DE NUESTRO SISTEMA SOLAR, TODOS LOS PLANETAS GIRAN ALREDEDOR DE ÉL. EXISTEN OTRAS ESTRELLAS MÁS GRANDES QUE EL SOL, PERO LAS VEMOS MÁS PEQUEÑAS PORQUE ESTAMOS MUY ALEJADOS DE ELLAS.

¡IDENTIFICA EL SOL!

TE PRESENTAMOS NUESTRO SISTEMA SOLAR, ¿CUÁL CREES QUE ES EL SOL?

DATOS CURIOSOS DEL SOL

  • TIENE MUCHA ENERGÍA, ESTO HACE QUE TENGA UNA TEMPERATURA DE MILES Y MILES DE GRADOS.
  • EL SOL ES TAN GRANDE QUE DENTRO DE EL PODRÍAMOS GUARDAR MAS DE MIL PLANETAS TIERRA.
  • LA LUZ QUE SALE DEL SOL LLEGA A NUESTRO PLANETA EN 8 MINUTOS, A PESAR DE QUE SE ENCUENTRA TAN LEJOS DE NOSOTROS.
LAS PLANTAS NECESITAN LA LUZ DEL SOL PARA PODER NUTRIRSE Y CRECER.

¿CÓMO PODEMOS VER LAS ESTRELLAS?

A PESAR DE QUE LAS ESTRELLAS SE ENCUENTRAN A UNA DISTANCIA MUY GRANDE DE NOSOTROS, EXISTE UN INSTRUMENTO QUE NOS PERMITE VERLAS CON MÁS DETALLE: EL TELESCOPIO.

UN PLANETA LLENO DE VIDA

LA TIERRA PERTENECE AL SISTEMA SOLAR Y ESTÁ UBICADO EN UN LUGAR MUY ESPECIAL DONDE LA TEMPERATURA Y LOS RAYOS SOLARES SON ADECUADOS PARA QUE PODAMOS VIVIR, NO ESTÁ NI MUY LEJOS NI MUY CERCA DEL SOL. ES EL ÚNICO PLANETA CONOCIDO DONDE EXISTE VIDA, POR ESO ES TAN IMPORTANTE PROTEGERLO.

¿DÓNDE ESTÁ LA TIERRA?

VISUALIZA ESTA IMAGEN E INDICA EN QUÉ LUGAR SE ENCUENTRA LA TIERRA.

LA TIERRA ES EL ÚNICO PLANETA CONOCIDO EN EL QUE EXISTE VIDA, ES TERCER PLANETA DEL SISTEMA SOLAR, ANTES DE ELLA SE ENCUENTRA VENUS Y LUEGO DE ELLA SE ENCUENTRA EL PLANETA ROJO: MARTE.

¿CUÁLES SON LOS PLANETAS DEL SISTEMA SOLAR?

COMPLETA LOS NOMBRES DE LOS PLANETAS QUE FALTAN.

1.- ______________ 5.- JÚPITER
2.- VENUS 6.- ______________
3.- ______________ 7.- ______________
4.- MARTE 8.- NEPTUNO

DATOS SOBRE LA TIERRA

  • HACE MUCHOS AÑOS SE PENSABA QUE LA TIERRA ERA PLANA, SIN EMBARGO, AHORA SABEMOS QUE TIENE FORMA DE ESFERA.
  • LA TIERRA REALIZA UN MOVIMIENTO EN EL QUE GIRA SOBRE SÍ MISMA, SE CONOCE COMO ROTACIÓN, Y GRACIAS A ESTO ES QUE PODEMOS DISTINGUIR EL DÍA Y LA NOCHE. EL MOVIMIENTO DE ROTACIÓN DURA 24 HORAS.
  • LA TIERRA REALIZA UN MOVIMIENTO EN EL QUE GIRA ALREDEDOR DEL SOL, ESTE SE CONOCE COMO TRASLACIÓN. TARDA 365 DÍAS EN HACERLO. GRACIAS A ESTO PODEMOS DISTINGUIR LAS ESTACIONES.

¿CUÁLES SON LOS MOVIMIENTOS DE LA TIERRA?

INDICA EL MOVIMIENTO DE LA TIERRA QUE CORRESPONDE CON LA IMAGEN.

EN ESTE MOVIMIENTO LA TIERRA GIRA ALREDEDOR DEL SOL: _______________________________
EN ESTE MOVIMIENTO LA TIERRA GIRA SOBRE SÍ MISMA: _______________________________

EL SATÉLITE NATURAL DE LA TIERRA

SI MIRAMOS AL CIELO EN LAS NOCHES PODEMOS VER LA LUNA, A VECES SE VE COMPLETA, COMO UNA ESFERA Y OTRAS VECES NO. LA LUNA ES EL ÚNICO SATÉLITE NATURAL QUE TIENE LA TIERRA, GIRA ALREDEDOR DE ELLA Y TARDA 28 DÍAS EN DAR UNA VUELTA.

A MEDIDA QUE GIRA VEMOS LAS DISTINTAS FASES DE LA LUNA.

DATOS SOBRE LA LUNA

  • LA LUNA, AL IGUAL QUE LA TIERRA REALIZA EL MOVIMIENTO DE ROTACIÓN, ES DECIR, GIRA SOBRE SÍ MISMA; Y UN MOVIMIENTO DE TRASLACIÓN, ES DECIR, GIRA ALREDEDOR DE LA TIERRA. TARDA 28 DÍAS EN REALIZAR AMBOS MOVIMIENTOS.
  • LA LUNA ES CAPAZ DE REFLEJAR LA LUZ DEL SOL COMO SI FUERA UN ESPEJO.
  • ALGUNAS VECES CUANDO OBSERVAMOS LA LUNA SE VE DISTINTA, ESTOS CAMBIOS SON CONOCIDOS COMO FASES LUNARES.
  • LA LUNA NO TIENE UNA SUPERFICIE LISA, TIENE MUCHOS HUECOS Y ELEVACIONES.
RECURSOS PARA DOCENTES

Infografía “La Luna”

Esta infografía contiene información sobre las características de la Luna.

