Conceptos de la dinámica del punto material: impulso y cantidad de movimiento 

La cantidad de movimiento de un móvil se define como el producto de su masa por su velocidad. Es el producto de un escalar por un vector y por lo tanto es una magnitud vectorial, que representaremos como p.

 Será:

La cantidad de movimiento es en general una función del tiempo; sólo sería constante si el movimiento fuese uniforme. Sus dimensiones en el Sistema Internacional y CGS son [M]·[L]·[T]-1, y en el técnico, [F]·[T].

El impulso de una fuerza  se define como el producto del valor medio de esa fuerza, Fm, por el intervalo de tiempo, ∆t, en el que actúa esa fuerza. Es el producto de un vector por un escalar y, por lo tanto, será un vector con la misma dirección y sentido que Fm; lo representaremos como j. Será:

Si en el intervalo de tiempo considerado la fuerza fuese constante, podríamos escribir:

Las dimensiones del impulso en el Sistema Internacional y CGS son [M]·[L]·[T]-1, y en el técnico, [F]·[T].

Como la ecuación fundamental de la dinámica F =m.a se cumple en todo instante, si la fuerza varía con el tiempo, podremos escribir:

Es decir, que la fuerza media que ha actuado en un intervalo de tiempo es igual a la masa por la aceleración media durante ese intervalo. Como la aceleración media es:

tendremos:

Y, puesto que:

podremos escribir:

En el caso particular de que la fuerza fuese constante en todo el intervalo de tiempo considerado, la igualdad anterior se escribiría:

Estas igualdades nos dicen que el impulso de una fuerza que actúa sobre un punto material durante un intervalo de tiempo ∆t es igual a la variación de la cantidad de movimiento que produce. Por lo tanto, si durante un intervalo de tiempo no actúa ninguna fuerza o si el valor medio de la fuerza que actúa es nulo, la cantidad de movimiento del punto material no variará. Éste es el teorema de la conservación de la cantidad de movimiento, que de momento hemos formulado para un punto material y más adelante extenderemos a sistemas de puntos materiales.

Ejemplo:

Un automovilista que viaja en su coche a 100 km/hora pisa el freno ejerciendo una fuerza de frenado constante de 1.000 N durante cinco segundos. Calcular la cantidad de movimiento que tendrá el automóvil tras frenar, sabiendo que la masa total del vehículo (con el conductor incluido) es de 1 080 kg.

Solución:

Como nos dicen que la fuerza de frenado es constante, aplicaremos la fórmula:

Como la fuerza de frenado y la velocidad tienen la misma dirección, escribimos:

Por lo tanto:

F.∆t= 1000.5 = 5000N.s

La variación (disminución, en este caso) de la cantidad de movimiento es: ∆t m.v = 5000 kg.m/s.

La nueva cantidad de movimiento del vehículo será la que tenía antes de frenar más esta variación (negativa). Será:

Valor medio en un tiempo t 

Para una magnitud variable A = A(t), su valor medio (Am) es el promedio de los valores que toma en cada instante. Es decir, considerando intervalos de tiempo muy pequeños, es:

Para realizar este cálculo, en general, es preciso recurrir al cálculo integral.

Erosión y meteorización

La geología es el estudio de la Tierra, de los materiales de los que está hecha, de su estructura y de los procesos que actúan sobre ella. Estudia además los materiales, la estructura de los materiales y cómo han cambiado a lo largo del tiempo.

¿Qué son los minerales?

Un mineral es una sustancia sólida, inorgánica, formada por una estructura cristalina y de composición específica. Son inorgánicos porque en su composición el carbono no es el elemento principal.

Los minerales pueden ser amorfos o cristalinos, son amorfos si no se hallan ordenados de manera regular, y son cristalinos si sus moléculas están estructuradas de manera específica. También se pueden clasificar de acuerdo a su composición química. En base a esto se distinguen en:

  • Elementos nativos.
  • Sulfuros
  • Halogenuros
  • Óxidos e hidróxidos
  • Boratos, nitratos y carbonatos.
  • Sulfatos, cromatos, volframatos y molibdatos.
  • Fosfatos, arseniatos y vanadatos.
Los minerales se encuentran en las minas o yacimientos y se extraen en una actividad denominada minería.

¿Qué son las rocas?

Las rocas son estructuras sólidas muy abundantes en la Tierra, están formadas por uno o más minerales, dentro de los cuales puede haber minerales esenciales, que son los más abundantes y minerales accesorios, que son los que se encuentran en menor cantidad.

Las rocas se pueden clasificar según varios criterios, si están formadas por un único mineral son monominerálicas, si están formadas por minerales diversos son rocas compuestas. De acuerdo a su formación pueden ser: ígneas si se formaron por solidificación del magma, metamórficas si están formadas de otras rocas ya existentes en la corteza terrestre, y sedimentarias si se forman a base de sedimentos procedentes de la erosión.

Rocas sedimentarias.
Rocas sedimentarias.

¿Qué es la erosión?

Proviene de la palabra en latín erosio y se define como el desgaste o pérdida de la superficie del suelo a causa de factores externos como la lluvia o el viento. Desde el punto de vista geológico, la erosión forma parte del proceso de morfogénesis, mediante el cual se han moldeado las estructuras terrestres.

La erosión es mucho más fuerte en aquellos sitos que están desprovistos de vegetación.
La erosión es mucho más fuerte en aquellos sitos que están desprovistos de vegetación.

¿Qué elementos participan en la erosión del suelo?

Además del suelo, intervienen agentes activos como el agua y el viento, así como agentes reguladores que minimizan la erosión, por ejemplo, la vegetación.

