PACKS ESCUELAS
MENÚ
VOLVER A LOS ARTÍCULOS

Cuadrado de un binomio




El desarrollo del cuadrado de un binomio es la operación inversa del factoreo de un polinomio de segundo grado.

La expresión x+a se considera un binomio que al ser elevado al cuadrado resulta:

(x + a)² = (x + a).(x + a) = x² + 2ax + a²

Cabe destacar que la siguiente consideración (x + a)² = x² + a² no es correcta ya que la potenciación no es distributiva con respecto a la suma.

Igualmente, para el caso de la resta de un binomio se puede escribir:

(x - a)² = (x - a).(x - a) = x² - 2ax + a²

Por lo cual se podría escribir una expresión general de la siguiente manera:

(x ± a)² = x² ± 2ax + a²

La anterior expresión se utiliza con mucha frecuencia para factorizar los polinomios de segundo grado, y esto se debe a que factorizar una expresión polinómica del tipo x² + 2ax + a² es el proceso inverso al desarrollar el binomio (x - a)².


Ejemplos:

Desarrolle la siguiente expresión utilizando el cuadrado de un binomio:

(2x+3)² = (2x)² + 2.2x.3 +3² = 4x² + 12x + 9

Factorizar las siguientes expresiones:

x² - 4x + 4 = x² - 2.2x +2² = (x-2)² = (x-2)(x-2)




  • Argentina: 0800 333 3979
  • -
  • Bolivia: +591 3 3708206
  • -
  • Chile: +56 2 3281 1674
  • -
  • Ecuador: +593 2 6018068
  • -
  • España: +34 93 0077 931
  • -
  • México: +52 55 44376787
  • -
  • Perú: +51 1 241 9032
  • -
  • Venezuela: +58 261 4190130