VER

Infografía “El Sol”

En esta infografía encontrará mayor información sobre el Sol.

VER

Artículo “Planeta Tierra”

Este artículo contiene información sobre las principales características del planeta Tierra.

VER

 

CAPÍTULO 5 / TEMA 3

Tipos de movimiento

Se dice que un cuerpo está en movimiento cuando cambia de posición, pero depende de su trayectoria el tipo de movimiento que realice. En la física hay varios tipos de movimientos que a continuación estudiaremos.

Ver infografía

Descripción del movimiento

A diario somos parte de un entorno que se encuentra en movimiento, lo que se evidencia en nuestras horas de luz y oscuridad por los movimientos del planeta Tierra en su eje de rotación, así como los movimientos de traslación en torno al Sol durante el año y las diferentes estaciones; por lo que todo lo que está en el planeta se mueve y de allí la formación de diferentes fenómenos, como las mareas, las corrientes marinas, el viento, los terremotos y la deriva continental.

¿Sabías qué?
El movimiento de una bala es parabólico, es el ojo del observador quien le da el nombre de Movimiento Rectilíneo Uniformemente Variado (MRUV).

Este proceso físico también se demuestra a niveles microscópicos, en el movimiento de los cromosomas durante la división celular y en el movimiento de los electrones que orbitan los núcleos de los átomos. Sin embargo, a pesar de saber que ningún objeto, factor abiótico o ser vivo está inmóvil, se debe partir de un punto o posición para poder facilitar el estudio del movimiento, este punto se conoce como sistema de referencia, por lo que se dice que el movimiento de un cuerpo se da al cambiar su posición con respecto a un sistema de referencia.

El punto medio del sistema de coordenadas es cero.

Imaginemos que se deja caer un balón desde una altura de 1 metro y que se necesita estudiar el recorrido del movimiento. Para ello se hace una representación gráfica del movimiento a través del sistema de ejes de coordenadas, el cual consta de dos rectas perpendiculares que convergen en un punto denominado origen. La recta vertical corresponde al eje de las ordenadas descrito con la letra Y; y la recta horizontal corresponde al eje de las abscisas descrito con la letra X. Al representar gráficamente el ejemplo anterior podemos conocer la naturaleza del movimiento, es decir, que la dirección del movimiento es vertical, de arriba hacia abajo, por lo que el movimiento es rectilíneo.

El balón está en movimiento.

MOVIMIENTOS RECTILÍNEOS

El movimiento rectilíneo debe su nombre a que su trayectoria es una línea recta, es decir, cuando el móvil se desplaza en un solo sentido, con constante trayectoria y dirección, y no pasa por los mismos puntos del recorrido. Todos los cuerpos en caída libre tienen un movimiento rectilíneo.

Una carrera de 100 metros planos es un movimiento rectilíneo.

Movimiento rectilíneo uniforme (MRU)

Existe un movimiento en el que el vector velocidad es invariable en módulo, dirección y sentido: el movimiento rectilíneo uniforme (o simplemente movimiento uniforme), que es el que tiene un móvil que se mueve en línea recta con velocidad constante.

Si tenemos los puntos P0 y P de la trayectoria que recorre un móvil con movimiento uniforme y tomamos esa recta como eje x, esos puntos quedarán fijados con una única coordenada: su abscisa. Los vectores:

 

Serán:

Y la velocidad media entre P0 y P será:

Como la velocidad instantánea es constante, podemos escribir:

De donde X= X0  + v. (t – t 0)                                                                                                                                                                                                                                                                   

Si empezáramos a medir los tiempos cuando el móvil se halla en el punto P0, sería t0 = 0, y por lo tanto, x = x0 + v·t. Y si además tomásemos el origen de abscisas en el punto P0, se reduciría a x = v·t.

Movimiento rectilíneo uniformemente variado (MRUV)

Según la naturaleza de los movimientos pueden ser regulares o irregulares. El movimiento uniforme se refiere a cuando el móvil recorre distancias iguales en tiempos iguales, mientras que el movimiento variado es el caso contrario. Esto puede demostrarse al comparar el recorrido constante de las manecillas de un reloj al dar la vuelta completa siempre a los 60 minutos, y el recorrido irregular de los atletas de 100 metros planos en las Olimpíadas, en donde todos tienen récords de tiempo diferente a una misma distancia.

La rapidez en el movimiento es una magnitud escalar que permite determinar mediante una comparación si un movimiento es rápido o lento con respecto a otro, por lo que dependerá de la distancia y del tiempo que tarda en realizar el recorrido. Si se repitiese el ejemplo del balón de básquet, el móvil, es decir el balón, realiza desplazamientos iguales en diferentes tiempos con cambios constantes en la rapidez, por lo que el movimiento es variado. En el movimiento variado la velocidad no es constante, mientras que el uniforme sí lo es, por ello la trayectoria en éste último siempre será rectilínea mientras que en el variado será rectilínea y curvilínea.

Un vehículo realiza un MRUV ya que su velocidad no es constante.

La caída libre

En este movimiento, el móvil cae de forma vertical desde cierta altura sin ningún obstáculo. Es un tipo de movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) porque su aceleración es constante y coincide con el valor de la gravedad.

El lanzamiento de paracaídas es una caída libre y además un MRUV.

