CAPÍTULO 5 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

CUADRÍCULA

Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras. 

Un claro ejemplo de cuadrícula es un tablero de ajedrez. En este cada cuadro representa una posición que puede ser ocupada por alguna pieza del juego.

TIPOS DE LÍNEAS

Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).

Un ejemplo de líneas rectas paralelas son las vías de un ferrocarril. Cuando se cortan con otras forman líneas secantes.

LOS ÁNGULOS Y SUS TIPOS

Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.

Las escuadras nos permiten estimar ángulos, pues tienen un ángulo de 90° y dos ángulos de 45°.

LOS TRIÁNGULOS

Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.

Un mismo triángulo puede ser clasificado por más de un criterio, por ejemplo: todos los triángulos equiláteros son, a su vez, triángulos acutángulos, ya que sus tres ángulos iguales miden 60°.

CUADRILÁTEROS

Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.

En primer lugar, los cuadriláteros pueden clasificarse en dos grandes grupos: paralelogramos y no paralelogramos. Las pantallas de nuestros móviles y tabletas son ejemplos de un paralelogramo.

POLIEDROS

Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).

Existen cinco poliedros regulares cuyas caras están conformados por polígonos regulares. Estos son conocidos como sólidos platónicos.

CAPÍTULO 2 / TEMA 5

DIVISIÓN

La división es una de las cuatro operaciones básicas de las matemáticas y consiste en repartir un número en varias partes iguales. Cada vez que compartimos nuestros dulces hacemos una división. Esta operación está muy relacionada con la resta y con la multiplicación. A continuación, aprenderás a hacer divisiones de números con una, dos o tres cifras.

LA DIVISIÓN y su relación con la sustracción

La división es una operación matemática que consiste en realizar reparticiones equitativas o formar grupos con la misma cantidad de elementos. Es una operación inversa a la multiplicación y puede considerarse una sustracción sucesiva.

La división a través de sustracciones sucesivas es una manera fácil de llegar a un resultado. Hay que recordar que la división tiene que ver con la resta y juntas tienen varias aplicaciones.

– Ejemplo:

Si deseamos repartir 8 magdalenas de 2 en 2, ¿cuántas personas tendrán  magdalenas?

Este problema lo podemos representar como una resta sucesiva:

Observa que se hicieron 4 restas de 2 hasta llegar a cero (0). Por lo tanto, 4 personas tendrá 2 magdalenas cada una.

Este proceso, también lo podemos representar como una división y decir que 8 ÷ 2 = 4 porque se puede restar 4 veces 2 al número 8.

– Otro ejemplo:

30 ÷ 5 = ?

Restas 30 − 5 = 25 25 − 5 = 2 20 − 5 = 15 15 − 5 = 10 10 − 5 = 0 5 − 5 = 0
Cantidad de veces que se hace la resta 1 2 3 4 5 6

Entonces, 30 ÷ 5 = 6 porque se puede restar 6 veces 5 al 30.

Las divisiones simbólicamente se puede expresar de la siguiente manera:

En todos los casos se lee “treinta entre cinco igual a seis”.

Elementos de la división

Los términos de la división son el dividendo, el divisor, el cociente y el residuo o resto.

El dividendo es la cantidad que se desea repartir en partes iguales; el divisor es la cantidad entre la cual se divide y el cociente es el resultado de la operación. La cantidad que no se logra dividir es el residuo, también llamado resto; y debe ser menor que el divisor.

Divisiones exactas e inexactas

Cuando el residuo es igual a cero, podemos decir que la división se realizó equitativamente sin sobrar elementos, por lo que es exacta; pero si el residuo es distinto de cero, se considera que la división es inexacta por sobrar elementos sin dividir o agrupar.

El propósito de la división como operación matemática es encontrar el cociente, el cual indica las veces que el divisor está contenido en el dividendo. El resto o residuo es la parte de la división que no se puede dividir como número entero por el divisor, si el resto es cero se habla de una división exacta, y si es mayor es una división inexacta.

¿Cómo resolver divisiones?

1. Colocamos a la izquierda al dividendo y dentro de la caja de división colocamos al divisor.

2. Luego, seleccionamos del dividendo una cifra que sea mayor o igual al divisor, para esto se comienza por la cifra de mayor orden. En este caso no hay un número que multiplicado por 5 resulte 3, por lo que seleccionamos una cifra más para dividir, es decir, 35.

3. Luego, buscamos un número que multiplicado por 5 nos de cómo resultado 35 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Se sabe que 5 × 7 = 35, por lo tanto:

4. Encontramos que al multiplicar 5 por 7 da como resultado 35; entonces colocamos el 7 debajo del 5, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto. En este caso el resto es cero (0), por lo tanto, es una división exacta.

– Otro ejemplo:

1. Colocamos a la izquierda al dividendo y dentro de la caja de división colocamos al divisor.

2. Luego, seleccionamos del dividendo una cifra que sea mayor o igual al divisor, para esto se comienza por la cifra de mayor orden. En este caso no hay un número que multiplicado por 4 resulte 3, por lo que seleccionamos una cifra más para dividir, el 36.