Agentes activos

  • Viento: actúa de forma que pule y arrastra las partículas del suelo, esto ocurre principalmente cuando la superficie está desprovista de la capa protectora de vegetal, de manera que el viento puede tallar toda la superficie del suelo libremente.
  • Agua: al igual que en el caso del viento, la fuerza de la lluvia erosiona los suelos que están desprovistos de vegetación. La lluvia lava la superficie y provoca la pérdida de la materia orgánica (humus) lo que a largo plazo puede provocar la infertilidad del suelo y la formación de desiertos.

Agentes reguladores

  • Vegetación: es la mejor defensa para evitar la erosión del suelo porque su follaje evita que las gotas caigan directamente y lo dañen, además mantiene estable el suelo y retiene los nutrientes.
Las plantas absorben el agua y por lo tanto evitan que los minerales y nutrientes del suelo sean lavados.
Las plantas absorben el agua y por lo tanto evitan que los minerales y nutrientes del suelo sean lavados.

¿Cuáles son los tipos de erosión?

  • Erosión hídrica: es la que se produce a causa de la lluvia. De ella deriva la erosión marina, que es la que se produce por la acción del agua de mar; la erosión fluvial, que es aquella que se produce por el agua de río; y la erosión glaciar, que es la que se produce por acción del movimiento de las masas de hielo.
Erosión marina
Erosión marina
Erosión fluvial
  • Erosión eólica: se produce por acción del viento o por las partículas que ella trae.
  • Erosión gravitacional: es aquella que se produce por acción de la gravedad, por ejemplo, cuando caen rocas de las laderas de las montañas.

Meteorización

Se conoce como meteorización a la descomposición de rocas de la superficie terrestre a causa de agentes atmosféricos o biológicos. La meteorización puede clasificarse de acuerdo al lugar en el que ocurre, por ejemplo, se denomina meteorización edafoquímica cuando la reacción ocurre en la superficie del suelo, y meteorización geoquímica si se produce en zonas profundas del suelo, como el horizonte C.

Proceso de meteorización provocado por diversos factores.
Proceso de meteorización provocado por diversos factores.

¿Cuáles son los tipos de meteorización?

  • Meteorización física: es aquella que se produce por cambios de temperatura, por el viento o por cualquier agente climático. En la meteorización física se produce la desintegración en partes de la roca, lo que facilita la erosión.
Ruptura de una roca por meteorización física.
Ruptura de una roca por meteorización física.
  • Meteorización química: es aquella que se produce por acción de agentes químicos, como el dióxido de carbono, el oxígeno y el vapor de agua. Este tipo de meteorización es más eficiente debido a que las partículas pierden la adherencia que tienen unas con otras y se desintegran y se disuelven.
  • Meteorización biológica: es aquella en la que se produce la desintegración de la roca por la acción de organismos biológicos. Por ejemplo, cuando las raíces de los árboles perforan el suelo.
¿Sabías qué...?
Los acantilados son accidentes geográficos que se forman cerca de las cotas. Por lo general, las rocas que la conforman son resistentes a la erosión, como por ejemplo, la limonita. 

Gran Cañón

El Gran Cañón se formó hace millones de años a causa de la erosión fluvial provocada por el río Colorado, el cual socavó el terreno hasta dejar las formaciones geológicas que se ven en la actualidad.

Conceptos de ácido y base: el producto de solubilidad 

La solubilidad de una sustancia en un disolvente depende de la temperatura y de la presión, la influencia de esta última es muy pequeña cuando el soluto es un sólido. Puede expresarse en cualquiera de las diversas maneras (normalidad, molaridad, gramos de soluto por litro de disolvente, etc.) que ya conocemos.

Para el caso de las sales poco solubles resulta además muy útil definir el producto de solubilidad. Para definir este concepto, consideremos la disolución en agua de una sal muy poco soluble, tal como el sulfato de bario, BaSO4.

En una disolución de esta sal, parte de las moléculas de BaSO4 estarán disociadas en iones, según la ecuación:

Si se trata de una disolución diluida podremos aplicar a ese equilibrio la fórmula de la constante de ionización. Tendremos:

Pero puesto que el sulfato de bario es muy poco soluble en agua, la ecuación anterior puede aplicarse también a la disolución saturada, ya que el BaSO4 disuelto se encontrará en equilibrio con el BaSO4 precipitado. El denominador es en este caso constante y puede escribirse:

. [BaSO4] = [Ba2+] . [SO4 2-]

Esta expresión se denomina producto de solubilidad. Su símbolo es Ks.

Ks = [Ba2+] . [SO4 2-]

El valor del producto de solubilidad es constante para cada temperatura.

Ejemplos:

1) Las concentraciones de las sustancias que participan en la reacción con H2 son:

-De H2 igual a 0,002 molar

-De I2 igual a 0,002 molar

-De IH igual a 0,014 molar

Hallar el valor de la constante de equilibrio.

Solución:

La fórmula de la constante de equilibrio es:

Por tanto, sustituyendo valores, será:

2) Si en la reacción anterior, a una cierta temperatura, la constante de equilibrio es 0,50 y en 40 litros de disolución hay 2 moles de hidrógeno y 8 de yodhídrico, hallar los moles de yodo que existen.