La gravedad

Al encontrarse cerca de la superficie terrestre, los cuerpos experimentan una fuerza de atracción que les confiere una aceleración. Cuando una manzana cae de un árbol, lo hace por acción de dicha fuerza. En el caso de la Tierra, la gravedad puede considerarse constante y su dirección es hacia abajo. Generalmente se designa con la letra g y sus valores aproximados para algunos sistemas de medición son:

Sistema M.K.Sg = 9,8 m/s²

Sistema c.g.sg = 980 cm/s²

Sistema inglésg = 32 ft/s² (pies por segundo)

¿Sabías qué?
En 1687, el físico, filósofo, teólogo, inventor, alquimista y matemático inglés Isaac Newton propuso la ley de gravitación universal o teoría de la gravedad.

MOVIMIENTO CURVILÍNEO

El movimiento curvilíneo se llama de esta manera ya que su trayectoria es una línea curva, que puede ser circular, parabólica, elíptica y ondulatoria.

Movimiento circular: en el movimiento circular la trayectoria siempre es una circunferencia, y son variables el desplazamiento y el sentido del móvil, que repite su trayectoria al pasar por los mismos puntos. Un ejemplo de este movimiento lo observamos en las ruedas de una bicicleta en movimiento o una piedra unida a una cuerda girando.

En un movimiento circular, si la rapidez es constante, la velocidad a cada momento cambia de dirección.

Movimiento parabólico: en este tipo de movimiento la trayectoria siempre es una parábola, un arco con sentido variable; un ejemplo del movimiento curvilíneo parabólico se observa en un chorro de agua que sale de un conducto.

Este movimiento es realizado por un objeto en dos dimensiones o sobre un plano.

Movimiento elíptico: debe su nombre a que la trayectoria es una elipse, es decir, una curva cerrada y simétrica como la que se forma por la órbita que se observa de la Tierra alrededor el Sol. El desplazamiento y sentido se mantienen constantes, pasa por los mismos puntos del recorrido.

El movimiento de la Tierra alrededor del Sol es elíptico y produce las estaciones del año.

Movimiento oscilatorio: este movimiento se da cuando la trayectoria, en este caso una curva, se repite mientras varía el sentido sucesivamente. Un ejemplo se ve en el vaivén de un columpio, en donde el movimiento está impulsado por el peso del móvil.

Este movimiento se produce en torno a un punto de equilibrio estable.

Movimiento ondulatorio: es aquel en donde una oscilación se propaga de un punto a otro, por lo que se transporta energía, siendo su trayectoria rectilínea, mientras que el desplazamiento y sentido permanecen hasta que la onda disminuye o presenta un obstáculo. El movimiento ondulatorio puede definirse también como un movimiento vibratorio, por lo que puede darse en los diferentes estados de la materia: sólido, líquido y gaseoso. Un ejemplo de este movimiento se da al caer una gota de agua en un espacio acuático en reposo.

RECURSOS PARA DOCENTES

Artículo “Dinámica”

Artículo destacado donde se diferencia la cinemática de la dinámica.

VER

Artículo “Lanzamiento vertical”

Artículo destacado con más información sobre este movimiento inverso a la caída libre.

VER

CAPÍTULO 1 / TEMA 3

MOVIMIENTO

SI MIRAMOS A NUESTRO ALREDEDOR NOS DAMOS CUENTA DE QUE MUCHAS COSAS SE MUEVEN: LOS AUTOS EN LAS CALLES, LOS NIÑOS QUE CORREN EN EL PARQUE, LAS HOJAS DE LOS ÁRBOLES Y LAS AVES QUE VUELAN DE UN ÁRBOL A OTRO. CUANDO ALGO CAMBIA DE POSICIÓN SE DICE QUE ESTÁ EN MOVIMIENTO, Y ESE MOVIMIENTO LO VEMOS DESDE DONDE NOS ENCONTRAMOS, ESE PUNTO DESDE EL QUE VEMOS SE LLAMA “SISTEMA DE REFERENCIA”. 

¿CÓMO PERCIBIMOS EL MOVIMIENTO?

PARA PODER DECIR SI ALGO SE MUEVE O ESTÁ QUIETO NECESITAMOS TENER UN PUNTO O UN SISTEMA DE REFERENCIA. PARA EXPLICARLO MEJOR, VEAMOS EL SIGUIENTE EJEMPLO:

¡VIAJE EN TREN!

CUANDO UN TREN VA EN MOVIMIENTO, PODEMOS VER COMO SE MUEVE PORQUE LAS VÍAS, EL PAISAJE Y LO QUE LO RODEA ESTÁ QUIETO A SU LADO.

LOS PASAJEROS QUE ESTÁN DENTRO SE MUEVEN JUNTO CON ÉL.

PERO SI EN VEZ DE ESTAR ABAJO ESTAMOS DENTRO DEL TREN, NOTAREMOS QUE LOS PASAJEROS ESTÁN QUIETOS, ENTONCES NOS HACEMOS LA PREGUNTA ¿SE MUEVEN O NO SE MUEVEN LOS PASAJEROS? LA RESPUESTA ES SÍ O NO, DEPENDE DE DÓNDE ESTEMOS PARADOS.

AL LUGAR DESDE DONDE OBSERVAMOS LOS CUERPOS MOVERSE LO LLAMAMOS SISTEMA DE REFERENCIA.

EL MOVIMIENTO ES TODO CAMBIO DE POSICIÓN AL TENER EN CUENTA UN SISTEMA DE REFERENCIA.
REPOSO

CUANDO UN OBJETO ESTÁ QUIETO, ES DECIR, QUE NO TIENE UN MOVIMIENTO APARENTE SE DICE QUE ESTÁ EN REPOSO.