3. Luego, buscamos un número que multiplicado por 4 de cómo resultado 36 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Sabemos que 4 × 9 = 36, por lo tanto:

Encontramos que al multiplicar 4 por 9 da como resultado 36; entonces colocamos el 9 debajo del 4, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto.

4. Realizamos una nueva selección y repetimos los pasos hasta agotar las cifras del dividendo, en este caso solo nos resta el 5, lo bajamos y colocamos junto al resto obtenido anteriormente. Observa:

5. Buscamos un número que multiplicado por 4 de cómo resultado 5 o un número cercano a ese valor. Para esto es necesario emplear las tablas de multiplicación. Sabemos que 4 × 1 = 4, por lo tanto:

Encontramos que al multiplicar 4 por 1 da como resultado 4; entonces se coloca el 1 en el cociente, restamos el producto obtenido de multiplicar el cociente por el divisor y lo escribimos en el resto. Esto da como resultado 1, por lo tanto; la división es inexacta.

¿Sabías qué?
Al momento de resolver divisiones se busca el número que multiplicado por el divisor es igual al dividendo, de esta manera se obtiene el cociente.

SITUACIONES DE REPARTO EQUITATIVO

Cuando una cantidad de elementos se reparte en grupos iguales, se puede conocer la cantidad de elementos de cada grupo por medio de la división.

Cantidad de elementos ÷ cantidad de grupos = cantidad de elementos por grupo

Las situaciones de reparto equitativo son aquellas donde una cantidad de elementos se reparten en grupos iguales, en estas se conoce la cantidad de elementos y la cantidad de grupos formados, lo que se busca es conocer la cantidad de elementos de cada grupo mediante la división. Este caso se aplica solo en casos de divisiones exactas donde el resto es igual a cero.

Por ejemplo, tenemos una canasta con 12 manzanas y debemos repartirlas en 4 canastas equitativamente.

12 manzanas repartidas en 4 canastas corresponden a 3 manzanas por canasta.

12 ÷ 4 = 3

 

– Otro ejemplo:

25 esferas azules repartidas en 5 partes iguales.

25 esferas azules, repartidas en 5 partes iguales, corresponden a 5 esferas en cada parte.

25 ÷ 5 = 5

Para repartir en partes iguales una cantidad de elementos puedes poner un elemento por grupo hasta que se terminen de repartir todos los elementos.

SITUACIONES DE REPARTO POR MEDIDA

Cuando se conoce la cantidad total de elementos que se repartieron en grupos de medidas iguales se puede obtener la cantidad de grupos por medio de la división.

Cantidad de elementos ÷ cantidad de elementos por grupo = cantidad de grupos

En las operaciones de reparto por medida o agrupamiento por medida se conoce la cantidad total de elementos y la cantidad de elementos por grupo. El objetivo es conocer la cantidad de grupos para lo cual se emplea la división. Existen una serie de situaciones en las que encontramos problemas de este tipo y para ello conocer cómo resolver divisiones es esencial.

– Ejemplo:

Una maestra de tercer grado ha pedido a sus alumnos que lleven un artículo de periódico para realizar un trabajo en clase. De 24 alumnos que conforman la sección, solo la mitad llevó el artículo. La maestra tuvo que formar grupos de 2 niños para realizar la actividad. ¿Cuántos grupos formó la maestra?

La maestra formó 12 grupos de 2 alumnos cada uno.

24 ÷ 2 = 12

 

– Otro ejemplo:

En una biblioteca hay 18 libros, en cada tramo caben 6, ¿cuántos tramos se necesitan para guardarlos todos?

Para organizar los 18 libros se necesitan 3 tramos con 6 libros cada uno.

 18 ÷ 6 = 3

¿Sabías qué?
A principio del siglo XVII, John Napier diseñó un tablero para multiplicar y dividir conocido como “los huesos de Napier”.

RELACIÓN ENTRE LA MULTIPLICACIÓN Y LA DIVISIÓN

La división es la operación inversa a la multiplicación, pero con la multiplicación se puede comprobar el resultado de una división al multiplicar el cociente obtenido por el divisor, el resultado de esta multiplicación debe ser igual al dividendo. Entonces:

dividendo = cociente × divisor

Si la división es inexacta, se aplica el mismo procedimiento y se le suma el resto o residuo. Ejemplo:

La multiplicación y la división son operaciones inversas, así como lo son la adición y la sustracción. En la división, el orden de los factores sí altera el producto, por lo que no cumple con la propiedad conmutativa, mientras que la propiedad distributiva para la división solamente se cumple si la suma o resta se encuentra en el dividendo.

¡A practicar!