Solución:

De la fórmula:

conocemos:

K = 0,50

[H2] = 2 moles de hidrógeno / 40 litros de disolución = 0,05 molar

[IH] = 8 moles de á. yodhídrico / 40 litros de disolución = 0,2 molar

[I2] = x moles de yodo / 40 litros de disolución = x / 40 molar

En consecuencia:

es decir,

3) En la reacción PCl5   PCl3 + Cl2   32Kcal/mol

que se desarrolla a presión constante, se tiene que [PCl5] = 0,2 molar; [PCl3] = [Cl2] = 0,01 molar. a) Calcular la constante de equilibrio; b) indicar qué ocurriría si se elevase la temperatura; c) qué sucedería si se redujese la presión; d)y qué si se incrementase la concentración de PCl5 a 0,5 molar, permaneciendo constantes tanto la presión como la temperatura.

Solución:

a)

b) Por tratarse de una reacción endotérmica, al elevar la temperatura se favorece la formación de PCl5 y, en consecuencia, la disminución de las concentraciones de PCl3y de Cl2 (desplazamiento del equilibrio hacia la izquierda).

c) Al haber más moles gaseosos en el segundo miembro de la reacción que en el primero, una disminución de la presión hace aumentar las concentraciones de PCl3 y de Cl2 en detrimento de la concentración de PCl5 (desplazamiento del equilibrio hacia la derecha).

d) Si se aumenta la concentración de PCl5, correlativamente han de incrementarse la de PCl3 y la de Cl2 para que la constante de equilibrio no se modifique.

Para averiguar cuánto valen las nuevas concentraciones utilizaremos la fórmula de K:

4) Hallar la concentración de iones hidronio en una disolución de ácido acético, CH3  COOH, 1M sabiendo que la constante de disociación vale 1,8·10-5.

Solución:

La reacción de ionización es:

por lo que la constante de ionización será:

Sustituyendo:

Resolviendo esta ecuación de segundo grado, resulta:

x = 0,0043 molar.

5) Hallar la molaridad de una disolución de HCl cuyo pH es 2.

Solución:

pH = log10 1 / [H3O] = -log10 [H3O+] = 2

Es decir,

log10 [H3O+] = -2.

y, tomando antilogaritmos:

[H3O+] = 10-2 = 0,01 molar

6) Hallar el producto de solubilidad del BaSO4 sabiendo que a la temperatura de 50 °C su concentración es 1,4 · 10-5 molar.

Solución:

De la reacción:

se deduce que el producto de solubilidad vale:

Ks = [Ba2+] . [SO4 2-]

Por tanto,

Ks = (1,4 · 10-5)·(1,4 · 10-5) = 1,96·10-10.

Impulsos nerviosos

De los sistemas de nuestro cuerpo, uno de los más importantes es el sistema nervioso, porque es el encargado de recibir la información, a través de los impulsos nerviosos la procesa y emite las respuestas necesarias para que nuestro cuerpo actúe de la manera adecuada.

¿Qué es el sistema nervioso?

El sistema nervioso es una compleja red de nervios y células que transportan mensajes desde el cerebro y la médula espinal hacia las distintas partes del cuerpo. El sistema nervioso incluye tanto al sistema nervioso central como al sistema nervioso periférico, los que a su vez están conformados por el cerebro, la médula espinal, y los nervios somáticos y autónomos.

El sistema nervioso está formado por una red inmensa de nervios.

¿Qué son las neuronas?

Las unidades básicas del sistema nervioso son las neuronas. Estas células son las encargadas de recibir y transmitir los impulsos nerviosos electroquímicos. De manera general, una neurona típica tiene un cuerpo celular y brazos largos que conducen impulsos nerviosos de una parte del cuerpo a otra.

Neuronas, unidades básicas del sistema nervioso.

La neurona está formada por 3 partes básicas:

  • Cuerpo celular
  • Dendritas
  • Axón
Partes de una neurona
Partes de una neurona

El cuerpo celular es como el de cualquier otra célula, contiene el núcleo, el citoplasma y los organelos. Tiene varias extensiones muy ramificadas y gruesas que lucen como cables, éstas se denominan dendritas. Las dendritas pueden variar en número y grosor de acuerdo al tipo de célula, existen algunas con una sola dendrita, mientras que otras, como las neuronas motoras, tienen múltiples dendritas gruesas. Estas estructuras tienen como función principal transmitir el impulso nervioso hasta el cuerpo celular.

Finalmente, el axón es una estructura larga y delgada que se encargar de llevar el impulso nervioso lejos del cuerpo celular de otra neurona o tejido. Solo hay un axón por neurona.

Las neuronas están recubiertas por una sustancia denominada mielina, cuya función principal es aumentar la velocidad del impulso nervioso.

¿Qué son los impulsos nerviosos?

Se denomina impulso nervioso a la señal eléctrica que viaja a lo largo del axón de una célula nerviosa hacia otra. Los impulsos nerviosos se originan en el sistema nervioso central o en los sentidos, estos últimos transforman los estímulos en señales que puedan ser pasadas a través de los nervios y de las que se pueda finalmente obtener una respuesta.

Los impulsos nerviosos se producen porque hay una diferencia de potencial eléctrico entre el interior del axón y sus alrededores; el nervio se activa, se genera un cambio repentino en el voltaje a través de la pared del axón, lo que causa un movimiento de iones dentro y fuera de la neurona; como consecuencia se desencadena una ola de actividad eléctrica que pasa desde el cuerpo celular a lo largo de la longitud del axón hasta la sinapsis.

La sinapsis es el pequeño espacio que existe entre una célula nerviosa y otra, y es donde se lleva a cabo la transmisión del impulso nervioso como tal.

Los impulsos nerviosos deben tener cierta intensidad, de ser muy débiles no excitarán a la célula receptora y por lo tanto no se producirá el impulso.