TIPOS DE MOVIMIENTO

NINGÚN MOVIMIENTO ES IGUAL A OTRO, Y PARA PODER ESTUDIAR CADA UNO DE ELLOS ES NECESARIO CONOCER SU TRAYECTORIA.

PERO ¿QUÉ ES LA TRAYECTORIA? LA TRAYECTORIA NO ES MÁS QUE EL RECORRIDO QUE HACE UN CUERPO DE UN PUNTO A OTRO.

TODOS LOS CUERPOS QUE SE MUEVEN SE LLAMAN MÓVILES.

LA TRAYECTORIA PUEDE SER:

  • CERRADA: CUANDO EL MÓVIL PASA SIEMPRE POR LOS MISMOS PUNTOS. POR EJEMPLO EN UNA CARRERA TODOS CORREN EN LA MISMA PISTA, Y DAN VUELTAS UNA Y OTRA VEZ.
UN BUEN EJEMPLO DE TRAYECTORIA CERRADA ES EL RECORRIDO QUE HACEN LOS ATLETAS EN LA PISTA DE CARRERAS.
  • ABIERTA: CUANDO EL MÓVIL RECORRE VARIAS PUNTOS Y NUNCA VUELVE AL MISMO SITIO. POR EJEMPLO, UN AVIÓN VUELA Y HACE UNA VEZ UN RECORRIDO, NO PASA POR EL MISMO LUGAR NI DA LA VUELTA.
EL RECORRIDO QUE HACEN LOS AVIONES PARA DESPEGAR O ATERRIZAR ES UN EJEMPLO DE TRAYECTORIA ABIERTA.
  • ALEATORIA:CUANDO LOS MOVIMIENTOS SE REALIZAN DE FORMA DESORDENADA. EN ESTE CASO NO SE PUEDE SABER HACIA DÓNDE VA EL CUERPO QUE SE MUEVE. ESTO PODEMOS VERLO CUANDO SE NOS ESCAPA UN GLOBO, POR MUCHO QUE QUERAMOS PERSEGUIRLO, EL VIENTO LO LLEVA DE MANERA DESORDENADA.
LA TRAYECTORIA DE LOS GLOBOS CUANDO LOS SOLTAMOS AL AIRE ES ALEATORIA.
¿Sabías qué?
AUNQUE NO LO VEAMOS, NUESTRO PLANETA SE ENCUENTRA EN CONSTANTE MOVIMIENTO.

MOVIMIENTO RECTILÍNEO

ES EL RECORRIDO DE UN MÓVIL EN LÍNEA RECTA. ESTE TIPO DE MOVIMIENTO PUEDE SER HORIZONTAL, COMO SUCEDE EN LAS VÍAS DE UN TREN, O VERTICAL COMO CUANDO CAE LA FRUTA DE UN ÁRBOL.

MOVIMIENTO CURVILÍNEO

ES EL RECORRIDO DE UN MÓVIL EN UNA LÍNEA CURVA. POR EJEMPLO CUANDO UN NIÑO VA EN SU BICICLETA Y DOBLA EN LA ESQUINA DEL PARQUE.

¡a PRACTICAR!

1. EL MOVIMIENTO QUE ESTÁ REALIZANDO ESTE COHETE ¿ES RECTO O CURVO?

2. ¡RELACIONA LOS ELEMENTOS! TRAZA UNA LÍNEA DESDE LA COLUMNA A HASTA LA RESPUESTA CORRECTA EN LA COLUMNA B.

 

A B
MOVIMIENTO RECTILÍNEO AUTOS EN UNA PISTA DE CARRERAS
TRAYECTORIA ALEATORIA UNA HORMIGA QUE CAMINA ALREDEDOR DE UNA BOTELLA
MOVIMIENTO CURVILÍNEO UN VASO QUE SE CAE DESDE ARRIBA DE LA MESA
TRAYECTORIA CERRADA HOJAS QUE CAEN DE LOS ÁRBOLES

 

 

3. ESCRIBE EN CADA CARTEL 1 PALABRA RELACIONADA CON ESTE TEMA.

RECURSOS PARA DOCENTES

Infografía “Movimientos y tipos de movimientos”

Explicación ilustrada sobre el movimiento y los diferentes tipos de movimientos que se realizan en la vida cotidiana.

VER

Video “Los movimientos de la Tierra”

Recurso audiovisual que explica que nuestro planeta se encuentra en constante movimiento, así como también los diferentes movimientos que realiza.

VER

 

Capitalismo, socialismo y comunismo

A lo largo de la historia se mostrado el interés de las naciones y grupos sociales en mejorar las condiciones del ser humano. Esto ha originado distintas formas de gobierno y organización socioeconómica, entre las que destaca el capitalismo, el socialismo y el comunismo.