1. Resuelve las siguientes divisiones a través de restas sucesivas.

a) 12 ÷ 4

Solución
1 2 3 Cociente
12 − 4 = 8 8 − 4 = 4 4 − 4 = 0 3

12 ÷ 4 = 3

b) 49 ÷ 7

Solución
1 2 3 4 5 6 7 Cociente
49 − 7 = 42 42 − 7 = 35 35 − 7 = 28 28 − 7 = 21 21 − 7 = 14 14 − 7 = 7 7 − 7 = 0 7

49 ÷ 7 = 7

c) 54 ÷ 9

Solución
1 2 3 4 5 6 Cociente
54 − 9 = 45 45 − 9 = 36 36 − 9 = 27 27 − 9 = 18 18 − 9 = 9 9 − 9 = 0 6

54 ÷ 9 = 6

 

2. Efectúa las siguientes divisiones.

a) 88 ÷ 4

Solución

88 ÷ 4 = 22

b) 25 ÷ 3

Solución

25 ÷ 3 = 8 y resto = 1

c) 41 ÷ 6

Solución

41 ÷ 6 = 6 y resto = 5

 

3. Escribe y resuelve la división que representa cada situación de reparto equitativo.

a) Julián tiene 16 caramelos y quiere repartirlos por igual entre sus 4 amigos, ¿cuántos caramelos le corresponden a cada uno de sus amigos?

Solución
16 ÷ 4 = 4

A cada amigo le corresponden 4 caramelos.

b) Patricia debe empacar por igual 15 vestidos en 5 cajas. ¿Cuántos vestidos tendrá cada caja?

Solución
15 ÷ 5 = 3

Tendrá 3 vestidos por caja.

c) Leonardo tiene 36 naranjas y debe colocarlas en 6 cestos por igual. ¿Cuántas naranja debe colocar en cada cesto?

Solución
36 ÷ 6 = 6

Debe colocar 6 naranjas por cesto.

 

4. Escribe y resuelve la división que representa cada situación de reparto por medida.

a) Lucía tiene 45 galletas, si las guarda en pequeñas cajas en las que caben 9 galletas, ¿cuántas cajas necesita?

Solución
45 ÷ 9 = 5

Lucía necesita 5 cajas.

b) Felipe el panadero desea hornear 24 pastelitos, si caben 8 pastelitos en cada bandeja, ¿cuántas bandejas necesitará Felipe?

Solución
24 ÷ 8 = 3

Felipe necesitará 3 bandejas.

c) Alicia tiene 50 libros. Si guarda 10 libros en cada una de las repisas de un mueble. ¿Cuántas repisas del mueble ocupa para guardar todos sus libros?

Solución
50 ÷ 10 = 5

Alicia ocupa 5 repisas del mueble para guardar todos sus libros.

RECURSOS PARA DOCENTES

Artículo “Divisiones por dos o más cifras”

El siguiente material trata sobre las divisiones desde un enfoque del método tradicional y del método del algoritmo desplegado de la división.

VER

Artículo “División: método americano”

En este artículo se explica cómo resolver divisiones a través del método americano, uno de los más usados en países de Centroamérica, México y los Estados Unidos.

VER

CAPÍTULO 2 / TEMA 4

MULTIPLICACIÓN

La multiplicación es una de las operaciones fundamentales que realizamos con los números. Se encuentra estrechamente relacionada con la adición, por lo tanto, cuando sumamos repetidas veces una misma cantidad, realmente hacemos una multiplicación. A partir de esto se crearon las tablas de multiplicar para facilitar los cálculos.

RELACIÓN ENTRE LA ADICIÓN Y LA MULTIPLICACIÓN

Se denomina adición iterada a la adición que posee todos sus sumandos iguales y se puede representar como una multiplicación.

– Ejemplo 1:

Observa que cada mariposa tiene 2 alas. Por lo tanto, en 4 mariposas hay 8 alas.

4 veces 2 es igual a 8.

4 × 2 = 8

– Ejemplo 2:

¿Cuántas patas (extremidades) hay en total?

5 veces 2 es igual a 10.

5 × 2 = 10

– Ejemplo 3:

Sofía tiene tres portalápices y en cada uno de ellos caben 5 lápices, ¿cuántos lápices tiene Sofía en total?

3 veces 5 es igual a 15.

3 × 5 es igual a 15.

La multiplicación es considerada como una adición con sumandos iguales (adición iterada). Nos ayuda a obtener resultados más rápidos de manera sencilla. Los elementos de la multiplicación son los factores y el producto. Los números multiplicados son los factores y el resultado es el producto. Para resolver multiplicaciones se usan las tablas de multiplicar.

¡Es tu turno!

  • ¿Cuántos huevos hay en total?

Solución

3 + 3 + 3 = 9

3 veces 3 es igual a 9.

3 × 3 = 9

  • ¿Cuántas flores hay en total?

Solución

4 + 4 + 4 + 4 = 16

4 veces 4 es igual a 16.