Los impulsos nerviosos deben pasar por todas las partes de la neurona y transmitir el impulso para así poder recuperarse y producir uno nuevo. Este tiempo de recuperación es usualmente muy breve y dura aproximadamente pocas décimas de segundo.

¿Cuál es la velocidad de un impulso nervioso?

La velocidad con la que se transmite un impulso nervioso varía enormemente de acuerdo a los diferentes tipos de neuronas. El viaje más rápido puede ser de 250 mph, más rápido que un automóvil de Fórmula 1. Sin embargo, no todos necesitan esa rapidez, las células que lo requieren deben estar aisladas, tener un axón grueso y estar recubiertas por vaina de mielina.

Debido a ciertos estímulos peligrosos, el cerebro debe responder rápidamente para que el cuerpo no sufra ningún daño.
Debido a ciertos estímulos peligrosos, el cerebro debe responder rápidamente para que el cuerpo no sufra ningún daño.

Por ejemplo, una situación donde el impulso nervioso debe viajar rápidamente es cuando tocamos algún objeto caliente, el cerebro necesita recibir de manera urgente el mensaje para enviar una respuesta y el la persona retire la mano rápidamente.

¿Cómo se propaga un impulso nervioso?

  • Primeramente la membrana está polarizada, en el espacio extracelular abundan iones con carga positiva, mientras que en el interior tienen carga negativa. Aquí la célula está en potencial de reposo gracias a la bomba sodio – potasio.
  • Cuando se produce el estímulo, aumenta la entrada de los iones al interior de la célula, lo que invierte la polaridad, ahora la neurona estará cargada positivamente. A esto se le conoce como potencial de acción.
  • Esta inversión de la polarización o despolarización produce que los iones se redistribuyan. Los canales de sodio se abren, se despolarizan poco a poca las zonas a lo largo de la célula y el impulso avanza, como si fueran fichas de dominó. De esta manera, la señal recorre todo el axón.
  • La señal llega hacía la zona de sinapsis para que el impulso sea pasado a la siguiente neurona o célula.
  • Finalmente, se restablecen las concentraciones de iones características de las células en reposo.
¿Sabías qué...?
Nuestro cuerpo funciona con impulsos eléctricos transmitidos de una neurona a otra, en un día normal, el cerebro puede generar una cantidad tan grande de electricidad que podría encender una bombilla de 25 watts.

Millones de neuronas

En nuestro cuerpo existen millones de neuronas y diariamente se van creando muchas más, aproximadamente 1.400 diarias, sin embargo, su velocidad de destrucción es mucho más rápida, alrededor de unas 20.000 cada día, lo que en la actualidad se cree que puede estar relacionado con la depresión.

Corteza terrestre

El planeta se compone de tres capas principales: la corteza, el manto y el núcleo. El núcleo representa sólo el 15 % del volumen de la Tierra, mientras que el manto ocupa el 84 %y la corteza compone el 1 % restante.

¿Qué es la corteza terrestre?

La corteza de la Tierra es una capa extremadamente fina de roca que forma la más externa cubierta sólida de nuestro planeta. En términos comparativos, su espesor es como el de la piel de una manzana. Supone menos de la mitad del 1 % de la masa total del planeta, pero desempeña un papel vital en la mayoría de los ciclos naturales de la Tierra.

La corteza puede tener un grosor de más de 80 kilómetros en algunos lugares y menos de un kilómetro de grosor en otros.
La corteza puede tener un grosor de más de 80 kilómetros en algunos lugares y menos de un kilómetro de grosor en otros.

Aquí en tierra firme, en las plataformas continentales, la corteza tiene unos 30 kilómetros de espesor, mientras que en el medio del océano es de aproximadamente 5 kilómetros.

¿Cómo sabemos que la Tierra tiene una corteza?

No se supo que la Tierra tenía una corteza hasta principios del siglo XX. Hasta entonces, todo lo que sabíamos era que nuestro planeta se tambaleaba en relación con el cielo como si tuviera un núcleo grande y denso. Luego vino la sismología, que trajo un nuevo tipo de evidencia desde abajo, la velocidad sísmica.

La velocidad sísmica mide la velocidad en la que las ondas sísmicas se propagan a través de los diferentes materiales por debajo de la superficie. Con algunas excepciones importantes, la velocidad sísmica dentro de la Tierra tiende a aumentar con la profundidad.

En 1909, un documento del sismólogo Andrija Mohorovicic estableció un cambio repentino en la velocidad sísmica a unos 50 kilómetros de profundidad en la Tierra. Las ondas sísmicas rebotan de él (reflejan) y doblan (refractan) mientras que lo atraviesan, de la misma manera que la luz se comporta en la discontinuidad entre el agua y el aire.

Esa discontinuidad, llamada discontinuidad de Mohorovicic o “Moho”, es el límite aceptado entre la corteza y el manto.

Composición de la corteza

La corteza se compone de muchos tipos diferentes de rocas que caen dentro de tres categorías principales: ígneas (más del 90 % en volumen), metamórficas y sedimentarias. Sin embargo, la mayoría de estas rocas se originaron como granito o basalto. El manto debajo está hecho de peridotita. Bridgmanita, el mineral más común en la Tierra, se encuentra en el manto profundo.

La capa externa de la Tierra está formada por dos grandes categorías de rocas: basálticas y graníticas.
La capa externa de la Tierra está formada por dos grandes categorías de rocas: basálticas y graníticas.

Tipos de corteza

En general, hay dos tipos de corteza: corteza oceánica (basáltica) y corteza continental (granítica).