Capitalismo Socialismo Comunismo
Definición (RAE) “Sistema económico basado en la propiedad privada de los medios de producción y en la libertad de mercado”. “Sistema de organización social y económico basado en la propiedad y administración colectiva o estatal de los medios de producción y distribución de los bienes”. “Movimiento y sistema político, desarrollados desde el siglo XIX, basados en la lucha de clases y en la supresión de la propiedad privada de los medios de producción”.
Ideas
  • Se opone a la intervención del gobierno en la economía.
  • Un mercado libre produce mejores resultados económicos para la sociedad.
  • Los medios de producción son de propiedad privada.
  • Da importancia al lucro individual.
  • Todos deben tener acceso a bienes públicos y artículos básicos.
  • Las industrias a gran escala son bienes colectivos.
  • Las propiedades y riquezas deben distribuirse equilibradamente en la sociedad, lo que disminuye la diferencia entre ricos y pobres.
  • Se eliminan las clases sociales.
  • Se suprime la propiedad privada de los medios de producción.
  • La propiedad privada de los medios de producción debe pertenecer al proletariado por ser su fuente de riqueza y producción.
  • El material económico debe distribuirse equitativamente.
Principales defensores
  • Richard Cantillon.
  • Adam Smith.
  • John Locke.
  • David Ricardo.
  • Thomas Malthus.
  • Karl Marx.
  • Friedrich Engels.
  • Lenin.
  • Henri de Saint-Simon.
  • Ferdinand Lasalle.
  • Karl Marx.
  • Friedrich Engels.
  • Lenin.
  • Stalin.
  • Mao Zedong.
Política Puede coexistir con una variedad de sistemas políticos. Muchos capitalistas defienden la república democrática. Puede coexistir con distintos sistemas políticos. Muchos socialistas defienden la democracia participativa. Se basa en la dictadura del proletariado.
Economía Economía de libre mercado. Planificación democrática. Planificación totalitaria.
Estructura social Existen clases de acuerdo a su relación con el capital. Las diferencias de clase disminuyen y el estatus radica en las distinciones políticas. La única clase social legitimada es el proletariado.
Estructura de propiedad La forma predominante de propiedad es la propiedad privada del capital y de otros bienes. Predominan dos tipos de propiedad: la personal y la pública. Predomina la propiedad pública.
Ejemplos
  • Estados Unidos.
  • Francia.
  • Alemania.
  • Suecia.
  • Inglaterra.
  • China.
  • Nicaragua.
  • Cuba.
  • Laos.
  • Venezuela.
  • Cuba.
  • Vietnam.
  • Laos.
  • China.
  • Corea del Norte.

MRU y MRUV

Los movimientos rectilíneos se caracterizan por tener una trayectoria en forma de línea recta respecto al observador y son el tipo de movimiento más sencillo en mecánica. Pueden ser uniformes, designados bajo el acrónimo MRU; o uniformemente variados, conocidos por el acrónimo MRUV.

Movimiento rectilíneo uniforme (MRU) Movimiento rectilíneo uniformemente variado (MRUV)
Trayectoria Línea recta. Línea recta.
Velocidad Constante. Variada. Puede ser acelerada y retardada.
Ecuación de velocidad \overrightarrow{V} = \frac{\Delta\overrightarrow{X}}{\Delta t}

 

Donde:

ΔX: desplazamiento.

Δt: intervalo de tiempo.

Movimiento rectilíneo uniformemente acelerado (MRUA)

\overrightarrow{V} = \overrightarrow{V_{0}} + \vec{a}.t

 

Movimiento rectilíneo uniformemente retardado (MRUR)

\overrightarrow{V} = \overrightarrow{V_{0}} - \vec{a}.t

Aceleración Nula. Constante. Puede ser positiva o negativa.
Ecuación de aceleración a = 0 a = \frac{V_{f} - V_{0}}{t}
Desplazamiento Puede ser positivo o negativo. Puede ser positivo o negativo.
Ecuación de desplazamiento X = \overrightarrow{V}.t

 

Donde:

V: velocidad

t: tiempo

Movimiento rectilíneo uniformemente acelerado (MRUA)

X = V_{0}.t + (0,5)at^{2}

 

Movimiento rectilíneo uniformemente retardado (MRUR)

X = V_{0}.t - (0,5)at^{2}

 

Océanos, ríos y lagos

El agua es esencial para la vida y se encuentra en diferentes formas en todo el planeta. Los océanos, ríos y lagos son cuerpos de agua que existen en variedad de formas, tamaños y ubicaciones con características distintivas: fríos, cálidos, dulces, salados y parcial o completamente rodeados de tierra.

Océanos Ríos Lagos
Movimiento superficial del agua Por acción del oleaje. Por el flujo continuo del agua. En ciertas ocasiones por acción del viento.
Profundidad Mayor que la de los lagos y ríos.

La fosa de las Marianas en el océano Pacífico, con 11.034 m de profundidad, es la parte más profunda de la Tierra.
Menor a la de los lagos y océanos.

El río Congo, con 250 m de profundidad, es el río más profundo de la Tierra.
Menor a la de los océanos.

El lago Baikal, con 1.680 m de profundidad, es el lago más profundo de la Tierra.
Temperatura Templada en la capa superficial. Disminuye a medida que aumenta la profundidad. Varía según su ubicación. Casi siempre es uniforme. Varía según su ubicación.
Presión Mayor a medida que aumenta la profundidad. Menor a la de los océanos y lagos. Menor a la de los océanos. La ausencia de sal también contribuye a la bajas presiones.
Salinidad Aproximadamente 3,5 %. El agua es salada. Aproximadamente 0,5 %.

El agua es dulce.

Variada, el agua puede ser dulce o salada.
Color Azul intenso. Depende de la profundidad. Diversos tonos de azul que provienen de los elementos del ecosistema o pH. Diversos tonos de azul que provienen de los elemento del ecosistema o pH.
Descripción física Son los cuerpos de agua más grandes, cubren la mayor parte de la superficie de la Tierra. Son cuerpos de agua delgados y largos que fluyen continuamente hasta desembocar en otro río, lago o mar. Son cuerpos de agua inmóviles de gran tamaño, depositadas en una depresión del terreno.
Estado Natural. Natural. Natural o artificial.
Embarcaciones Cruceros, yates, buques de carga y submarinos. Balsa, canoa o kayak. Veleros y canoas o kayak.
Ejemplos
  • Ártico
  • Antártico
  • Pacífico
  • Índico
  • Atlántico.
  • Nilo
  • Amazonas
  • Paraná
  • Orinoco
  • Danubio

 

  • Titicaca
  • Nicaragua
  • Michigan
  • Gran Lago del Oso
  • Hurón

Dinámica

Existe una rama de la física que se encarga de estudiar y analizar el movimiento en relación con las causas que lo originan, la dinámica. Los conocimientos en este campo han permitido realizar diversos descubrimientos como la descripción del movimiento de los planetas.