4 × 4 = 16

  • Expresa las adiciones como multiplicación, resuelve y completa:
Adición Multiplicación
1 + 1 + 1 + 1 = 4 1 × 4 = 4
5 + 5 + 5 =
6 + 6 + 6 + 6 + 6 =
7 + 7 + 7 + 7 =
2 + 2 + 2 =
3 + 3 + 3 + 3 + 3 + 3 =

Solución
Adición Multiplicación
1 + 1 + 1 + 1 = 4 1 × 4 = 4
5 + 5 + 5 = 15 5 × 3 = 15
6 + 6 + 6 + 6 + 6 = 30 6 × 5 = 30
7 + 7 + 7 + 7 = 28 7 × 4 = 28
2 + 2 + 2 = 6 2 × 3 = 6
3 + 3 + 3 + 3 + 3 + 3 = 18 3 × 6 = 18

elementos de la multiplicación

Los términos de una multiplicación se denominan factores y producto. Los factores son los números que se multiplican, y el producto es el resultado de la operación de multiplicación.

Tablas de multiplicar

Para hacer cálculos de multiplicaciones se crearon las tablas de multiplicar, que no son más que un atajo para realizar sumas largas de forma rápida. La forma más común de representar las tablas de multiplicación es, como su nombre lo indica, a través de tablas. Normalmente se muestran las tablas del 1 al 10 y cada una de ellas a su vez indica las multiplicaciones del número que representan del 1 al 10 o del 0 al 10.

Multiplicación en forma vertical

La multiplicación es una adición de sumandos iguales, el signo de la multiplicación es “×” y se lee “por”.

La multiplicación es la operación matemática que consiste en determinar el resultado de un número que se haya sumado tantas veces como indique otro. La palabra multiplicación proviene del latín de la palabra multus que significa “mucho” y plico que quiere decir “doblar”. En este sentido, multiplicar es doblar o repetir un número muchas veces.

¿Sabías qué?
Además del símbolo de la cruz, en la multiplicación también puede usarse el punto a media altura (·).

Para multiplicar un número de una cifra por otro de dos cifras, multiplicamos cada cifra de los factores. Para esto seguimos los siguientes pasos:

1. Colocamos los factores uno sobre el sobre.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 3 × 3 = 9

3. Multiplicamos la unidad del segundo factor por las decenas de la primer factor: 3 × 2 = 6.

4. También podemos escribir el resultado de forma horizontal:

23 × 3 = 69

 

– Otros ejemplos:

Multiplicación con llevadas

Cuando multiplicamos las cifras de los factores y el resultado es mayor a 9, debemos hacer llevadas. Los pasos son los siguientes:

1. Colocamos los factores uno sobre otro según su valor posicional.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 4 × 3 = 12. Como el resultado es mayor a 9, colocamos la unidad (2) en la columna de las unidades y la cifra de la decena (1) la colocamos en la columna de la izquierda.

3. Multiplicamos la unidad del segundo factor por las decenas del segundo factor y consideramos el 1 que se lleva: 4 × 2 = 8 + 1 = 9.

– Otros ejemplos:

 

También es posible que llevemos cifras a las centenas. En estos casos los pasos son estos:

1. Colocamos los factores uno sobre otro según sus valores posicionales.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 7 × 4 = 28. Como el resultado es mayor a 9, escribimos el 8 en la columna de las unidades y llevamos la decena (2) a la columna de la izquierda.

3. Multiplicamos la unidad del segundo factor por las decenas del primer factor, como llevamos 2: 7 × 2 = 14 + 2 = 16. Escribimos el 6 en las decenas y el 1 en la columna de las centenas.

 

– Otros ejemplos:

¿Sabías qué?
Es común que en las multiplicaciones se escriba arriba el número mayor (multiplicando) y debajo el número menor (multiplicador).

MULTIPLICACIÓN POR 10, POR 100 Y POR 1.000

Para multiplicar un número natural por 10 agregamos un cero a la derecha del número. Si lo multiplicamos por 100 agregamos 2 ceros y si lo multiplicamos por 1.000 agregamos 3 ceros. Ejemplo:

  • ¿Cuál es el producto de 35 × 10?

Como se multiplica por 10, se agrega un cero a la derecha del 35, es decir:

35 × 10 = 350

  • ¿Cuál es el producto de 35 × 100?

Como se multiplica por 100, se agregan dos ceros a la derecha del 35, es decir:

35 × 100 = 3.500

  • ¿Cuál es el producto de 35 × 1.000?

Como se multiplica por 1.000, se agregan tres ceros a la derecha del 35, es decir:

35 × 1.000 = 35.000

– Otros ejemplos:

Factores 2 5 17 29 40 73 91
× 10 20 50 170 290 400 730 910
× 100 200 500 1.700 2.900 4.000 7.300 9.100
× 1.000 2.000 5.000 17.000 29.000 40.000 73.000 91.000
Las propiedades de la multiplicación permiten realizar operaciones de manera más sencilla. Por ejemplo, la propiedad conmutativa nos permite cambiar el orden de los factores sin alterar el producto, por esta razón, el número mayor se suele colocar arriba y el menor debajo al momento de resolver los cálculos. Lo mismo aplica para el resto de las propiedades.

