El gobierno de Marcelo Torcuato de Alvear

Hipólito Yrigoyen ocupó la presidencia hasta 1922, año en que lo sucedió Marcelo Torcuato de Alvear (1868-1942). Aunque ambos eran radicales y habían luchado juntos en las duras batallas políticas desde finales del siglo XIX, eran también personalidades muy diferentes. La posteridad, de hecho, ha recogido imágenes más bien opuestas de ambos.

A Yrigoyen se lo ve como una especie de dios Jano con dos caras: para unos fue el artífice del fin de un régimen “falaz y descreído”, según él definía a los gobiernos de la oligarquía; para otros, fue un caudillo ignorante y demagogo, ejemplo de los peores vicios de la democracia. A Alvear, en cambio, se lo suele ver como uno los grandes presidentes del viejo régimen, y su política se considera asimilable con los vicios y las virtudes de aquél.

En cualquier caso, ambos se enfrentaron a parecidos problemas, derivados de su intención de poner en pie y consolidar las instituciones democráticas, y de conducir por los nuevos canales del voto universal la representación, la negociación de intereses y las demandas de reforma de la sociedad que el radicalismo había asumido como bandera.

Inesperada decisión

La tendencia reformista y democratizadora del radicalismo caracterizaba contemporáneamente a otros países de América Latina: a Uruguay, con el presidente Batlle y Ordóñez; a Chile, con Arturo Alessandri; a Perú, con el movimiento del APRA, que, aunque no triunfó, conmovió las estructuras oligárquicas; a México, aunque mediante una revolución sangrienta, con los acontecimientos que eliminaron el régimen oligárquico que se había prolongado desde el período colonial hasta la caída de Porfirio Díaz.

A pesar de pertenecer a partidos distintos, Yrigoyen (foto) eligió a Marcelo Torcuato de Alvear como su sucesor.

En Argentina, la Constitución Nacional impedía la reelección presidencial. De modo que Yrigoyen debía buscar un sucesor, y esperar los seis años que gobernaría éste para poder presentarse nuevamente como candidato. Inesperadamente, Yrigoyen propuso a Marcelo T. de Alvear. La propuesta resultó sorprendente, porque Alvear no pertenecía a los círculos yrigoyenistas, estaba vinculado al sector del patriciado radical y era considerado por la elite como uno de los suyos.

Pero la decisión, como es obvio, no había sido arbitraria. Alvear, alejado de la conducción directa del partido, dado que por entonces se desempeñaba como embajador en Francia, debía necesariamente mantenerse fiel al líder que lo había elegido. Por otra parte tendría a su lado, como vicepresidente, a Elpidio González, un yrigoyenista histórico.

Negociaciones y pactos

La designación de Alvear puede interpretarse además como un intento de acercamiento al grupo patricio nacido de la revolución de 1890, y que condujo, con Alem, a la escisión que dio lugar al nacimiento de la UCR. Es posible que Yrigoyen y los hombres cercanos a él buscaran con este gesto aliviar las tensiones de los sectores agroexportadores que no eran hostiles al radicalismo; ello habría permitido un reagrupamiento de fuerzas en las filas partidarias.

La candidatura de Alvear se impuso con facilidad, obteniendo el 40 por ciento de los votos emitidos. El radicalismo ganó en todas las provincias a excepción de San Juan y Mendoza, donde los partidarios de dos disidentes, Cantón y Lencinas respectivamente, representaban movimientos de fuerte arraigo local.

La composición del gabinete reflejaba, precisamente, la presencia mayoritaria del ala patricia del partido, lo que no dejó de provocar protestas entre los militantes de clase media. Estas designaciones y esas protestas no eran casuales. Los grupos aristocráticos impusieron dos condiciones para cooperar con Alvear: que no se produjeran intervenciones federales en las provincias y que el gasto público estuviera estrictamente controlado por el Congreso. Esta última exigencia implicaba el abandono por parte de Alvear de las prácticas que habían sido moneda corriente durante la presidencia de Yrigoyen, sobre todo la del aumento del gasto público por decreto, para financiar el otorgamiento de cargos públicos. Una exigencia que, por otra parte, se hacía más acuciante que nunca, ya que en 1921 -es decir, poco antes de abandonar el poder- había incrementado aún más el presupuesto para cubrir el gasto público.

Marcelo Torcuato de Alvear asumió la presidencia el 12 de octubre de 1922

Gestión económica inicial

La composición del gabinete de Alvear parecía responder a las exigencias de los sectores conservadores. Por otra parte, para cubrir el déficit dejado por la gestión de Yrigoyen, el gobierno se vio obligado a recurrir a préstamos de corto plazo, lo que originó una deuda flotante.

Al comienzo de su gestión, Alvear pareció inclinarse por una solución drástica, que parecía anunciar despidos masivos en la administración pública. Pero, seguramente después de prever las consecuencias políticas de semejante medida, prefirió actuar con mayor cautela y adoptar otras opciones, como la de incrementar los ingresos fiscales con el aumento de los impuestos a las importaciones.

Esto, sin embargo, no dejó de provocar nuevas dificultades. Las importaciones se habían reducido, y esas restricciones generaron problemas en el terreno laboral. Entre otras frustraciones, Alvear debió dar marcha atrás en un proyecto de jubilaciones para algunos grupos de trabajadores del sector privado.

De todas formas, la repercusión del descenso de las exportaciones no fue muy importante, debido a la expansión de la agricultura, sobre todo de los cultivos industriales, que gozaban de precios sostenidos en el mercado mundial. Esto compensó la menor competitividad coyuntural de los tradicionales productos ganaderos. Sin embargo, los saldos de la balanza comercial no lograron una estabilidad definitiva. Fueron inferiores a los del boom de la época de la Primera Guerra Mundial y de la posguerra, pero muy superiores a los del período anterior a la guerra.

Gestión económica final

En los últimos años de la gestión de Alvear, el presupuesto ya no presentaba déficit, las reservas de oro habían aumentado, el peso argentino era una moneda respetada en el extranjero y el país había recuperado su crédito externo. Los créditos tomados en el exterior tuvieron como consecuencia el aumento de la deuda externa, cosa que no preocupaba excesivamente al gobierno, confiado en el buen futuro de la economía nacional.