La dinámica se enfoca en estudiar y describir la evolución a través del tiempo de un sistema físico (un conjunto de objetos ordenados que obedecen ciertas leyes y que en cuyas partes se evidencia una conexión de tipo causal). Para estudiar las alteraciones que se producen en este tipo de sistemas, la dinámica emplea ecuaciones de movimiento.

Las leyes de Newton

El primer estudioso en formular leyes fundamentales en el campo de la dinámica fue Isaac Newton. Su aporte fue tan importante que hasta la fecha sus leyes representan las bases para la mayoría de problemas que involucran cuerpos en movimiento.

Isaac Newton fue un físico británico que nació el 4 de enero de 1643 en el condado de Lincolnshire en Inglaterra.

Primera ley: Ley de la inercia

Establece que un cuerpo permanecerá en estado de reposo o en movimiento rectilíneo uniforme a no ser que se vea sujeto a cambiar su condición por una o varias fuerzas externas.

Segunda ley: Principio fundamental de la dinámica

Plantea que el cambio de movimiento es directamente proporcional a la fuerza que actúa sobre el cuerpo y en su misma dirección. Es decir, la aceleración a la cual se encuentra sometido un cuerpo es directamente proporcional a la fuerza neta aplicada e inversamente proporcional a su masa.

Las leyes de Newton revolucionaron los conceptos básicos de la física y ampliaron los conocimientos relacionados con los movimientos de los cuerpos en el universo.

Tercera ley: Principio de acción-reacción

Esta ley propone que con toda acción siempre se produce una reacción igual y en sentido opuesto, es decir, cuando un cuerpo ejerce una fuerza sobre otro, éste último imprime sobre el primero una fuerza de igual magnitud pero de sentido contrario.

Diferencia entre cinemática y dinámica

Tanto la cinemática como la dinámica son ramas de la mecánica clásica que se dedican al estudio del movimiento de los cuerpos, sin embargo; son muy diferentes. La cinemática se enfoca a estudiar los cuerpos en movimiento sin considerar las causas que originan el movimiento y se limita únicamente a la trayectoria que se describen respecto al tiempo. Por otra parte, la dinámica se concentra en las causas que originan el movimiento de los cuerpos y los cambios que se producen en el estado de movimiento de dichos cuerpos.

En resumen, la cinemática responde a la incógnita: ¿cómo se mueven los cuerpos?, mientras que la dinámica se enfoca en responder ¿por qué se mueven los cuerpos?

Problemas de dinámica

Los problemas de dinámica son diversos al igual que las aplicaciones de las leyes de Newton. En este artículo nos enfocaremos en problemas en los cuales se aplica la segunda ley de Newton. Dicha ley puede expresarse en términos de ecuación de la siguiente forma:

Dónde:

F: fuerza

m: masa

a: aceleración

La expresión anteriormente planteada es válida únicamente para cuerpos en los que su masa es constante.

En los casos en los que la masa no es constante como sucede con los cohetes que queman combustible a lo largo del trayecto, la ecuación F = m.a no es válida.
El Newton

La unidad de fuerza empleada en el sistema internacional de unidades es el Newton y se representa con el símbolo N. De esta manera 1 N se define como la fuerza que hay que ejercer sobre un cuerpo que tenga una masa de 1 kg para desplazarlo a una aceleración de 1 m/s².

Lo anteriormente expuesto quiere decir que 1 N puede expresarse en unidades fundamentales como:

Es importante que al resolver problemas de este tipo las unidades sean equivalentes para que el sistema sea homogéneo, de lo contrario, se deberán transformar las unidades para que así lo sean.
  1. Calcular la masa de un cuerpo que al recibir una fuerza de 80 N adquiere una aceleración de 10 m/s².

Datos:

F = 80 N

a= 10 m/s².

Solución:

Debido a que en el problema piden determinar la masa, se despeja esta variable de la ecuación de fuerza:

Se sustituyen los datos en la ecuación despejada:

La masa del cuerpo es de 8 kilogramos.

  1. Se aplica una fuerza de 82 N a un cuerpo de 15.000 g. Calcular la aceleración que adquiere el cuerpo:

Datos:

F = 82 N

m = 15.000 g

Solución:

Lo primero es transformar la masa a kilogramo (recordemos que el kilogramo forma parte de las unidades que conforman a la unidad de fuerza Newton).

Para la transformación se sabe que 1 kg contiene 1.000 g:

Debido a que en el problema nos solicitan la aceleración despejamos dicha variable de la ecuación:

Se reemplazan los datos en la ecuación despejada:

De manera que la aceleración que adquiere el cuerpo es de 5,46 m/s².

  1. Calcular la fuerza que debe ser ejercida en un cuerpo de 14,2 kg para que adquiera una aceleración de 12 m/s².

Datos:

m = 14,2 kg

a = 12 m/s²

Solución:

Se sustituyen los valores en la ecuación de fuerza:

Para que un cuerpo de 14,2 kg de masa pueda adquirir una aceleración de 12 m/s² se debe aplicar una fuerza de 170,4 N.

Los cuerpos no pueden ejercer una fuerza sobre sí mismos, siempre hay otros agentes que los mueven.

