Suma algebraica

En Aritmética la suma o adición significa aumento, pero en Álgebra la suma algebraica es un concepto más general y puede ser una combinación de sumas y restas. Es importante tener esto en cuenta ya que puede prestar a confusión. Existen reglas para resolver los tres casos de suma algebraica con números enteros, conocer estas reglas facilita la resolución de ejercicios y problemas.

Los ábacos no sirven únicamente para sumar y restar, con ellos también se puede multiplicar, dividir y hasta resolver raíces.

SUMA DE NÚMEROS ENTEROS

Caso 1

Los números pueden ser todos positivos o todos negativos. Pero en ambos casos, la suma de varios números enteros de igual signo da como resultado otro número entero del mismo signo, cuyo valor absoluto es la suma de los valores absolutos de los sumandos.

Expresado en símbolos:

EJEMPLO 1: un panadero ganó $ 2.000 el lunes, $ 5.000 el martes y $ 4.000 el miércoles, ¿cuánto obtuvo de ganancia los primeros tres días de la semana?

(+2.000) + (+5.000) + (+4.000) = +11.000

El resultado es positivo, por lo tanto, el panadero obtuvo una ganancia de 11.000.

EJEMPLO 2: una persona gasta en un día $ 600 y al siguiente gasta $ 400, ¿cuánto gastó en esos dos días?

(−600) + (−400) =−600 −400= −1.000

La persona gastó 1.000 pesos.

Caso 2

Cuando los dos números a sumar son enteros y de distinto signo, el resultado es un número entero cuyo valor absoluto es la diferencia entre sus valores absolutos. El signo resultante es el del número de mayor valor absoluto.

Expresado en símbolos:

EJEMPLO 1: un comerciante realizó un negocio en el cual ganó $ 10.000, a la semana siguiente realizó otro negocio en el cual perdió 2.000. ¿Cuál fue el resultado al finalizar ambos negocios?

(+10.000) + (−2.000) = +8.000

El comerciante ganó 8.000 pesos.

EJEMPLO 2: un agricultor perdió $ 300.000 debido a la sequía, al año siguiente ganó $ 70.000. ¿Cuál fue el saldo luego de esos dos años?

(−300.000) + (+70.000) = −230.000

El agricultor perdió $ 230.000.

Caso 3

Cuando se suman varios números enteros de distintos signos el resultado es otro número entero, éste es la suma de los números positivos más la suma de los números negativos.

EJEMPLO: Ramiro salió de su casa por la mañana con $ 90, en el camino a la escuela compró unas galletas que costaron $40. Al llegar a clases un amigo le devolvió $ 220 que él le había prestado, en el recreo compró un bolígrafo por $ 12 y una goma de borrar por $ 4. ¿Cuánto dinero le quedó al volver a su casa?

 

Al regresar a su casa Ramino tenía $ 254.

ELEMENTO NEUTRO Y ELEMENTO OPUESTO

El elemento neutro en las sumas algebraicas es el cero, esto significa que al sumar o restar cualquier numero entero a este número su resultado no cambia.

El elemento opuesto de un número entero “a” es el número “−a”. Al sumar ambos el resultado es 0.

Notación de la suma de números enteros

Una manera de facilitar la resolución de sumas algebraicas es no incluir los paréntesis y los signos de la operación de sumar. Observar el siguiente ejemplo en donde todos los términos son positivos.

Nótese que los sumandos se escriben uno a continuación del otro, con su correspondiente signo. Se debe tener en cuenta que cuando el primer sumando es positivo, se elimina el signo.

Cuando los términos son negativos se expresa de la siguiente manera:

A continuación, tres ejemplos en donde los términos tienen distinto signo:

Con más de dos términos de distintos signos, el procedimiento es el mismo que cuando intervienen sólo dos, como ocurre en el siguiente ejemplo:

RESTA DE NÚMEROS ENTEROS

Dados dos números enteros a y b, siendo a el minuendo y b el sustraendo, la diferencia es un número que sumado al sustraendo da como resultado el minuendo.

ab    si   c+b=a

Ejemplo:

(+9)(+3) =+6     porque   (+6)+(+3)=+9

Además de la suma algebraica existen dos operaciones primordiales que se deben conocer, la multiplicación de números enteros y la división.

Multiplicación de números enteros

La multiplicación de dos números enteros es el número entero cuyo valor absoluto es el producto de los valores absolutos de los números dados. Su signo es positivo o negativo, dependiendo de los números que intervengan en la operación.

      

El producto de dos números de igual signo es positivo, siendo negativo el producto de dos números de distinto signo, dicha concepto se conoce como la regla de los signos.

Se puede omitir el símbolo de multiplicación, aquí se lo ha colocado para mayor claridad en la explicación.

Multiplicación o producto de varios números enteros

El producto de varios factores se puede efectuar de dos maneras distintas, por ejemplo si se tiene:

(−6) · (+4) · (−1) · (+2) · (−5)

PRIMER MÉTODO

Se multiplican los dos primeros factores, el resultado  a su vez por el tercer factor, el nuevo resultado por el cuarto y de ese modo hasta llegar al último.