El aumento de las tasas de importación supuso cierta política proteccionista en favor de la industria. Aunque estas medidas no se habían tomado con la intención de favorecer la producción nacional -lo que se buscaba en realidad era obtener fondos para financiar las políticas sociales-, ésa fue su consecuencia real más destacada. Ello tuvo una importancia adicional, dado que en ese período se profundizó la rivalidad entre los capitales ingleses y norteamericanos por el control de las inversiones en el país. Los capitales de Estados Unidos se volcaron sobre la industria, mientras los provenientes de Inglaterra siguieron interesados preferentemente en el sector servicios y en el financiero.

Crisis del radicalismo

Una de las cuestiones políticas de mayor envergadura durante la presidencia de Alvear fue la de las divisiones producidas en el seno del partido gobernante. Las diferencias internas dentro del partido radical se sumaron a las que se producían entre el aparato de éste y el gobierno, alcanzando su punto crítico en 1923, cuando comenzaron a circular rumores acerca de los proyectos de restricción del gasto público.

Alvear hizo una serie de concesiones a los comités partidarios, que lo distanciaron de los miembros conservadores de su gabinete ministerial. Se produjeron algunas renuncias, que de todas formas no llegaron a calmar la oposición de los yrigoyenistas. A fines de 1923, incluso la propia figura de Alvear comenzó a ser cuestionada por sus correligionarios.

Ese mismo año fue designado ministro del Interior Vicente Gallo, figura notoria del denominado grupo Azul de la UCR, que mantenía estrechas relaciones con otra personalidad importante de ese sector, Leopoldo Melo. Gallo se convirtió rápidamente en el líder de la tendencia antiyrigoyenista, también denominada “antipersonalista”.

El partido estaba formalmente dividido. La denominación que adoptaron los escindidos tendió a marcar sus diferencias con la metodología política del patronazgo, que favorecía a los miembros de los comités partidarios. Sin embargo, Gallo no vaciló en recurrir a las mismas técnicas que Yrigoyen para lograr el apoyo popular, lo cual lo llevó hasta presionar a Alvear para el restablecimiento del patronazgo.

Alvear cedió a esos reclamos sólo en parte, aceptando un aumento limitado del presupuesto. En cambio, se negó a ordenar intervenciones federales para desalojar a los yrigoyenistas de las provincias. El presidente quiso imponer su autoridad para lograr la reunificación partidaria, pero hacia finales de 1925 era evidente que los yrigoyenistas no habían podido ser desplazados.

Gallo renunció como ministro del Interior al fracasar en la tentativa de sumar a los ministros más conservadores en favor de una expansión del gasto público destinada a combatir a los yrigoyenistas. Además, los “antipersonalistas” no lograron apoyos consistentes, salvo en Santa Fe, su baluarte tradicional. En 1926, ya nadie parecía dudar que Yrigoyen volvería a ser el candidato radical a la presidencia.

Otro elemento importante en el panorama político de la época fue la escisión que se produjo en el seno del socialismo, que dio lugar a la formación del Partido Socialista Independiente. Integrada por algunos de los militantes más antiguos del viejo partido, esta formación estaba dispuesta a establecer alianzas con los conservadores y los “antipersonalistas”.

Alvear fue, junto a Leandro N. Alem, uno de los creadores de la Unión Cívica Radical.

Las leyes de la herencia de Gregor Mendel

Las características físicas de todas las personas no son fruto del azar sino que vienen regidas por las leyes de la herencia, las cuales fueron descubiertas por Mendel a mediados del siglo XIX y luego olvidadas, y redescubiertas a comienzos del siglo XX.

Mendel, el padre de la genética

Hasta 1866 nadie había intentado explicar de modo científico algo tan evidente como la transmisión de caracteres de padres a hijos. Johann Gregor Mendel fue un religioso checo que vivió gran parte de su vida en un convento de la República Checa. Conocedor del cálculo de probabilidades, realizó multitud de cruzamientos entre plantas de guisantes. A partir de ellos observó cómo se distribuían caracteres o rasgos concretos para intentar descubrir las leyes que rigen su transmisión.

A partir de los resultados de sus observaciones, Mendel formuló tres conclusiones conocidas con el nombre de leyes de Mendel y que constituyen la base de la genética actual.

A pesar de su importancia, los trabajos de Mendel no fueron tomados en consideración por la comunidad científica hasta transcurridos alrededor de 50 años.

Mendel formuló tres leyes que hoy en día constituyen la base de la genética actual

Algunos conceptos básicos

La información responsable de los caracteres hereditarios se encuentra en los genes. Un gen es un fragmento de ADN (o ARN en algunos virus) que lleva la información para un carácter. En la época de Mendel no se conocía la biología molecular; lo que en la actualidad se denomina gen es lo que Mendel en su día denominó factor hereditario: unidad en que se transmite el material genético.

Pueden existir distintas versiones de un mismo gen, llamadas alelos; por ejemplo, un cierto gen determina el color de la flor de guisante. Pero este gen presenta varias versiones o alelos, lo que significa que uno determinará la aparición del color rojo en la flor, y otro, la del color blanco.

Los organismos diploides tienen los cromosomas ordenados por parejas, y por ello presentan también dos versiones de un mismo gen, es decir, dos alelos para un mismo carácter.

Para llegar a sus conclusiones, Mendel debió realizar una multitud de experimentos con plantas guisantes.

Si los dos alelos son iguales, el individuo es homocigótico; si son distintos, heterocigótico.

En los individuos homocigóticos para un gen está claro que se expresará el carácter determinado por el alelo que posee. Siguiendo con el ejemplo de la flor del guisante, un individuo que presenta dos alelos iguales que significan color rojo (homocigótico) va a presentar todas sus flores únicamente de color rojo.

¿Qué ocurre en un individuo heterocigótico, es decir, con dos versiones distintas de un mismo gen?