Estímulos y respuestas en plantas y animales

La capacidad de un organismo para detectar cambios y tener respuestas apropiadas se llama sensibilidad, y todo aquello a lo que responde y reacciona se llama estímulo. El comportamiento es la forma en que todos los seres vivos responden a estos estímulos en su entorno.

En los animales las respuestas son más rápidas y más obvias. Los animales unicelulares responden a los estímulos moviéndose hacia o lejos de ellos.

En animales multicelulares, el proceso de respuesta a los estímulos es diferente. Las respuestas se producen en cuestión de segundos a través de una compleja red de comunicación que involucra varios procesos vitales como el movimiento, la locomoción, el transporte y la respiración, entre otros.

La respuesta y la coordinación en animales implican los órganos de los sentidos, el sistema nervioso y los mensajeros químicos llamados hormonas.

Las plantas también reaccionan a condiciones ambientales específicas. Sin embargo, no tienen sistema nervioso y sus respuestas se basan en un lento crecimiento modificado o movimientos llamados movimientos de turgencia causados por la distensión de las células.

En los seres vivos los estímulos pueden ser químicos, por calor, por luz, por tacto y por gravedad.

Comportamiento de las plantas

El comportamiento instintivo de una planta depende principalmente de crecimiento o movimiento en una dirección dada debido a cambios en su entorno.

Nastias

Las nastias son ciertos movimientos que realizan algunos órganos de la planta y que pueden estar influenciados por algún agente externo. Se diferencian de los tropismos en el hecho de que no influyen en la dirección del estímulo y la deformación que ocurre en el proceso no es permanente, sino transitoria.

Tropismos

En las plantas, la respuesta a un estímulo se conoce como tropismo. Este movimiento de la planta hacia o lejos de un estímulo puede venir en muchas formas. Cuando el movimiento es hacia el estímulo, se llama tropismo positivo; del mismo modo, si el movimiento se aleja del estímulo, se llama tropismo negativo. Si bien hay varias formas de tropismo, los más conocidos y estudiados son:

  • Fototropismo

Conocemos que las plantas crecen hacia el sol, por lo que pueden producir alimentos a través de la fotosíntesis. Este movimiento en respuesta a la luz solar se llama fototropismo. El fototropismo positivo de los tallos resulta del rápido crecimiento de las células en el lado sombreado de un tallo que las del lado iluminado;como resultado, el tallo se curva hacia la luz.

El fototropismo es una respuesta de crecimiento de las plantas a la luz procedente de una dirección.

Mientras que la mayoría de las plantas apenas crecen hacia el sol, algunas de ellas lo siguen durante todo el día. Por ejemplo, los girasoles por la mañana apuntan al este hacia el sol naciente y poco a poco lo siguen durante todo el día, hasta que apuntan al oeste hacia el sol poniente.

El fototropismo es importante por dos razones principales, una es que aumenta la probabilidad de que los tallos y las hojas intercepten la luz para la fotosíntesis y la otra de que las raíces obtengan el agua y los minerales que necesitan.

  • Geotropismo

El crecimiento descendente de las raíces y el crecimiento ascendente de los brotes son ejemplos de geotropismo.

El geotropismo aumenta la probabilidad de dos resultados importantes, uno que las raíces tendrán más probabilidades de encontrar agua y minerales, y otro que los tallos y las hojas serán más capaces de interceptar la luz para la fotosíntesis.

  • Tigmotropismo

Es producto de la adaptación y se da como una respuesta de crecimiento de las plantas al tener contacto con un objeto sólido. El ejemplo más común de tigmotropismo es el enrollamiento exhibido por los órganos especializados, que en botánica son llamados “zarcillos”.

Existen zarcillos de tipo foliar, que provienen de las hojas y de tipo caulinar, procedentes de tallos delgados; éstos pueden no tener la capacidad de generar flores y hojas, pero pueden permitir a la planta trepar o arrastrarse.

Este tipo de crecimiento se llama circumnutación y aumenta las posibilidades del tallo de tocar un objeto al cual puede aferrarse.

El contacto con un objeto es percibido por células epidérmicas especializadas en el zarcillo.

Gracias al tigmotropismo, una planta puede adaptarse y crecer sobre un tronco, pared o cualquier objeto que se interponga en su camino. Para ello, desarrollan un órgano especial que les permite adherirse al soporte.

Comportamiento animal

La manera en que un animal responde a su ambiente externo puede diferir de acuerdo con su ambiente interno actual.

¿Sabías qué...?
Los actos de agresión de los animales entre sí pueden ser causados por razones que van desde la protección de sus jóvenes a disputas territoriales.

Hay dos tipos de comportamiento animal:

  • Comportamiento innato o instintivo

Es el comportamiento que no se aprende, sino que está determinado por la genética del individuo. Por ejemplo, las tortugas recién nacidas saben nadar directamente hacia el océano.

El comportamiento innato es muy similar en todos los individuos de una misma especie.
  • Comportamiento aprendido o adquirido

Este tipo de comportamiento no está genéticamente programado en el animal. Por ejemplo, los cachorros de león no saben automáticamente cómo cazar su presa, deben aprender esta habilidad, a menudo a través del juego. El comportamiento adquirido es capaz de cambiar y desarrollarse significativamente con el tiempo y mejora con la experiencia.

El comportamiento aprendido se clasifica como “flexible”.

 

Migración: viajes del Reino animal

La migración es el movimiento más fascinante realizado por los animales, esto es debido a que algunos de ellos realizan asombrosas hazañas de resistencia para poder llegar de una distancia a otra, sea mediante el viaje en escalas o de manera directa.

¿Qué es la migración?