Corteza oceánica

La corteza oceánica cubre aproximadamente el 60 % de la superficie de la Tierra. La corteza oceánica es delgada y joven, no tiene más de 20 km de espesor ni más de 180 millones de años. Todo lo anterior ha sido arrastrado debajo de los continentes por subducción. La corteza oceánica nace en las crestas donde las placas del océano se separan. Cuando esto sucede, la presión sobre el manto subyacente se libera y la peridotita comienza a derretirse. La fracción que se funde se convierte en lava basáltica, que se eleva y entra en erupción mientras que el resto de la peridotita se agota.

Las rocas basálticas contienen más silicio y aluminio que la peridotita dejada atrás, que tiene más hierro y magnesio.

Las rocas basálticas son también menos densas.

La corteza oceánica es una fracción muy pequeña de la Tierra, pero su ciclo de vida sirve para separar el contenido del manto superior en un residuo pesado y un conjunto más ligero de rocas basálticas.

Corteza continental

La corteza continental es gruesa y más antigua, en promedio tiene unos 50 km de espesor y alrededor de 2 mil millones de años. Cubre alrededor del 40 % del planeta.

Los continentes crecen lentamente a lo largo del tiempo geológico a medida que la corteza oceánica y los sedimentos del fondo marino son arrastrados debajo de ellos por subducción. Los basaltos descendentes tienen el agua y los elementos incompatibles que estos expulsan, este material se eleva para provocar más fusión en la llamada fábrica de subducción.

La corteza continental está hecha de rocas graníticas, que tienen aún más silicio y aluminio que la corteza oceánica basáltica. También tienen más oxígeno gracias a la atmósfera. Las rocas graníticas son aún menos densas que el basalto.

La corteza continental representa menos del 0,4 % de la Tierra, pero representa el producto de un doble proceso de refinación, primero en las crestas de los océanos y la segunda en las zonas de subducción.

Los elementos incompatibles que terminan en los continentes son importantes porque incluyen los principales elementos radiactivos uranio, torio y potasio. Estos crean calor, lo que hace que la corteza continental actúe como una manta eléctrica en la parte superior del manto. El calor también suaviza lugares gruesos en la corteza, como la meseta tibetana y los hace extenderse lateralmente.

Los continentes son rasgos verdaderamente permanentes y autosustentables de la superficie de la Tierra.
¿Sabías qué...?
La temperatura de la corteza es diferente en cada parte, comienzan en unos 200 °C y pueden elevarse hasta 400 ° C.

Corteza y placas

La corteza y las placas tectónicas no son lo mismo. Las placas son más gruesas que la corteza y consisten en la combinación de la corteza más el manto que está justo debajo de ella. Esta dura y frágil combinación de dos capas se llama litósfera. Las placas litosféricas se encuentran sobre una capa de roca de manto más blanda y más plástica llamada astenósfera que permite que las placas se muevan lentamente sobre ella como una balsa en barro grueso.

Trucos para aprender las tablas de multiplicar

La multiplicación es una de las operaciones básicas de matemática y su conocimiento es esencial durante la resolución de problemas. Para realizar multiplicaciones sencillas y complejas es necesario conocer las tablas de multiplicar, las cuales también se emplean en otras operaciones como la división.

Una gran herramienta

La multiplicación es la operación matemática que consiste en determinar el resultado de un número que se haya sumado tantas veces como indique otro. La palabra multiplicación proviene del latín de la palabra multus que significa “mucho” y plico que quiere decir “doblar”. En este sentido, multiplicar es doblar o repetir un número muchas veces.

 En símbolo “x” fue utilizado por primera vez como signo de multiplicación en 1631 por el matemático inglés William Oughtred.
En símbolo “x” fue utilizado por primera vez como signo de multiplicación en 1631 por el matemático inglés William Oughtred.

La expresión 4 x 2 indica que el 4 se debe sumar a sí mismo 2 veces, es decir, que el resultado de esa operación sería 8 porque 4 + 4 = 8. Ese es el principio de esta operación matemática, sin embargo; existen multiplicaciones un poco más complejas como 9 x 8, 7 x 9, o 6 x 8, que para poder resolverlas hay que realizar sumas muy largas, lo que resultaría tedioso y poco práctico durante los cálculos.

Para hacer cálculos de multiplicaciones se idearon las tablas de multiplicar, que no son más que un atajo para realizar sumas largas de forma rápida. La forma más común de representar las tablas de multiplicación es, como su nombre lo indica, a través de tablas. Normalmente se muestran las tablas del 1 al 10 y cada una de ellas indica las multiplicaciones del número que representan del 1 al 10 o del 0 al 10.

Aprender las tablas, no memorizarlas
Aprender las tablas, no memorizarlas

Muchas veces los estudiantes se esmeran en memorizar las tablas y no en aprenderlas, por lo cual al poco tiempo las olvidan. Esto se debe a que no entiende el significado de la multiplicación, de sus propiedades y de sus elementos principales, memorizar las tablas sin ningún aprendizaje significativo es similar a leer una receta de cocina que al poco tiempo se olvida. Los maestros y padres deben trabajar por indagar más sobre la multiplicación, de esta forma sin necesidad de memorizaciones tediosas sin sentido, el estudiante las recordará porque sabe para qué sirven y cómo funcionan.

La matemática no tiene que ser una tortura. Padres y maestros deben trabajar porque el aprendizaje de los niños sea siempre significativo.
La matemática no tiene que ser una tortura. Padres y maestros deben trabajar porque el aprendizaje de los niños sea siempre significativo.

Elementos de la multiplicación

En una multiplicación se pueden observar los siguientes elementos:

Factores: son todos aquellos números que se multiplican. Dentro de los factores se encuentra un multiplicando que, como su nombre lo indica, es el número que se multiplica y el multiplicador que es el número que indica el número de veces que se suma el multiplicando por sí mismo.