Pueden ocurrir dos cosas:

a) Uno de los alelos “anula” el efecto del otro. Al primero se le denomina alelo dominante; al segundo, alelo recesivo. Los alelos dominantes se suelen expresar con letras mayúsculas; los recesivos, con las correspondientes minúsculas.

Existen muchos caracteres dominantes, es decir, que se manifiestan también en los individuos heterocigóticos: el color blanco de la lana del borrego, los ojos rojos de la mosca Drosophila y el pelo corto en los conejos, entre otros.

En el caso del ser humano, algunos ejemplos de caracteres dominantes son: la piel oscura, el pelo rizado y la capacidad de enrrollar la lengua.

Algunas enfermedades están determinadas por un alelo dominante, como la calvicie prematura en el sexo masculino o la acondroplasia que supone un menor desarrollo de los huesos largos de las extremidades.

Sin embargo, la mayoría de las enfermedades humanas son debidas a un alelo recesivo. Las más conocidas son el albinismo, que consiste en la falta de pigmentación tanto en la piel como en el pelo, y la galactosemia: los niños que la padecen son incapaces de digerir el azúcar presente en la leche, por lo que acumulan sustancias tóxicas que darán lugar, entre otros síntomas, a retraso mental y cataratas. Estos efectos son, sin embargo, fáciles de prevenir si la enfermedad se detecta a tiempo y se les suministra una dieta carente de leche y de todos los derivados de ésta que posean lactosa.

Los estudios de Mendel permiten la prevención de muchas enfermedades de trasmisión genética

b) Ambos alelos se expresan simultáneamente dando lugar a un carácter intermedio. Entonces se dice que son codominantes.

Otros casos que se han detectado en la naturaleza de codominancia son:

  • El color de la piel en los cobayas puede ser amarillo, crema o blanco. Los heterocigóticos, que presentan un alelo de cada tipo, son de color crema.
  • La forma del rábano puede ser larga, redonda u oval (este último caso es el heterocigótico).
  • En el caballo palomino, el color dorado se debe a la presencia de un par de alelos codominantes. Los correspondientes homocigóticos presentan colores castaño rojizo y crema, respectivamente.

En la reproducción sexual, dos gametos o células, una procedente del padre y otra de la madre, se fusionan para dar lugar a una célula huevo, a partir de la cual se desarrollará un nuevo individuo.

Estos gametos son haploides y, por tanto, sólo van a tener una versión de cada gen. Todos los gametos de un individuo homocigótico para un determinado gen son completamente iguales.

Ahora bien, en un individuo heterocigótico se pueden originar dos tipos distintos de gametos según el alelo concreto que porten.

Por último, cuando decimos que un individuo es BB (por ejemplo) estamos hablando de su genotipo (dotación genética concreta). Sin embargo, si nos referimos al carácter observable que ese genotipo determina, por ejemplo “color blanco”, estamos aludiendo a su fenotipo.

Fenotipo y genotipo de un organismo

El genotipo de un organismo es el conjunto de genes que presenta. El fenotipo, en cambio, es el conjunto de características observables, por ejemplo, ser rubio o moreno, etc. El genotipo no cambia durante la vida del individuo, mientras que el fenotipo sí lo hace, como sucede durante el crecimiento que cambia la apariencia del individuo o la exposición al Sol que hace que nuestra piel se torne más oscura.

A veces el genotipo no basta para determinar un fenotipo concreto, sino que tienen también que coincidir circunstancias ambientales concretas. Por ejemplo, hay enfermedades que parecen presentar una cierta predisposición a aparecer, pero exigen que se dé además alguna circunstancia ambiental como ciertos abusos alimentarios, contacto con determinados agentes infecciosos, etcétera.

Francis Galton (1822-1911) empleó los términos naturaleza y crianza para referirse a los papeles desempeñados por la herencia y el ambiente en la aparición de un determinado carácter.

Para expresar esta interacción entre los genes y el medio ambiente nace el concepto de heredabilidad. Por ejemplo, según este criterio, la heredabilidad del peso del huevo de las gallinas es del 60%, mientras que el número de huevos sólo presenta una heredabilidad del 20%. Otro ejemplo sería en la especie humana, donde la estatura tendría un 80% de heredabilidad, mientras que la aptitud aritmética, un 12%.

Por otra parte, cabe destacar que determinados fenotipos resultan de la interacción de varios genes distintos. Muchas veces estos genes tienen efectos aditivos: la diferencia en la pigmentación de la piel entre blancos se debe a la acción de varios genes cuyos efectos se suman. Es un caso de herencia poligénica.

Se habla de alelos múltiples cuando, para un solo gen, existen más de dos alelos distintos. Lógicamente, cualquier organismo diploide sólo podrá llevar dos alelos. En los seres humanos uno de los casos más típicos es el del grupo sanguíneo (sistema ABO), para el cual existen tres versiones distintas de un gen: i, IA, IB; según las distintas combinaciones posibles entre ellos, aparecen individuos del grupo O, A, B y AB.

¿Lo sabías? Los estudios realizados por Mendel no fueron reconocidos sino hasta 50 años después de su publicación.

Biografía de Gregor Mendel

 Johanne Gregor Mendel fue un importante biólogo nacido en Hyncice, actual República Checa, el 20 de Julio de 1822. Vivió hasta la edad de 61 años, falleciendo el 6 de enero de 1884, en Brno.

Primeros años

Su padre era veterano de las guerras napoleónicas y su madre, la hija de un jardinero. Tras una infancia marcada por la pobreza y las penalidades, en 1843 ingresó en el monasterio agustino de Königskloster, cercano a Brünn, donde tomó el nombre de Gregor y fue ordenado sacerdote en 1847.

Residió en la abadía de Santo Tomás (Brünn) y, para poder seguir la carrera docente, fue enviado a Viena, donde se doctoró en matemáticas y ciencias (1851). En 1854 se convirtió en profesor suplente de la Real Escuela de Brünn, y en 1868 fue nombrado abad del monasterio, a raíz de lo cual abandonó de forma definitiva la investigación científica y se dedicó en exclusiva a las tareas propias de su función.