PROBLEMAS DE MULTIPLICACIÓN

1. Tres camiones viajan del campo a la ciudad, cada uno con 800 sandías. ¿Cuántas sandías llevan en total?

  • Datos

Cantidad de camiones: 3

Cantidad de sandías por camión: 800

  • Pregunta

¿Cuántas sandías llevan en total?

  • Reflexiona

Para resolver el problema debemos multiplicar las 800 sandías por 3, para lo cual se ubica el 800 en el multiplicando por ser mayor y el 3 en el multiplicador.

  • Resuelve

 

  • Respuesta

Entre los camiones hay 2.400 sandías.


2. A la hermana de Susana le gusta coleccionar zapatos. Tiene tantos que los organiza en un estante por tramos. Si el estante tiene seis tramos y en cada uno hay catorce pares, ¿cuántos pares de zapatos tiene la hermana de Susana?

  • Datos

Tramos del estante: 6

Pares de zapatos por tramos: 14

  • Pregunta

¿Cuántos pares de zapatos tiene la hermana de Susana?

  • Reflexiona

Para resolver el problema debemos multiplicar los 14 pares de zapatos por los 6 tramos que tiene el estante. Para esto ubicamos el 14 arriba y el 6 debajo.

  • Resuelve

  • Respuesta

La hermana de Susana tiene 84 pares de zapatos.


3. Si un paquete de caramelos cuesta $ 843, ¿cuánto cuestan 9 paquetes?

  • Datos

Valor del paquete de caramelos: $ 843

  • Pregunta

¿Cuánto cuestan 9 paquetes de caramelos?

  • Reflexiona

Para resolver el problema debemos multiplicar el costo del paquete de caramelos que son $ 843 por el número de paquetes que pide el problema, es decir 9.

  • Resuelve

  • Respuesta

Nueve paquetes de caramelos tienen un valor de $ 7.587

¡A practicar!

1. Valentina compró cinco paquetes de palomitas de maíz por un valor de $ 1.569 cada uno. ¿Cuánto dinero gastó Valentina?

Solución
  • Datos

Valor del paquete de palomitas: $ 1.569

Cantidad de paquetes de palomitas comprado: 5

  • Pregunta

¿Cuánto gastó Valentina?

  • Reflexiona

Para resolver el problema debemos multiplicar el costo del paquete de palomitas que son $ 1.569 por el número de paquetes que compró Valentina, es decir 5.

  • Resuelve

  • Respuesta

Valentina gastó $17.845.

2. En un salón de clases hay 42 estudiantes, si cada uno de ellos trae 2 paletas de caramelo, ¿cuántas paletas de caramelo tendrían en total?

Solución
  • Datos

Cantidad de estudiantes: 42

Cantidad de paletas por estudiante: 2

  • Pregunta

¿Cuántas paletas de caramelo tendrían en total?

  • Reflexiona

Para resolver el problema debemos multiplicar el número total de estudiantes, que son 42 por la cantidad de paletas de caramelo que trajo cada estudiante, es decir 2.

  • Resuelve

  • Respuesta

Los alumnos tendrían en total 84 paletas de caramelo.

3. En la granja de don Tomás hay 8 vacas lecheras, cada una produce diariamente 52 litros. ¿Cuántos litros de leche se producen durante 7 días?

Solución
  • Datos

Cantidad de vacas: 8

Litros de leche producidos por una vaca en 1 día: 52

  • Pregunta

¿Cuántos litros de leche se producen durante 7 días en la granja de don Tomás?

  • Reflexiona

Para resolver el problema debemos hacerlo en dos partes, primero se debe sacar la cantidad de litros que producen diariamente por medio de una multiplicación entre 52 y 8. Luego, multiplicar ese resultado por 7.

  • Resuelve

 

  • Respuesta

Durante siete días se producen 2.912 litros de leche en la granja de don Tomás.

4. En una granja hay 3 corrales para cerdos y en cada corral caben seis cerdos, ¿qué adición iterada representaría la situación?

a) 4 + 4 + 4 + 4 + 4

b) 6 + 4

c) 6 + 6 + 6

d) 24 + 24 + 24 + 24

Solución
c) 6 + 6 + 6

5. Víctor lee cuatro páginas de su libro favorito por día, ¿cuántas páginas leerá en seis días?

Solución

1 día → 4 páginas

2 días → 4 + 4 = 8 páginas

3 días → 4 + 4 + 4 = 12 páginas

4 días → 4 + 4 + 4 + 4 = 16 páginas

5 días → 4 + 4 + 4 + 4 + 4 = 20 páginas

6 días → 4 + 4 + 4 + 4 + 4 + 4 = 24 páginas

 

Podemos ver que 6 veces 4 es 24, por lo tanto:

6 × 4 = 24

Victor leerá 24 página en 6 días.

RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

El siguiente material ofrece algunos trucos para aprender las tablas de multiplicar sin necesidad de memorizarlas.