Producto: es el resultado de la multiplicación de los factores.

Signo: es el símbolo que representa a la operación de la multiplicación, comúnmente se representa con la letra equis (x) pero en algunos casos puede ser expresado con un punto.

En el ejemplo anterior 4 x 2 = 8, los factores son 4 y 2 de los cuales el multiplicando es el 4 y el multiplicador es el 2. Por su parte, el producto en dicha multiplicación es 8.

 Los factores también son denominados coeficientes.

Propiedades de la multiplicación

La multiplicación, al igual que las demás operaciones matemáticas básicas, tiene algunas propiedades que cumple. Estas propiedades permiten simplificar la resolución de problemas y también ayudan a entender cómo funciona esta operación.

Propiedad conmutativa

Esta propiedad establece que al multiplicar varios números, no importa el orden de los factores, el resultado siempre será el mismo.

4 x 2 = 8
2 x 4 = 8

Propiedad asociativa

Cuando se multiplican tres o más factores, pueden multiplicarse los dos primeros y el resultado multiplicarlo por el tercero, o multiplicar los dos últimos y el resultado multiplicarlo por el primero, en todo caso, sin importar cómo se agrupen los factores el resultado siempre será el mismo.

2 x 3 x 1 = (2 x 3) x 1 = 6 x 1 = 6
2 x 3 x 1 = 2 x (3 x 1) = 2 x 3 = 6

Propiedad del elemento neutro

El producto de cualquier número multiplicado por 1 siempre será igual al mismo número.

Ejemplo:

7 x 1 = 7
9 x 1 = 9
2 x 1 = 2

Propiedad distributiva

Al multiplicar un número por una suma o resta se puede resolver primero la suma o resta y el resultado multiplicarlo por el número o se puede multiplicar el número por cada uno de los elementos de la suma o resta y luego sumar o restar según sea el caso. En ambos casos, el resultado siempre es el mismo.

3 x (2 + 4) = 3 x 6 = 18
3 x (2 + 4) = (3 x 2) + (3 x 4) = 6 + 12 = 18

2 x (7 -2) = 2 x 5 = 10

2 x (7 -2) = (2 x 7) – (2 x 2) = 14 – 4 = 10

Las propiedades de la multiplicación son muy útiles para resolver problemas.

Algunos trucos

Después de reconocer los elementos esenciales de la multiplicación y sus propiedades, existen algunos trucos que permiten aprender las tablas con mayor facilidad y se presentan a continuación:

Tabla del 0: aunque no es común ver esta tabla, es importante saber que todos los números multiplicados por 0 dan como resultado el número 0.

Tabla del 1: como se mencionó con anterioridad en la propiedad del elemento neutro, todo número multiplicado por 1 da como resultado al mismo número.

Tabla del 2: en esta tabla el resultado de un número multiplicado por 2 es igual al doble del número.

Tabla del 5: los números de esta tabla terminan en 0 o en 5.

Tabla del 9: esta tabla presenta cierta regularidad en los productos mostrados. La siguiente imagen permite observar cómo las primeras cifras de los productos siguen una secuencia ascendente mientras que las demás cifras siguen una secuencia descendente.

Truco de la tabla del 9.
Truco de la tabla del 9.

Tabla del 10: en este caso solamente es necesario agregar un 0 al lado del multiplicando.

¿Sabías qué...?
Mientras aprendes las tablas es normal que no recuerdes el resultado de alguna multiplicación, en estos casos puedes recurrir mentalmente a la propiedad conmutativa, es decir, invertir la posición de los factores para saber el resultado.

Enfermedades del sistema digestivo

Las enfermedades digestivas son todas aquellas que afectan cualquier parte del sistema digestivo, pueden ir desde afecciones simples, a enfermedades crónicas y graves como la colitis ulcerosa.

Gastritis

Se conoce como gastritis a la inflamación, irritación o erosión de las paredes del estómago. Estas lesiones provocan un daño en la barrera de moco que protege la pared del estómago y por lo tanto los jugos gástricos dañan e inflaman ese revestimiento.

La gastritis puede ser de dos tipos, aguda si ocurre repentinamente y en un periodo corto de tiempo, o crónica si ocurre de manera gradual.
La gastritis puede ser de dos tipos, aguda si ocurre repentinamente y en un periodo corto de tiempo, o crónica si ocurre de manera gradual.

Causas de la gastritis

La gastritis puede tener diversas causas: consumo excesivo de alcohol, estrés, vómitos crónicos, uso excesivo de medicamentos y específicamente de fármacos antiinflamatorios. Sin embargo, las causas principales se pueden englobar en dos:

  • Infección por Helicobacter pylori, bacteria que infecta el revestimiento de la mucosa del estómago. Si no se trata puede producir úlceras e incluso cáncer de estómago.

Helicobacter pylori

Aunque la infección por Helicobacter pylori está entre las infecciones humanas más comunes en todo el mundo, solo algunas de esas infecciones desarrollan gastritis u otros trastornos gastrointestinales. Los médicos creen que la vulnerabilidad a la bacteria podría ser heredada o podría ser consecuencia del estilo de vida del paciente.

  • Reflujo biliar, es decir el reflujo de la bilis en el estómago desde el tracto biliar.

Síntomas

Los síntomas de la gastritis pueden ser diferentes entre cada individuo y en muchas personas, incluso no presentar síntomas. Dentro de las más comunes se destacan:

  • Malestar estomacal recurrente.
  • Dolor abdominal.
  • Distención abdominal.
  • Indigestión.
  • Sensación de ardor en el estómago.
  • Vómitos, en algunos casos, con sangre.
  • Pérdida de apetito.
  • Heces oscuras.