SEGUNDO MÉTODO

Dado que el producto de dos números negativos es positivo, agrupando de dos en dos los negativos se obtendrían resultados parciales con signos positivos; por lo tanto:

  • Si el número de factores negativos es par, todos los resultados serán positivos y por lo tanto el producto será positivo. Ejemplo:
(6)·(+5)·(7)·(+9)=(6)·(7)·(+5)·(+9)=(+42)·(+5)·(+9)=(+210)·(+9)=+1.890
  • Si el número de factores negativos es impar, al asociar los factores negativos por pares siempre quedará uno solo, esto generará que hará que todo el producto sea negativo.
    (1)·(+6)·(5)·(2)·(+8)=(1)·(5)·(2)·(+6)·(+8)=(+5)·(2)·(+6)·(+8)=(10)·(+6)·(+8)=(60)·(+8)=480

División exacta de números enteros

El cociente exacto de un número entero D (dividendo) por otro d (divisor), es otro número entero  c (cociente) que multiplicado por el segundo da como resultado el primero.

dividendo: divisor = cociente          si        cociente ⋅divisor = dividendo

D ÷ d = c               si             c · d = D

En el caso de ser una división exacta, el cociente entre dos números enteros es otro número entero cuyo signo está dado por la regla de los signos y cuyo valor absoluto es el cociente exacto de los valores absolutos de los números dados.

EJEMPLOS:

(+8)÷(+4)=+2(9)÷(+3) =3
ALGORITMO DE LA DIVISIÓN

Para todos los casos, división exacta(resto 0) o aquella con resto distinto de cero, el algoritmo de la división es el siguiente:

D=d·c +r

TÉRMINOS CON PARTE NUMÉRICA Y PARTE LITERAL

Estos conceptos también se aplican cuando los términos incluyen parte literal, por ejemplo:

(+9a) + (−2a) + (+3a) = 10a

(−10b) · (−7b) = −3b

En caso de la multiplicación y división, se tiene que tener en cuenta que:

  • Cuando se multiplican dos términos con parte literal, el resultado es la parte literal elevada a la suma de las potencias de ambas. El coeficiente numérico corresponde al producto de los números que intervienen. Si hay dos letras o más, se realiza el mismo procedimiento para cada una de ellas. Ejemplos:

3a7 · 3a5 = (3 · 3)a7+5 = 9a12

2x4y2 · 3xy6 = (2 · 3)(x4+1) (y2+6) = 6x5y8

  • Cuando se dividen dos términos con parte literal, el resultado es la parte literal elevada a la resta de las potencias de ambas y el coeficiente numérico se obtiene dividiendo los números que intervengan. En caso de haber más de una letra, se realiza el procedimiento de las potencias por cada una de las letras. Ejemplos:

4b6 ÷ 2b3 = (4 ÷ 2) (b6−3) = 2b3

12x4y8 ÷ 3xy6 = (12 ÷ 3) (x4−1) (y8+6) = 4x3y2

A PRACTICAR LO APRENDIDO

PROBLEMAS

  1. Martina tenía ahorrados $ 650, su abuela le obsequió $ 200. De todo el dinero que tenía usó $ 320 para comprarse unos cuadernos. ¿Cuánto dinero le queda?
  2. Lucas ha trabajado durante tres semanas para comprarse una bicicleta. La primera semana ganó $ 5.000, la segunda semana cobró $ 3.500 y la última semana $ 5.300. Si la bicicleta cuesta $ 7.200. ¿Le sobra o le falta dinero? ¿Cuánto?

OPERACIONES

  1. Efectuar las siguientes sumas:
    a) +(−8b) + (−7b) =
    b) (−4a) + (−8a) + (−7a) + (−6a) + (+9a) =
    c) (+15xy) + (−12xy)=
  2. Efectuar las siguientes restas:
    a)(−4a) − (+6a) =
    b)(−3b) − (−7b) =
    c)(−a) − (−a) =
  3. Hallar los productos (multiplicación):
    a) (−1) · (−3) · (−5) · (+10) =
    b) (+4) · (−1) · (+5) · (+6) =
    c) (−3) · (+4) · (−3) =
  4. Hallar el resultado de las siguientes multiplicaciones:
    a) 3a · 4a =
    b) 10b5 · 5b9 =
    c) 6x · 3x3 =
  5. Efectuar las siguientes divisiones:
    a) (−30a5) ÷ (+5a) =
    b) (+96b2) ÷ (−2b) =
    c) (+40xy2) ÷ (−20y) =

RESPUESTAS

PROBLEMAS

1.
a) Le quedan $ 530.
b) Le sobran $ 6.600.

OPERACIONES

1.
a) −15b
b) −16a
c) +3xy (al ser número positivo puede omitirse el signo +3 = 3)

2.
a) −10a
b) +4b
c) 0

3.
a) −150
b) −120
c) +36

4.
a) 12a2
b) 50b14
c) 18x4

5.
a) −6a4
b) −48b
c) −2xy

¿Sabías qué...?
Los números que se utilizan en forma cotidiana, los arábigos, proceden de la India ya que allí fueron inventados. Sin embargo, los comerciantes árabes los divulgaron en Europa durante la Edad Media.

Comentarios