VER

Artículo “Multiplicación por una cifra”

El artículo muestra los procedimientos principales para resolver multiplicaciones por una cifra. También ofrece una serie de ejercicios propuestos.

VER

CAPÍTULO 2 / TEMA 3

OPERACIONES COMBINADAS

La adición y la sustracción están presentes en múltiples situaciones de nuestra vida cotidiana, son operaciones inversas que en muchas ocasiones pueden emplearse de forma combinadas. Para este tipo de problemas usamos ciertos símbolos como el paréntesis que permiten una resolución más sencilla.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas en las que aparecen varias cálculos aritméticos para resolver.

La adición y la sustracción, además de ser operaciones básicas de las matemáticas, son dos operaciones inversas, por lo tanto, una adición puede ser comprobada a través de la sustracción y de igual modo, al resolver una sustracción, sus resultados pueden comprobarse a través de la adición. Conocer bien el desarrollo de las sumas y restas es fundamental para resolver cálculos combinados.

Para resolver operaciones combinadas de adición y sustracción debemos seguir ciertos pasos:

  • Operaciones con paréntesis
  1. Resolvemos las operaciones que están entre paréntesis.
  2. Resolvemos las demás según el orden en que aparecen, de izquierda a derecha.

– Ejemplo:

 

Observa que en primer lugar resolvimos lo que estaba dentro de los paréntesis y luego según el orden de izquierda a derecha.

  • Operaciones sin paréntesis

Si las operaciones combinadas de adición y sustracción no tienen operaciones entre paréntesis “()” debemos resolver según el orden en que aparecen de izquierda a derecha.

– Ejemplo:

Tal como lo muestra el ejemplo, resolvimos las operaciones en el orden que aparecen de izquierda a derecha.

¿Sabías qué?
Uno de los signos más usados en operaciones matemáticas es el paréntesis. Permite determinar el orden y prioridad de las operaciones.

¡Es tu turno!

  • (354 + 689) − 798
Solución

El resultado es 245.

  • 1.340 − 1.120 + 250
Solución

El resultado es 470.

  • (8.932 − 5670) + 990 − (459 + 615)
Solución

El resultado es 3.178.

  • 9.980 − 8.760 − 130 + 2700
Solución

 

El resultado es 3.790.

CÁLCULOS MENTALES

El cálculo mental, como su nombre lo indica, permite realizar cálculos sin que sea necesario un lápiz, una hoja o una calculadora. Para resolver problemas de forma mental usamos estrategias que aplican propiedades de los números y de las operaciones matemáticas.

Una de las mejores formas de desarrollar y ejercitar la comprensión numérica es a través de los cálculos mentales. Además de resolver problemas más rápido, permiten mejorar la concentración y la agilidad mental para otras situaciones. Con la práctica se pueden resolver cálculos más complejos en los cuales un papel y un lápiz no serían necesarios.

Para realizar cálculos mentales podemos hacer uso de diferentes estrategias:

Descomponer

La descomposición de un número mentalmente permite resolver adiciones y sustracciones de forma más sencilla. Para esto, se descompone el primero de los términos de acuerdo al valor posicional de sus cifras y luego se le suma o resta al número no descompuesto un valor posicional a la vez. Por ejemplo:

35 − 12 = ?

Descomponemos el número 12 de la siguiente forma:

12 = 10 + 2

Luego restamos un valor posicional a la vez al término no descompuesto, en este caso el término no descompuesto es el número 35.

35 − 10 = 25

25 − 2 = 23

Entonces:

 35 − 12 = 23

Completar la decena

Una estrategia que se puede emplear para resolver adiciones y sustracciones es completar la decena. Veamos un ejemplo:

35 + 8 = ?

El número 35 está entre las decenas 30 y 40, entonces sumamos las 5 unidades que faltan para que llegue a 40:

35 + 5 = 40

Luego, esas 5 unidades se las restamos al sumando 8:

8 − 5 = 3

Finalmente sumamos los dos resultados:

40 + 3 = 43

 

– Otro ejemplo:

22 − 12 = ?

El número 22 está entre la decenas 20 y 30, entonces restamos los 2 que es lo que faltan para llegar a 20:

22 − 2 = 20

Luego, restamos esas 2 unidades al sustraendo:

12 − 2 = 10

Al final hacemos la resta con esos resultados:

20 − 10 = 10

Aplicar la propiedad asociativa

Esta es una estrategia que permite resolver adiciones. La propiedad asociativa establece que al sumar tres o más sumandos, no importa el orden en que se realicen las operaciones, la suma es la misma. Por lo tanto, los sumandos pueden agruparse de forma que faciliten tus cálculos. Veamos un ejemplo:

320 + 300 + 80 = ?

En este caso, vamos a agrupar los siguientes términos:

320 + 300 + 80

(320 + 80) + 300

400 + 300 = 700

¿Sabías qué?
La palabra “cálculo” proviene del término latino calculus que significa “piedra”. Anteriormente se usaban las piedras para contar.