Síntomas de la gastritis

Recomendaciones y tratamiento

  • Uso de antiácidos.
  • Evitar los alimentos picantes y calientes.
  • Evitar el consumo de alimentos en gran cantidad porque eso requiere una mayor producción de jugos gástricos.
  • Si la causa es la bacteria Helicobacter pylori, el médico prescribirá una serie de antibióticos.

 

Enfermedad celÍaca

Es un trastorno autoinmune que se desencadena por el consumo de gluten, es decir, la enfermedad está relacionada con una especie de alergia al gluten. El gluten es una proteína que se encuentra en muchos alimentos, como el trigo, el centeno y los granos.

A base del gluten se hacen alimentos como la pasta o el pan.
A base del gluten se hacen alimentos como la pasta o el pan.

Cuando una persona que padece de la enfermedad celiaca consume algún alimento con gluten, su cuerpo reacciona de manera excesiva a la proteína y daña las vellosidades (proyecciones muy pequeñas que se encuentran en la pared del intestino delgado).

Cuando las vellosidades se lesionan, la actividad del intestino delgado reduce su eficiencia y la absorción de nutrientes disminuye. Si esta enfermedad no se trata de manera adecuada, puede provocar desnutrición, abortos espontáneos, infertilidad, enfermedades neurológicas e incluso algunos tipos de cáncer.

Causas

La causa de la enfermedad celíaca hasta la fecha es desconocida, algunos estudios indican que los genes, la alimentación infantil, las infecciones gastrointestinales o la infección por bacterias pueden contribuir con su aparición, sin embargo, la razón precisa aún no se conoce.

La enfermedad celíaca también puede activarse luego de alguna cirugía, de un parto, de una infección viral e incluso el estrés.

La enfermedad celiaca tambi&eacute;n puede activarse luego de alguna cirug&iacute;a, de un parto, de una infecci&oacute;n viral e incluso el estr&eacute;s. </em></p> <p><u>S&iacute;ntomas </u></p>
La enfermedad celíaca también puede activarse luego de alguna cirugía, de un parto, de una infección viral e incluso el estrés.

Síntomas

Los síntomas de las personas que sufren de la enfermedad celíaca pueden variar de paciente en paciente. Las señales más comunes son: diarrea, fatiga, pérdida de peso, hinchazón, dolor abdominal, gases, náuseas, estreñimiento y vómito.

Otros síntomas pueden no estar relacionados con el sistema digestivo, por ejemplo: anemia, pérdida de densidad ósea, erupción cutánea, daño en el esmalte dental, úlceras en la boca, dolores de cabeza, dolor en articulaciones y acidez.

Recomendaciones y tratamiento

No existen medicamentos para tratar la enfermedad celíaca, por lo que se debe seguir una dieta estricta libre de gluten. El paciente que sufre de enfermedad celíaca no puede consumir pan, pasteles, cerveza, pasta, cereales y medicamentos que contengan gluten.

 

Cáncer colorrectal

Es un tipo de cáncer que afecta el colón y el recto, se conoce también como cáncer de intestino o cáncer de colon. Un cáncer colorrectal puede ser benigno o maligno. Si es benigno el tumor no se propagará, mientras que si es maligno, las células dañadas pueden propagarse por muchas partes del cuerpo y dañar los tejidos.

La Organización Mundial de la Salud indica que es el segundo cáncer más común en todo el mundo, después del cáncer de pulmón.
La Organización Mundial de la Salud indica que es el segundo cáncer más común en todo el mundo, después del cáncer de pulmón.

Causas

Los expertos no están seguros de cuál es la causa exacta por la que algunas personas padecen de cáncer colorrectal mientras que otras no. Sin embargo, algunos de los factores de riesgo son:

  • La edad, las personas mayores son más propensas.
  • Alto consumo de proteína animal, grasas saturadas y alcohol.
  • Poco consumo de fibra.
  • Haber padecido de cáncer de ovario, en el caso de las mujeres.
  • Antecedentes familiares.
  • Padecer de colitis ulcerosa, enfermedad de Crohn o la enfermedad del colon irritable.

Síntomas

  • Ir al baño constantemente.
  • Diarrea o estreñimiento.
  • Sensación de que el intestino no se vacía correctamente luego de una evacuación.
  • Evacuación con sangre.
  • Dolor abdominal.
  • Distención abdominal.
  • Pérdida de peso.
  • Vómito.
  • Deficiencia de hierro.
Los síntomas son similares a los de otras enfermedades digestivas por lo que siempre es necesario visitar a un médico.
Los síntomas son similares a los de otras enfermedades digestivas por lo que siempre es necesario visitar a un médico.

Recomendaciones y tratamiento

El tratamiento del paciente dependerá de varios factores por ejemplo, el tamaño del tumor, la localización y la etapa en la que se encuentre el cáncer. Los métodos más comunes para eliminar el cáncer son: las cirugías, la radioterapia y la quimioterapia.

Cálculos biliares

Los cálculos biliares son sustancias endurecidas que se forman a partir del colesterol, se almacenan dentro de la vesícula biliar y pueden tener desde el tamaño de un grano de arena hasta de una pelota de golf. En general no causan muchos problemas pero si pueden producir dolor.

República Democrática Popular de Corea

La República Democrática Popular de Corea, más conocida como Corea del Norte, es un Estado de Asia oriental ubicado al norte de la península de Corea, que limita al norte con China, al noreste con Rusia, al sur con la República de Corea (Corea del Sur), al este con el mar de Japón y al oeste con el mar Amarillo.