Sus obras más conocidas

El núcleo de sus trabajos -que comenzó en el año 1856 a partir de experimentos de cruzamientos con guisantes efectuados en el jardín del monasterio- le permitió descubrir las tres leyes de la herencia o leyes de Mendel, gracias a las cuales es posible describir los mecanismos de la herencia y que fueron explicadas con posterioridad por el padre de la genética experimental moderna, el biólogo estadounidense Thomas Hunt Morgan (1866-1945).

En el siglo XVIII se había desarrollado ya una serie de importantes estudios acerca de hibridación vegetal, entre los que destacaron los llevados a cabo por Kölreuter, W. Herbert, C. C. Sprengel y A. Knight, y ya en el siglo XIX, los de Gärtner y Sageret (1825). La culminación de todos estos trabajos corrió a cargo, por un lado, de Ch. Naudin (1815-1899) y, por el otro, de Gregor Mendel, quien llegó más lejos que Naudin.

Gregor Mendel es reconocido por sus estudios sobre la hibridación vegetal

Las tres leyes descubiertas por Mendel se enuncian como sigue: según la primera, cuando se cruzan dos variedades puras de una misma especie, los descendientes son todos iguales y pueden parecerse a uno u otro progenitor o a ninguno de ellos; la segunda afirma que, al cruzar entre sí los híbridos de la segunda generación, los descendientes se dividen en cuatro partes, de las cuales una se parece a su abuela, otra a su abuelo y las dos restantes a sus progenitores; por último, la tercera ley concluye que, en el caso de que las dos variedades de partida difieran entre sí en dos o más caracteres, cada uno de ellos se transmite de acuerdo con la primera ley con independencia de los demás.

Para realizar sus trabajos, Mendel no eligió especies, sino razas autofecundas bien establecidas de la especie Pisum sativum. La primera fase del experimento consistió en la obtención, mediante cultivos convencionales previos, de líneas puras constantes y en recoger de manera metódica parte de las semillas producidas por cada planta. A continuación cruzó estas estirpes, dos a dos, mediante la técnica de polinización artificial. De este modo era posible combinar, de dos en dos, variedades distintas que presentan diferencias muy precisas entre sí (semillas lisas – semillas arrugadas; flores blancas-flores coloreadas, etc.). El análisis de los resultados obtenidos le permitió concluir que mediante el cruzamiento de razas que difieren al menos en dos caracteres, pueden crearse nuevas razas estables (combinaciones nuevas homocigóticas).

Reconocimiento

Pese a que remitió sus trabajos con guisantes a la máxima autoridad de su época en temas de biología, W. von Nägeli, sus investigaciones no obtuvieron el reconocimiento hasta el redescubrimiento de las leyes de la herencia por parte de H. de Vries, C. E. Correns y E. Tschernack von Seysenegg, quienes, con más de treinta años de retraso, y después de haber revisado la mayor parte de la literatura existente sobre el particular, atribuyeron a Johann G. Mendel la prioridad del descubrimiento.

Mendel falleció a la edad de 61 años, aún sin el reconocimiento que merecía.

Familia de palabras

Una familia de palabras (familia léxica o familia etimológica) está formada por un conjunto de palabras que comparten el mismo lexema o raíz y que, por lo tanto, tienen cierta relación de significado.

Para crear una familia de palabras debemos agregar a una raíz los diferentes lexemas que esta admita, tanto prefijos como sufijos. Podemos diferenciar diversos tipos de familias de palabras:

Relacionadas por su significado

Son aquellas palabras que poseen cierto significado en común o que se relaciona. Podemos distinguir entre:

  • Palabras primitivas: aquellas que dan origen a otras que surgirán de ellas. En el ejemplo anterior, la palabra primitiva es “educación”. A su vez, estas palabras están formadas por dos partes que no poseen significado por sí solas: una invariable (la raíz) y otra variable (la desinencia).
  • Palabras derivadas: son aquellas que se forman a partir de una primitiva, ya que poseen su misma raíz y su significado se relaciona con el de la otra. Son palabras derivadas de “educación”: educacional, educativo, educando, etc. Para derivar las palabras primitivas, usaremos:
  1. Sufijos: que son terminaciones de palabras que no tienen significado por sí solas. Por ejemplo: -acional, -ativo, -ando, etc.
  2. Prefijos: partículas que se pueden anteponer a una palabra para formar una nueva, relacionándose con el significado anterior o significando s contrario. Veamos algunos de los prefijos más comunes de nuestro idioma: a-, sub-, des-, extra-, in-, pre-, pro-, su-, sus-, bi-, geo-, bis-, ab-, ob-, obs-, biblio-, filo-, equi-, etc.
Una palabra derivada de “estudiar” es estudiante.

Aumentativos y diminutivos

Se trata de un tipo de sufijos muy especiales que aumentan (aumentativos) o disminuyen (diminutivos) el significado de una palabra. Algunos los sufijos aumentativos son: ote-ota- on -ona-aza-azo. Un ejemplo es camisa—–> camisón.

Por otro lado, algunos de los sufijos diminutivos son: ito – ita – illo – illa – cito – cita – cillo – cilla. En este caso, un ejemplo podría ser camisa—–>camisita.

Palabras compuestas

Son aquellas que se forman a partir de dos palabras que, al unirse, forman una nueva con un significado que no está necesariamente relacionado con el de las otras. Por ejemplo: lavarropas, pararrayos, antesala, subibaja, etc.

Las palabras compuestas se forman a partir de dos palabras que, juntas, presentan un nuevo significado.

Conceptos de ácido y base: el concepto de Arrhenius

Arrhenius propuso definiciones precisas de ácido, base y sal basadas en su teoría de la disociación electrolítica.

Para Arrhenius, un ácido es cualquier sustancia que en disolución acuosa da iones H+ (o, para ser más precisos y puesto que estos iones se hidrolizan, iones H3O+), es decir que contiene hidrógeno reemplazable por un metal o por un radical positivo para formar sales; una base es cualquier sustancia que en disolución da iones hidroxilo OH- , es decir que contiene uno más grupos hidroxilo reemplazables por radicales ácidos negativos para formar sales; y una sal es un compuesto que se ioniza dando aniones distintos al ion OH- y cationes distintos al ion H3O+. Una sal ácida (NaHSO4, KHCO3, etc.) es la que, además de dar cationes de uno o más metales (sales dobles), da iones H3O+; análogamente, una sal básica (ClSbO, Cl(OH)Ca, etc.) es aquella que, además de los aniones que corresponden a su radical ácido, da aniones OH-. Por oposición a las sales ácidas y a las básicas, las sales normales se denominan sales neutras.