PROBLEMAS

Para resolver problemas aditivos es necesario comprender la situación y seleccionar los datos que permitan elegir una estrategia para encontrar la solución, y así dar una respuesta al problema. Veamos algunos:

1. En un maratón se deben correr 5.000 metros. Pablo avanzó 1.335 metros y se detuvo a tomar agua para refrescarse. Luego avanzó 1.280 metros más y volvió a tomar agua. ¿Cuántos metros de la maratón le faltan correr a Pablo?

  • Datos

Distancia que debe correr Pablo: 5.000 metros

Distancia 1 que recorrió Pablo: 1.335 metros

Distancia 2 que recorrió Pablo: 1.280 metros

  • Pregunta

¿Cuántos metros de la maratón le faltan correr a Pablo?

  • Reflexiona

Para conocer cuántos metros le faltan a Pablo por recorrer debemos restar a la distancia total, la suma de la distancia 1 y la distancia 2.

  • Resuelve

5.000 − (1.335 + 1.280)

5.000 − 2.615

2.385

  • Respuesta

A Pablo le faltan por correr 2.385 metros del maratón.


2. Daniela y su familia salieron de excursión a la montaña, durante su visita tomaron 243 fotografías de los paisajes y 125 fotografías de ellos mismos. Si en la excursión pasada tomaron 42 fotografías menos, ¿cuántas fotografías tomaron en la excursión anterior?

  • Datos

Fotografías de los paisajes: 243

Fotografías de ellos mismos: 125

Fotografías de la excursión anterior: 42

  • Pregunta

¿Cuántas fotografías tomaron en la excursión anterior?

  • Reflexiona

Para saber cuántas fotografías tomaron en la excursión pasada debemos sumar las fotografías de paisajes y de la familia que tomaron durante esta excursión y luego restar las 42 fotografías menos.

  • Resuelve

(243 + 125) − 42

368 − 42

326

  • Respuesta

La familia de Daniela tomó durante la excursión anterior 326 fotografías.


3. Un autobús se desplaza por la ciudad. En su primera parada recoge 12 pasajeros, en la segunda se suben 3 y se bajan 6, en la tercera se suben 9 y se bajan 8. Al llegar a la cuarta parada, ¿cuántos pasajeros lleva el bus?

  • Datos

Primera parada: suben 12 pasajeros

Segunda parada: suben 3 y se bajan 6 pasajeros

Tercera parada: suben 9 y se bajan 8 pasajeros

  • Pregunta

¿Cuántos pasajeros lleva el bus al llegar a la cuarta parada?

  • Reflexiona

Para resolver este tipo de problemas debemos asociar que cuando el bus recoge pasajeros, se realiza la operación sumar, y cuando se bajan pasajeros del bus, se realiza la operación restar. Así al traducir el problema al lenguaje matemático obtenemos: 12 + 3 − 6 + 9 − 8.

Una forma más fácil de resolverlo es contar primero el número de personas que se subieron al bus: (12 + 3 + 9) y después restarle el número de personas que se bajaron: (6 + 8). Obtenemos en ese caso la expresión: (12 + 3 + 9) − (6 + 8).

  • Resuelve

(12 + 3 + 9) − (6 + 8)

24 − 14

10

  • Respuesta

El bus al llegar a la cuarta parada lleva 10 pasajeros.


¿Por qué importan los cálculos combinados?

Resolver adiciones y sustracciones permite desarrollar la capacidad de solucionar situaciones en nuestra vida cotidiana y de esta forma crear, adaptar y resolver problemas matemáticos en un contexto familiar, escolar y social. Una de las situaciones en las que aplicamos esto es al momento de hacer una compra, pues si sumamos todos los precios de productos y luego lo restamos a la cantidad de dinero que tenemos, podremos saber cuánto dinero tendremos al final de una compra.

¡A practicar!

1. Resuelve los siguientes problemas:

a) Miguel tiene 25 años y Camila tiene 10 años más que él. Si Alejandro tiene 15 años menos que Camila, ¿cuántos años tiene Alejandro?

Solución

Datos

Edad de Miguel: 25 años

Edad de Camila : 10 años más que Miguel

Edad de Alejandro: 15 años menos que Camila

Pregunta

¿Cuántos años tiene Alejandro?

Reflexiona

Para resolver el problema debemos sumar los años de más que tiene Camila a la edad de Miguel y luego restar los 15 años que tiene de diferencia la edad de Alejandro con la de Camila.

Resuelve

(25 + 10) − 15

35 − 15

20

  • Respuesta

Alejandro tiene 20 años.

b) En una pequeña granja se recolectan aproximadamente 2.500 litros de leche de vaca, de ese total 1.800 litros se venden, 680 litros se emplean para elaborar postres y el resto, los granjeros lo dejan para su consumo. ¿Cuántos litros de leche de vaca dejan los granjeros para consumir?