Geografía física

El relieve de Corea del Norte es eminentemente montañoso, sobre todo en sus sectores septentrional y oriental, donde conecta con las cadenas de Manchuria. El pico más alto del país es el Paektu-san, a 2.744 m de altitud. Al oeste se abren una serie de llanuras como la de Pyongyang, junto al litoral del mar Amarillo. Los golfos de Sojoson, al oeste, y Tongjoson, al este, estrechan el territorio por su sector central. La costa occidental es más recortada que la oriental debido a la presencia de una serie de profundos estuarios (ríos Chonchon y Taedong). El curso fluvial más importante es el Yalú. Corea del Norte, bajo la influencia de los monzones, posee un clima continental en el que a inviernos rigurosos y secos, con temperaturas de -43 °C, suceden veranos cálidos (20 °C) durante los cuales se concentran 800 mm de precipitaciones anuales.

Economía y población

La agricultura, colectivizada según el modelo de economía marxista, continúa ocupando a un porcentaje considerable de la población activa norcoreana (en torno al 40 %) y de ella cabe destacar los cultivos de arroz y cereales (maíz, mijo, trigo). También es notable la actividad pesquera. Corea del Norte cuenta con algunos yacimientos mineros de cierta importancia (hulla, lignito, hierro y metales no ferrosos), los cuales, junto con las centrales hidroeléctricas (valle del Yalú), han servido para sentar las bases de una industrialización centrada en los sectores pesados (siderurgia, mecánicas, químicas) que actualmente atraviesa por dificultades.

La actividad manufacturera se localiza preferentemente en la capital de la república, Pyongyang, así como en el cercano puerto de Nampo y los enclaves portuarios que se localizan a lo largo de la fachada del mar de Japón (Chongjin, Kimchak, Hungnam, Wonsan). La población urbana representa el 59 % del total del Estado.

Pyongyang es la capital de la República Democrática Popular de Corea.

Roger Federer

Roger Federer, gran estrella del tenis mundial de la década de 2000, nació en Binningen, localidad del cantón de Basilea-Campiña (Suiza), el 8 de agosto de 1981.

Se inició en el tenis con apenas tres años y destacó ya en su etapa júnior. Como profesional debutó a los 17 años, en 1998, y al año siguiente conquistó sus primeros torneos, de modo que acabó la temporada en el puesto 64 de la clasificación de la Asociación de Tenistas Profesionales (ATP).

A partir de 2001, una progresión espectacular lo encaramó a las cimas del tenis mundial, hasta alcanzar su cénit deportivo en febrero de 2004, cuando se convirtió en número uno de la ATP. Durante 237 semanas mantuvo su supremacía deportiva, temporalmente arrebatada por el español Rafael Nadal en agosto de 2008. Sin embargo, Federer recuperó el primer puesto mundial en julio de 2009, clasificación que mantenía en septiembre del mismo año, cuando era el único jugador en activo que había ganado los cuatro trofeos del Grand Slam (Roland Garros, Wimbledon, Abierto de Australia y Abierto de Estados Unidos). En total eran 69 los torneos ganados por el suizo (entre ellos, 15 del Grand Slam), triunfos a los que se sumaba la medalla de oro en dobles masculinos de los Juegos Olímpicos de Pekín 2008, obtenida junto con Stanislas Wawrinka.

Numerosos comentaristas y aficionados consideran a Federer como el mejor tenista de todos los tiempos, no solo por la efectividad de su juego, sino también por la elegancia y ductilidad con la que se desenvuelve dentro de la pista, sea cual sea la superficie sobre la que juegue.

Cabe indicar también que se le debe la creación (2003) de la Fundación Roger Federer, que patrocina proyectos de ayuda humanitaria cuyos principales destinatarios son los niños de Sudáfrica, país del que es originaria la madre del tenista. Con ocasión del maremoto que asoló las costas del Sudeste Asiático en 2004, Federer participó activamente en las campañas de ayuda a las víctimas. También ha colaborado en iniciativas contra la propagación del SIDA y desde 2006 ejerce como Embajador de Buena Voluntad de UNICEF.

Michael Jordan

Michael Jordan es un exbasquetbolista estadounidense, nacido el 17 de febrero de 1963 en la ciudad de Brooklyn. Para muchos es sin duda el mejor jugador de la historia de este deporte.

En 1981 ingresó en el equipo de la Universidad de Carolina del Norte, y ya al año siguiente era elegido mejor jugador de la temporada.

En 1984 fue miembro de la selección de Estados Unidos, ganando la medalla de oro en los Juegos Olímpicos de Los Ángeles, experiencia que repitió en los Juegos de Barcelona de 1992.

El mismo año fue fichado por los Chicago Bulls, equipo en el que permaneció a lo largo de toda su carrera deportiva y con el cual obtuvo seis campeonatos de la NBA. Máximo encestador en diez temporadas, obtuvo un promedio de 32 puntos por partido, récord absoluto de la NBA, y fue elegido mejor jugador en 1988, 1991, 1992, 1996 y 1998.

En octubre de 1993, tras el asesinato de su padre, abandonó la competición, pero regresó a la NBA en marzo de 1995. Anunció de nuevo su retirada en 1999, pero en 2001, con 38 años, regresó a la competición, y dos años más tarde volvió a retirarse.

Considerado el mejor jugador de baloncesto de todos los tiempos, dentro de la cancha destacó por su rapidez, elegancia e inteligencia, y fuera de ella, por su sencillez y honestidad.