Es el desplazamiento de larga distancia que realizan algunos animales, generalmente para escapar de los climas adversos y buscar sitios de reproducción o alimentación. A pesar de que la mayoría de las personas piensan que la migración se refiere únicamente al movimiento de las aves de sus sitios de cría a sus sitios de reproducción, lo cierto es que no solo las aves migran, también lo hacen los mamíferos, los reptiles, los anfibios,los peces, los crustáceos y los insectos.

La migración de las aves es uno de los fenómenos biológicos más fascinantes y estudiados por los científicos.
La migración de las aves es uno de los fenómenos biológicos más fascinantes y estudiados por los científicos.

Las formas de migración varían entre los animales, algunos animales viajan entre el este y el oeste, otros de norte a sur, otros a través de los océanos, algunos de ellos sin descanso, mientras que otros realizan las migraciones de manera escalonada.

Algunos animales, como los insectos, migran solo una vez durante toda su vida, a menudo antes de reproducirse. Por otro lado, existen animales que migran en varios periodos a lo largo de su vida, por ejemplo, las aves y los animales marinos como las tortugas o las ballenas.

 La migración se diferencia de otros tipos de desplazamiento realizados por los animales.
La migración se diferencia de otros tipos de desplazamiento realizados por los animales.

¿Qué animales migran?

Los animales migratorios están distribuidos en prácticamente todas las ramas del reino animal, incluyen taxones sumamente diversos como los peces, los crustáceos, los anfibios, los mamíferos y los insectos.

La distancia o altura que pueden llegar a recorrer muchos de ellos es simplemente asombrosa:

  • Golondrina de mar (Sterna paradisaea): recorre una distancia de 80.000 km a una altura de 9.000 msnm.
  • Ballena jorobada (Megaptera novaeangliae): recorre 8.500 km de distancia. Es la migración más larga registrada en mamíferos marinos.
  • Mariposa monarca (Danaus plexippus): recorre 4.700 km en otoño. Es la migración más larga registrada en insectos.

 

La ballena azul (Balaenoptera musculus) es el animal migratorio más grande.
La ballena azul (Balaenoptera musculus) es el animal migratorio más grande.

¿Por qué migran los animales?

Los animales migran por diversas razones, las cuales están estrechamente relacionadas con la disponibilidad de recursos y los cambios estacionales.

Las estaciones producen grandes variaciones en la duración e intensidad de la energía solar, lo que puede provocar falta de alimento en algunos momentos del año, por ejemplo: el invierno. Muchos animales aprovechan las condiciones favorables de ciertas épocas del año para alimentarse o reproducirse, cuando se acerca el invierno y los recursos escasean, abandonan esas áreas, lo que les permite evitar las bajas temperaturas y los escases de recursos.

 Muchas aves comienzan a migrar en invierno cuando el alimento comienza a escasear, algunas incluso lo hacen antes de que esto ocurra.
Muchas aves comienzan a migrar en invierno cuando el alimento comienza a escasear, algunas incluso lo hacen antes de que esto ocurra.

Sin embargo, los científicos creen que la razón inmediata que estimula a los animales a migrar es la duración de los días (el fotoperiodo). Esta señal ambiental es la que causa la repuesta de migración, mientras que la escases de recursos es una causa secundaria, ya que, por ejemplo, un ave que espere hasta que los recursos escaseen para migrar, no tendrá suficientes reservas, mientras que una que lo hace cuando nota el cambio en el fotoperiodo, tendrá mejores reservas para su viaje.

 Los científicos creen que la selección natural favoreció a las aves permitiéndoles utilizar las señales ambientales para iniciar la migración antes de quedarse sin alimento.
Los científicos creen que la selección natural favoreció a las aves permitiéndoles utilizar las señales ambientales para iniciar la migración antes de quedarse sin alimento.

Migración facultativa o migración obligatoria

La migración obligatoria hace referencia a aquellos animales que deben migrar cada año, porque las condiciones se vuelven sumamente adversas. Sin embargo, existen otros animales que exhiben migración facultativa, esto quiere decir que la migración es opcional para ellos.

El búho de la tundra y los bosques canadienses tiene migración facultativa. Ellos deciden migrar de acuerdo a la abundancia o diminución de roedores, durante algunos inviernos estos son escasos mientras que en otros su población es alta, de manera que cuando la población de roedores es abundante los búhos no tienen necesidad de migrar.

¿Cómo se guían los animales durante la migración?

Es fascinante como los animales son capaces de utilizar una amplia variedad de señales para navegar durante las migraciones, pueden usar las estrellas, señales químicas, el Sol e incluso el campo magnético de la Tierra.

Señales visibles: dentro de este tipo se encuentran la topografía, los patrones de luz y la posición de las estrellas. Durante el día, algunas especies se guían por la manera en que el patrón de los rayos solares cambia al pasar las horas. Durante la noche, utilizan la posición de las estrellas, basándose en la rotación del cielo alrededor de un punto fijo.

Señales invisibles: las señales olfativas, la salinidad y las señales las magnéticas, entre otras. Por ejemplo, el salmón cuando se encuentra en mar abierto, sabe cómo regresar a su sitio de nacimiento en los ríos porque percibe los cambios en la concentración de sales desde el mar hasta río arriba.

 Migración río arriba del salmón.
Migración río arriba del salmón.
¿Sabías qué...?
El mamífero terrestre que recorre la distancia más larga durante la migración es el reno americano. Se mueve desde Idaho hasta Canadá, recorre aproximadamente 33 km por día, para un total de 4.228 km.

La mariposa monarca es un animal migratorio fascinante, atraviesa Norteamérica y viaja 4.700 km al sur hasta llegar a México. Sin embargo, el viaje no es directo, poder recorrer esa distancia excede su tiempo de vida, por lo que las hembras, ponen los huevos que generan los siguientes emigrantes.