Svante August Arrhenius fue un científico sueco ganador del Premio Nobel de Química en 1903.

Átomo-gramo y molécula-gramo

Un átomo es una pieza fundamental de la materia, todo en el universo (excepto la energía) está hecho de materia y, por lo tanto, todo en el universo está hecho de átomos.

Átomo-gramo de un elemento es un peso de ese elemento igual a su peso atómico expresado en gramos. Por ejemplo, como el peso atómico del níquel es 58,71 el átomo-gramo de este elemento será 58,71 gramos.

Análogamente, para una sustancia, molécula-gramo o mol es un peso igual a su peso molecular expresado en gramos. Por ejemplo, el peso molecular del CaO es 56,08, o sea que un mol de CaO serán 56,08 gramos.

Puede darse una definición similar para equivalente-gramo.

¿Sabías qué...?
Antes de que Dalton lanzara su primer modelo atómico en 1803, Demócrito en el 450 a. C. ya había afirmado que la materia estaba formada por átomos, sin embargo, los estudios no continuaron.

De la definición se deduce que en un mol de cualquier sustancia tiene el mismo número de moléculas (pueden hacerse afirmaciones similares para el átomo-gramo y el equivalente-gramo).

Ese número es el llamado número de Avogadro, se representa como N y vale N = 6,0235·1023. Proponemos la tarea de razonar cómo el número de Avogadro permite calcular el peso en gramos de cualquier átomo o molécula a partir de su peso atómico o molecular, y de justificar por qué es N = 1/12·P(C12), o sea un doceavo del peso en gramos del átomo del carbono-12.

Modelo atómico

El modelo atómico ha cambiado con el tiempo. Durante más de dos siglos, los científicos han creado diferentes modelos de acuerdo a lo que han aprendido, entre estos modelos están los de: Dalton, Thompson, Nagaoka, Rutherford, Bohr, Sommerfeld, Schrödinger y Dirac.

Cálculo del ángulo a partir de sus razones trigonométricas

El problema inverso al de calcular las razones trigonométricas de un ángulo conocido, consiste en determinar el valor de dicho ángulo a partir de sus razones trigonométricas.

La resolución de este problema, que tradicionalmente se llevaba a cabo mediante el empleo de las tablas trigonométricas, se ve hoy facilitado por el hecho de que muchas de las modernas calculadoras electrónicas de bolsillo incorporan combinaciones de teclas que permiten obtener el valor del ángulo conocido el seno, el coseno o la tangente del mismo. La denominación tradicional con la que se hace referencia a la medida del ángulo correspondiente al valor de una determinada razón trigonométrica, que se supone conocida, utiliza el término “arco” en lugar de ángulo; es decir, que para cada una de las razones trigonométricas se habla, respectivamente, de arco seno (arc sen), arco coseno (arc cos), arco tangente (arc tg), arco cotangente (arc cotg), arco secante (arc sec) y arco cosecante (arc cosec).

Ejemplo:

a = senα

α = arc sen a

Es decir, si a es el valor numérico del seno de α, es el arco (o el ángulo) que corresponde al valor a del seno.

Observaciones

Arco seno. Como -1 senα 1, arc sen sólo está definido para valores comprendidos entre -1 y 1. Como senα = sen (180º – α), si a = senα , α = arc sen a, pero también 180º – α = arc sen a.
Arco coseno. El arco coseno sólo está definido para valores comprendidos entre -1 y 1. Como cosα = cos (-α) si a = cosα, se tiene α= arc cos a y -α = arc cos a.
Arco tangente. Como tgα = tg (180º + α), si a = tgα , α = arc tg a y 180º + α = arc tg a.

¿Cómo debe interpretarse el valor de la tangente de un ángulo recto?

La tangente de un ángulo resulta de dividir su seno entre su coseno. Si el ángulo mide 90º, la división anterior es 1/0=. Físicamente ninguna magnitud es igual a infinito, así que en cada caso deberá interpretarse el resultado de forma coherente. Por ejemplo, si la pendiente de una rampa fuera infinito debería entenderse que está dispuesta de forma vertical, de modo que todo movimiento sobre ella tiene una componente horizontal nula.

Inclinación

Si la pendiente de una recta es el ángulo que forma dicha recta con el plano horizontal, se define la inclinación como el ángulo entre ésta y el plano vertical de referencia. Si bien el plano horizontal es conocido, aquel que tiene todos sus puntos a la misma altura, los planos verticales pueden ser infinitos, ya que un plano es vertical cuando corta perpendicularmente al horizontal. Por eso es necesario referirse a uno determinado, que puede ser Norte-Sur, la dirección de una calle, etc.

Cálculo de los valores de una proporción matemática

Hallar el valor de un extremo.

1) a/b = c/x

Según la primera propiedad

a · x = b · c

por lo que se tiene que:

O sea, en toda proporción un extremo es igual al producto de los medios divididos por el otro extremo.

Ejemplo
Hallar el valor de un extremo en una proporción continua.
1) a / b = b / x
Según la primera propiedad
a · x = b · b
se pasa a al otro miembro

; o bien:

2) En toda proporción continua un extremo es igual al cuadrado del medio proporcional dividido por el otro extremo.
Ejemplo
Hallar el valor del medio de una proporción.
1) a / x = c / d
De acuerdo con la primera propiedad
a · d = c · x
y el factor c pasa al otro miembro
3) En toda proporción un medio es igual al producto de los extremos dividido por el otro medio.
Ejemplo
Hallar el valor del medio de una proporción continua.
a / x = x / d
De acuerdo con la primera propiedad


En toda proporción continua el medio es igual a la raíz cuadrada del producto de los extremos.

