Números mixtos

Las fracciones representan una parte de un todo, así que son útiles para expresar, por ejemplo, la cantidad de trozos de pizza que nos comimos. Cuando el numerador es mayor que el denominador se dicen que son impropias y se pueden expresar como un número mixto: una combinación de un número natural con una fracción propia.

recordemos las fracciones

Una fracción es una división de un entero en partes iguales. Está formada por un numerador y un denominador.

  • El numerador es el número de partes que se ha tomado del total.
  • El denominador es el número de partes en las que se dividió la unidad.
Las fracciones propias son aquellas cuyo numerador es menor que el denominador, mientras que las fracciones impropias tienen su numerador mayor al denominador.

¿qué son los números mixtos?

Los números mixtos, también conocidos como fracciones mixtas, están formados por un número natural (parte entera) y una fracción propia (parte fraccionaria).

Los números mixtos son otra forma de representar fracciones impropias, las cuales siempre son mayores que la unidad.

Gráficas de fracciones impropias

Son una manera visual de ver las fracciones. Para realizar estas representaciones gráficas basta con dividir una figura en tantas partes como indique el denominador. Luego repetimos esta figura hasta poder colorear la cantidad de partes que señala el numerador.

– Ejemplos:

  • \boldsymbol{\frac{5}{3}}==\boldsymbol{1\frac{2}{3}}
  • \boldsymbol{\frac{11}{5}}==\boldsymbol{2\frac{1}{5}}
  • \boldsymbol{\frac{10}{4}}==\boldsymbol{2\frac{2}{4}}

Observa que la cantidad de partes enteras de las gráficas es igual al valor de la parte entera del número mixto, mientras que la última gráfica determina la parte fraccionaria. Así que el número mixto resulta de sumar un entero y una fracción propia.

¿Cómo transformar una fracción impropia a un número mixto?

Lo primero que debemos hacer es dividir el numerador entre el denominador de la fracción, el cociente será igual a la parte entera, mientras que el resto será igual al numerador de la parte fraccionaria y el denominador será igual al de la fracción impropia inicial.

– Ejemplo:

– Otros ejemplos:

Fracción impropia División Número mixto
\frac{8}{5} 8 : {\color{Red} 5}={\color{Blue} 1}\: \: \: resto ={\color{DarkOrange} 3} \boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 3}}{{\color{Red} 5}}}
\frac{11}{4} 11 : {\color{Red} 4} = {\color{Blue} 2}\: \: resto={\color{DarkOrange} 3} \boldsymbol{{\color{Blue} 2}\frac{{\color{DarkOrange} 3}}{{\color{Red} 4}}}
\frac{5}{3} 5:{\color{Red} 3}={\color{Blue} 1}\: \: resto={\color{DarkOrange} 2} \boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 2}}{{\color{Red} 3}}}

 

¿cómo transformar un número mixto a una fracción impropia?

En esta conversión tenemos que multiplicar la parte entera por el denominador de la parte fraccionaria y sumar a ese resultado el numerador. Luego, colocamos como denominador de la fracción impropia el mismo denominador de la parte fraccionaria del número mixto.

– Ejemplo:

\boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 4}}{{\color{Red} 5}}} {\color{Blue} 1}\times {\color{Red} 5}=5+{\color{DarkOrange} 4}=\boldsymbol{9} \boldsymbol{\frac{9}{{\color{Red} 5}}}

 

– Otros ejemplos:

Número mixto Operación Fracción impropia
\boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 3}}{{\color{Red} 5}}} {\color{Blue} 1}\times {\color{Red} 5}=5+{\color{DarkOrange} 3}=\boldsymbol{8} \boldsymbol{\frac{8}{{\color{Red} 5}}}
\boldsymbol{{\color{Blue} 2}\frac{{\color{DarkOrange} 3}}{{\color{Red} 4}}} {\color{Blue} 2}\times {\color{Red} 4}=8+{\color{DarkOrange} 3}=\boldsymbol{11} \boldsymbol{\frac{11}{{\color{Red} 4}}}
\boldsymbol{{\color{Blue} 1}\frac{{\color{DarkOrange} 2}}{{\color{Red} 3}}} {\color{Blue} 1}\times {\color{Red} 3}=3+{\color{DarkOrange} 2}=\boldsymbol{5} \boldsymbol{\frac{5}{{\color{Red} 3}}}

Números mixtos en la vida cotidiana

Muchas veces usamos números mixtos para expresar cantidad de ingredientes o tiempo, por ejemplo:

  • Un partido de fútbol dura hora o un partido de fútbol dura una hora y media.
  • Faltan horas para la película o faltan dos horas y cuarto para la película.
  • El postre necesita cucharadas de azúcar o el postre necesita tres cucharadas y media de azúcar.

¿Sabías qué?
Para sumar y restar números mixtos de forma sencilla primero debemos convertirlos en fracciones impropias.

números mixtos en la recta numérica

Para ubicar números mixtos en la recta numérica consideramos inicialmente la parte entera, esta nos indicará entre cuáles números está la parte fraccionaria. Como la parte fraccionaria consta de una fracción propia, solo tenemos que dividir el segmento entre los dos números enteros en la cantidad de partes que señale el denominador, luego contamos tantos espacios como muestre el numerador y marcamos el número mixto o su equivalente fracción impropia.

– Ejemplo:

Ubiquemos en la recta numérica el número mixto 1\frac{4}{5}.

  • La parte entera es 1, así que solo dibujamos la recta entre 1 y 2.

  • Como el denominador de la parte fraccionaria es 5, dividimos el segmento entre 1 y 2 en 5 partes iguales.

  • Contamos 4 espacios desde el número 1 porque el numerador de la parte fraccionaria es 4.

  • Escribimos el número mixto o su fracción impropia equivalente \frac{9}{5} en ese punto.

¡A practicar!

1. ¿Qué número mixto representan estos gráficos?

a. 

b. 

c. 

2. Convierte los siguientes números mixtos a fracciones impropias.

a.   3\frac{2}{5} b.   1\frac{6}{7} c.   2\frac{3}{5}

3. Convierte las siguientes fracciones impropias a números mixtos.

a.   \frac{4}{3} b.   \frac{10}{7} c.   \frac{15}{4}

4. Ubica los siguientes número mixtos en la recta numérica.

a.   3\frac{3}{4} b.   1\frac{1}{3} c.   2\frac{3}{5}

Respuestas

1a.  3\frac{3}{4}

 

1b.  1\frac{1}{5}

 

1c.  2\frac{4}{7}

2a.   \frac{17}{5}

 

2b.   \frac{13}{7}

 

2c.   \frac{13}{5}

3a.   1\frac{1}{3}

 

3b.   1\frac{3}{7}

 

3c.   3\frac{3}{4}

4a. 

4b. 

4c.