Las matemáticas en la música

Los sonidos emitidos por los instrumentos de cuerda tales como violín, guitarra, piano, etc., resultan de la vibración de las cuerdas que dicho instrumento posee.

Ahora bien, la altura de la nota musical dada depende tanto de la longitud de la cuerda con que se emite, como de la tensión que esta última soporta.

El monocordio de Pitágoras

Ya Pitágoras había descubierto a través de la utilización de un monocordio, que: “Si una cuerda y su tensión permanecen inalteradas, pero se varía su longitud, el período de vibración es proporcional a su longitud”. Supongamos que un fabricante de pianos utilizara, siguiendo a Pitágoras, cuerdas de idéntica estructura pero de diferentes longitudes para lograr la gama de frecuencias de que goza dicho instrumento. En un piano, con notas de frecuencia comprendida entre 27 y 4.096, la cuerda de mayor longitud resultaría 150 veces más larga que la de menor longitud.

Las leyes de Mersenne

Obviamente, ello hubiera impedido la construcción del piano de nuestro ejemplo, de no mediar las dos leyes del matemático francés Mersenne. La primera dice que: “Para cuerdas distintas de la misma longitud e igual tensión, el período de vibración es proporcional a la raíz cuadrada del peso de la cuerda”. El mayor peso se consigue, generalmente, arrollándole en espiral un alambre más delgado. Así se evita la excesiva longitud de las cuerdas asignadas a los graves.

La segunda ley expresa: “Cuando una cuerda y su longitud permanecen inalteradas pero se varía la tensión, la frecuencia de la vibración es proporcional a la raíz cuadrada de la tensión”. Siguiendo esta ley se evita que las cuerdas resulten demasiado cortas en los agudos, aumentando su tensión. La incorporación de marcos de acero a los modernos pianos, ha posibilitado tensar los alambres hasta valores insospechados antiguamente y que rondan las 30 toneladas.

¿Hay proporciones geométricas en un piano?

Desde fines del siglo XVIII existe la escala temperada que divide la octava en 12 semitonos iguales de distancia. Los intervalos entre notas en dicha escala siguen una progresión geométrica de razón 12 2. Así están afinados, por ejemplo, todos los pianos modernos.

Características de las estrellas

Básicamente, las estrellas son grandes bolas de gas en explosión, principalmente hidrógeno y helio. Nuestra estrella más cercana, el Sol, está tan caliente que la enorme cantidad de hidrógeno experimenta una reacción nuclear constante en toda la estrella, como en una bomba de hidrógeno.

¿Qué son las estrellas?

Las estrellas son astros gaseosos e incandescentes (por ejemplo, el Sol) y aparecen como simples puntos de luz a causa de la enorme distancia a que se encuentran. En una noche sin luna se pueden observar a simple vista entre 2.500 y 3.000 estrellas en cada hemisferio. El catálogo estelar o mapa celeste más antiguo conocido es el confeccionado por Claudio Tolomeo (hacia el 150 d. C.), basado probablemente en el de Hiparco (130 a. C.). Tolomeo catalogó 1.022 estrellas y las subdividió en seis clases de magnitudes: desde las más brillantes, Sirio y Vega, que definen la primera magnitud, hasta llegar a las más débiles, que corresponden a la sexta magnitud. El término galaxia designa los sistemas independientes de estrellas que se hallan situados fuera del nuestro, la denominada Vía Láctea. Contienen entre 3.000 millones y un billón de estrellas, además de una gran cantidad de polvo y gas interestelar.

¿Sabías qué...?
Con un pequeño telescopio se pueden ver unas 300.000 estrellas; con uno de tamaño mediano hasta 250 millones, y más de 3.000 millones con los más perfeccionados.

Las estrellas constituyen uno de los principales tipos de cuerpos que pueblan el universo. Una estrella es una bola caliente de gas que brilla como consecuencia de las reacciones de fusión nuclear que se producen en su núcleo. Al igual que los demás cuerpos celestes, están compuestas en su mayor parte por hidrógeno, el más simple y ligero de los elementos.

Resto de la supernova conocida como Casiopea.

Características de las estrellas

Además del brillo, las características físicas más importantes de una estrella son el color, el diámetro y la masa.

El color

A mediados del siglo pasado se clasificaban las estrellas por su color, se creía que éste dependía de la temperatura superficial, del mismo modo que una barra de hierro calentada hasta la incandescencia se vuelve primero roja, luego anaranjada, más tarde amarilla y finalmente blanca, a medida que la temperatura aumenta. En la actualidad está correctamente establecida la relación entre la temperatura y el color.

El espectro del Sol y las estrellas forma un continuo surco de rayas oscuras, a veces brillantes, a partir de las cuales es posible identificar los elementos químicos presentes y el porcentaje de los mismos. De tales rayas es posible obtener también la temperatura y características físicas como la presión o los campos magnéticos y eléctricos.

Por tanto, es evidente que debe existir también una relación entre el color y las características del espectro lineal, siendo ambos esencialmente dependientes de la temperatura.

El diámetro y la masa

Determinar el diámetro de las estrellas es también un gran problema ya que los mayores telescopios muestran sólo puntos y no discos. En 1930, Albert Michelson (1852-1931), mediante el uso de interferómetros (aparatos para realizar mediciones muy precisas basadas en los fenómenos de interferencia de la luz que incide sobre ellos), logró medir el diámetro de algunas estrellas supergigantes relativamente cercanas, como Antares y Betelgeuse; resultaron tener, respectivamente, unos diámetros 400 y 300 veces mayores que el del Sol.

Existen estrellas con diámetros centenares de veces mayores que el del Sol y otras con diámetros casi iguales al de éste. Puede afirmarse que los diámetros estelares varían desde 10.000 kilómetros a 1.000 millones de kilómetros, pero la mayoría de las estrellas de la secuencia principal tienen diámetros comprendidos entre 0,5 (enanas rojas) y 10 veces el diámetro del Sol.

La estrella Beta Pictoris, segunda en importancia de la constelación del Pintor, está a 50 años luz de la Tierra. Como puede apreciarse en la imagen, la rodea un disco de materia que se extiende hasta 60 billones de km.

Para calcular las masas de las estrellas, Arthur Stanley Eddington (1882-1944), en 1924, halló de manera teórica la existencia de una relación entre masa y luminosidad (las estrellas de masa mayor son también las más luminosas), relación que había sido ya demostrada empíricamente a partir de las pocas estrellas cuyas masa y luminosidad se conocían.

Las variaciones de las distintas masas son bastante más reducidas que las de los volúmenes, pasando de unas 0,2 a 50 veces la masa solar. Por consiguiente, la densidad media de las estrellas gigantes rojas resulta del orden de 0,0001 g/cm3, y la de las enanas blancas es de 105 g/cm3. Véanse algunos ejemplos: el Sol, que es una estrella, tiene una densidad poco mayor que la del agua, o sea 1,41 g/cm3; Antares, una estrella supergigante roja, una millonésima parte de la densidad del agua; una estrella enana blanca, como la compañera de Sirio, llamada Sirio B, con la misma masa que el Sol y un diámetro sólo cuatro veces el de nuestro planeta, la Tierra, tiene una densidad de 1.000 000 veces la del agua. Con tan enorme densidad, el gas que constituye la enana blanca se encuentra en un estado degenerado.

S. Eddington

Astrónomo y físico británico (1882-1944). Desarrolló métodos para la determinación de la masa, la temperatura y la constitución interna de las estrellas.

Características del sistema Tierra-Luna

La Tierra es el único planeta cuyo nombre en inglés no se deriva de la mitología griega o romana. El nombre deriva del inglés antiguo y germánico, hay, por supuesto, cientos de otros nombres para el planeta en otros idiomas.

La Tierra, como los demás planetas, recorre desde hace millones de años su órbita alrededor del Sol, y lo seguirá haciendo durante otros miles de millones de años sin cambios notables. Es el Sol, con un volumen 1.000 veces mayor que todos los planetas juntos, quien la retiene y regula, además, el sistema solar. Si existiese otra estrella cercana, es decir, si el Sol perteneciese a un sistema binario, o si los planetas tuviesen masas mucho mayores, las órbitas de sus componentes sufrirían variaciones continuas. En ningún planeta habría posibilidad de vida porque pasaría demasiado cerca o demasiado lejos de su estrella y, por tanto, no existiría una sucesión regular de las estaciones.

¿Sabías qué...?
La Luna es el cuerpo celeste más fácil de ubicar en el cielo y es el único sitio, más allá de la Tierra el cual el hombre ha sido capaz de pisar.

La Luna está dotada también de un movimiento de rotación y otro de traslación alrededor de la Tierra (que se cumplen en tiempos iguales); por consiguiente, las posiciones relativas de la Tierra y la Luna respecto al Sol varían periódicamente. Ello explica que la Luna presente a la Tierra siempre la misma cara y las fases lunares.

La superficie lunar, explorada por varias misiones del programa Apolo, y cartografiada con todo detalle por la sonda estadounidense Clementine, presenta un aspecto caracterizado por una gran cantidad de accidentes geográficos.

No es del todo exacto afirmar que la Luna gira alrededor de la Tierra. Ambas giran alrededor del punto de equilibrio del sistema Tierra-Luna, o sea el centro de gravedad o centro de masa. Y como la Tierra es 81 veces mayor que la Luna, este centro está situado a 1.600 km por debajo de la superficie terrestre, del lado más próximo a la Luna. De esto se deduce que no es la Tierra la que sigue una verdadera órbita elíptica alrededor del Sol, sino que es el centro de gravedad del sistema el que lo hace, mientras que la Tierra oscila ligeramente de un lado a otro.

Fases de la Luna.

¿Por qué la Tierra no se cae?

La fuerza de la gravedad es la responsable de que los gases que componen la atmósfera no escapen al espacio y de que la Tierra permanezca estable en su órbita, relacionándose con el resto de cuerpos del universo y manteniendo unidas a los miles de millones de estrellas que pueblan la galaxia. La fuerza de la gravedad del Sol es casi 28 veces el valor de la gravedad terrestre y es la que mantiene en sus órbitas a todos los planetas y demás cuerpos que integran el sistema solar.

Color y luminosidad

Una característica de los planetas es reflejar una parte de la luz solar incidente (el porcentaje de luz reflejada se llama albedo y es un dato físico importante para todos los cuerpos del sistema solar, pues facilita el conocimiento de características como la dimensión y el material que recubre su superficie). La Tierra tiene un albedo de 0,40, o sea que refleja al espacio un 40 % de la luz solar que recibe; ello se debe a que los océanos, los casquetes polares y la capa de nubes actúan como espejos.

Heng Zhang

El astrónomo y geofísico chino Heng Zhang (78-139 d.C.), reconocido como el inventor del primer sismógrafo, fue asimismo el astrónomo oficial de la corte china. Descubrió y registró que la luz emitida por la Luna era, en realidad, luz procedente del Sol reflejada por la superficie de ésta.

El albedo terrestre está sujeto a variaciones estacionales porque la Tierra difunde más luz entre marzo y junio, y entre octubre y noviembre que entre julio y septiembre. El color de la Tierra también varía, es más azulado en los períodos que refleja más luz. En cuanto a las relaciones entre la Tierra y la Luna, la primera se ve desde la Luna 100 veces más luminosa que la Luna llena vista desde la Tierra.

Dimensiones

La distancia media entre la Tierra y la Luna es de 384.403 km. Esta distancia puede alcanzar 406.697 km en el apogeo, cuando la velocidad orbital de la Luna es de 3.474 km/h, o bien reducirse a 356.410 km en el perigeo, cuando la velocidad orbital es de 3.959 km/h. Mientras que la Tierra tiene como diámetro ecuatorial 12.756 km y como diámetro polar 12.713 km, con un achatamiento polar de 1/298, la Luna tiene un diámetro de 3.476 km y forma casi esférica. La Tierra tiene una masa de 5,98 x 1024 Kg y una densidad media de 5,52 veces la del agua, frente a 3,36 veces la densidad de la Luna, que posee también una masa mucho más baja: 1/81 de la terrestre. De la masa y las dimensiones se deduce la fuerza de gravedad en la superficie de ambos cuerpos, y también puede calcularse el peso de un objeto sobre la Luna, que es, un 1/6 de su peso sobre la Tierra.

Eclipses de Sol y de Luna

Durante su trayectoria alrededor del Sol, la Luna se encuentra periódicamente situada entre el Sol y la Tierra.

Las diferentes fases de un eclipse de Sol total, en este caso el acaecido el 11 de julio de 1991, permiten apreciar la secuencia de desaparición y reaparición del disco solar tras la silueta de la Luna, que en la fase central del fenómeno cubre por completo al astro rey.

El interés científico del eclipse de Sol depende de que la Luna oculte al Sol por completo (eclipse total); en el brevísimo período que puede durar el eclipse total, desde pocos segundos hasta un máximo de 7,30 minutos, se puede ver la parte más externa del Sol, la cromosfera, con las protuberancias, y la tenue corona con sus penachos. Debido a que la sombra de la Luna llega con dificultad a alcanzar la Tierra, la zona de sombra sobre la superficie terrestre no es superior a 275 km. Alrededor de esta zona el eclipse es parcial, o sea que se ve el disco del Sol parcialmente, no pudiéndose observar la corona ni la cromosfera.

Existe eclipse anular cuando el disco lunar no es lo suficientemente grande como para ocultar por completo al Sol. Esto se debe a que las distancias de la Luna a la Tierra y de la Tierra al Sol no son constantes, dado que las órbitas lunar y terrestre no son exactamente circulares. El disco negro de la Luna aparece entonces rodeado de un sutil anillo brillante, cuya luminosidad es suficiente para impedir la visión de la cromosfera y de la corona.

Los eclipses totales de Sol (y de Luna) se reproducen en el mismo orden después de un período de 18 años y 11 días, denominado saros (igual a 223 lunaciones), pero no en los mismos lugares. Por ejemplo: el 20 de julio de 1963 se observó un eclipse total en Canadá, y el 31 de julio de 1981 otro en Siberia (Rusia). El 11 de agosto de 1999 pudo verse un eclipse total de sol desde Gran Bretaña hasta la India. El 29 de marzo de 2006 tuvo lugar un eclipse solar total que comenzó a manifestarse al noreste del Brasil y acabó en la frontera noreste de Mongolia.

Eclipse lunar

Los eclipses de Luna se producen cuando ésta penetra en el cono de sombra de la Tierra, lo que sucede sólo durante la Luna llena. Contrariamente a los eclipses de Sol, los de Luna son visibles en todos los lugares de la Tierra donde pueda observarse la Luna por encima del horizonte. El cono de sombra está rodeado de un cono de penumbra, que intercepta una parte de la luz solar. Los eclipses de Luna pueden ser también totales o parciales. El eclipse es total si la Luna penetra completamente en el cono de sombra, y parcial si penetra sólo en parte; por último, el eclipse de penumbra se produce cuando la Luna penetra sólo en el cono de penumbra. En un año se observan de dos a cinco eclipses de Luna.

La Tierra y la Luna: su formación

El análisis radiactivo de las rocas superficiales de la Tierra indica una edad de por lo menos 3.500 millones de años. La corteza terrestre se solidificó lentamente, debido a la gran cantidad de potasio radiactivo que generaba calor en el interior. El Sol, cuya edad se estima en 5.000 millones de años, había nacido ya, aun cuando era invisible por estar oculto en el interior de la primitiva nebulosa de materia estelar, particularmente densa sobre el plano de la eclíptica. En efecto, la nube bloqueaba todas las radiaciones solares a escasa distancia del Sol. A causa de la temperatura excesivamente baja (quizá -260 °C), los gases de agua, el amoníaco, el nitrógeno, el dióxido de carbono, el monóxido de carbono y el metano formaron, junto con el polvo, la nieve y el hielo, unos cuerpos que serían los planetas. Debió de ser una tempestad permanente, en cuyo seno se formaron masas cada vez más grandes, que se rompían y agregaban de nuevo.

La Tierra pudo nacer así, o sea, por acumulaciones sucesivas y, a medida que aumentaba de masa, atraía a otros cuerpos menores. El calor generado, además de disolver los hielos y producir vapor, eliminó las sustancias más ligeras y volátiles, dejando sólo las más pétreas y metálicas.

En realidad, sobre el origen de la Luna hay muchas dudas. Según H. C. Urey, se formó también en frío, por acumulación de pequeños cuerpos. Fred Whipple sostiene que esto quizá sucedió cuando la Tierra empezó a perder el anillo que la rodeaba (similar al que todavía hoy circunda a Saturno). El núcleo de la Luna comenzó a calentarse poco a poco a causa de la presencia de elementos radiactivos; sin embargo, es probable que no se calentase lo suficiente como para producir un núcleo de hierro, como ocurrió en el caso de la Tierra.

Pequeños cuerpos siguieron cayendo sobre la Luna durante centenares de miles de años, y provocaron cráteres. Mientras, el calor interior aumentaba y fundía las capas más próximas a la superficie. En este período crítico, las grandes depresiones lunares que ahora se denominan mares, los valles y las grietas se inundaron de lava. Ese período fue breve, así como fueron también rápidos la expansión y el enfriamiento sucesivos, que produjeron tensiones, hundimientos, relieves y formaciones de diverso tipo. La acción de los volcanes es evidente en diversas regiones de la Luna, pero muchos cráteres, y especialmente los mayores, fueron producidos por impactos de meteoritos, como sucedió también en la Tierra; sin embargo, en el caso de esta última las fuerzas geológicas han rellenado, erosionado y destruido los cráteres, excepto algunos de los más recientes. Los picos centrales de muchos cráteres lunares, más bajos que los bordes de los cráteres mismos, se formaron en el período durante el cual la Luna estaba parcialmente fundida; el meteoro que originó el cráter rompió el centro de la superficie, de la cual brotó la lava que creó estas montañas. También los mares fueron producidos, siempre en el mismo período, por el impacto de grandes meteoros que, al romper la costra, provocaron intensas expulsiones e inundaciones de lava.