Solución

Datos

Litros de leche recolectada: 2.500

Litros de leche que se venden: 1.800

Litros de leche que se emplean para postres: 680

Pregunta

¿Cuántos litros de leche de vaca dejan los granjeros para consumir?

Reflexiona

Para resolver el problema debemos restar a la cantidad de leche recolectada, la cantidad de litros vendidos más los empleados para los postres.

Resolvemos

2.500 − (1.800 + 680)

2.500 − 2.480

20

  • Respuesta

Los granjeros dejan 20 litros de leche de vaca para su consumo.

 

2. Resuelve las operaciones mentalmente con las estrategias mencionadas anteriormente:

  • 410 + 600 + 9
Solución
El resultado es 1.019.
  • 74 − 63
Solución
El resultado es 11.
  • 97 − 77
Solución
El resultado es 20.
  • 25 + 36
Solución
El resultado es 61.
  • 39 − 18
Solución
El resultado es 21.
  • 39 + 15
Solución
El resultado es 54.
  • 74 − 44
Solución
El resultado es 30.
  • 57 − 22
Solución
El resultado es 35.

RECURSOS PARA DOCENTES

Artículo “Operaciones combinadas”

El siguiente material proporciona información sobre cómo resolver problemas de operaciones combinadas y los pasos para resolver sumas y restas con y sin paréntesis.

VER

Artículo “Cálculos mentales”

El artículo profundiza en algunas otras estrategias usadas para resolver cálculos mentales, también muestra algunos elementos útiles al momento de resolver problemas de forma mental.

VER

CAPÍTULO 5 / TEMA 6

POLIEDROS

La palabra “poliedro” proviene del griego y significa “que tiene muchas caras o planos”. Con este nombre se designa a aquellos cuerpos geométricos que están formados por polígonos y encierran un volumen. Cada una de las caras de un poliedro es un polígono (un triángulo, un cuadrado, un rombo, etc.) y se caracterizan por tener un mínimo de cuatro caras.

Solemos pensar que un balón de fútbol es una esfera, sin embargo, esto no es así. Un balón de fútbol es un poliedro que al ser hinchado con aire adopta una forma cercana a la esfera. A este tipo de poliedro se lo conoce como icosaedro truncado y combina 20 hexágonos regulares y 12 pentágonos regulares. Tiene 32 caras, 90 aristas y 60 vértices.

ELEMENTOS DE LOS POLIEDROS

Los poliedros son cuerpos geométricos tridimensionales con caras planas y que encierran un volumen. Es decir que un poliedro es una porción acotada de espacio limitada por distintos polígonos, a diferencia de los polígonos, que son porciones del plano limitadas por segmentos.

Los poliedros están constituidos por los siguientes elementos:

Bases Caras Aristas Vértices
Son las caras sobre las cuales se apoya el poliedro. Son las superficies planas que delimitan el espacio interno del poliedro. Son las líneas que componen el cuerpo de un poliedro. Son los puntos de encuentro entre tres o más aristas del poliedro.

TIPOS DE POLIEDROS

Poliedros regulares

Los poliedros regulares son aquellos cuyas caras están compuestas por el mismo polígono regular. Estos son conocidos también como sólidos platónicos.

Nombre del poliedro Forma del poliedro Número de caras Polígonos que forman sus caras
Tetraedro 4 Triángulos equiláteros
Cubo 6 Cuadrados
Octaedro 8 Triángulos equiláteros
Dodecaedro 12 Pentágonos regulares
Icosaedro 20 Triángulos equiláteros

¿Sabías qué?
Se les llama sólidos platónicos porque Platón, filósofo griego del siglo IV a. C., en su diálogo el Timeo explicó la construcción del universo por asociación de cada uno de los poliedros regulares con los elementos fundamentales: agua, aire, tierra y fuego.
El nombre que recibe cada poliedro depende del número de caras que presente. Se utilizan para ello prefijos numerales de origen griego y la terminación –aedro (que significa “plano o cara”). Por ejemplo, el cubo también se llama hexaedro porque tiene 6 caras. No obstante, muchos poliedros tienen sus nombres propios, como el prisma o la pirámide.

Poliedros irregulares

Los poliedros irregulares pueden presentar diferentes formas. En estos poliedros, el número de caras no presenta límites como ocurre con los poliedros regulares. Los poliedros irregulares más comunes son los prismas, las pirámides y todas sus variedades

  • Prismas: son poliedros limitados por dos bases que son polígonos iguales y por caras laterales que son paralelogramos. Ellos se nombran de acuerdo al polígono de la base. Así puedes encontrar:
Prisma triangular Prisma cuadrangular Prisma pentagonal Prisma hexagonal
Triángulos como bases. Cuadrados como bases. Pentágonos como bases. Hexágonos como bases.

VER INFOGRAFÍA

  • Pirámides: son poliedros que tienen una sola base conformada por un polígono y por caras laterales de triángulos con un vértice común. Al igual que los prismas, se nombran por el polígono de la base.
Pirámide triangular Pirámide cuadrangular Pirámide pentagonal Pirámide hexagonal
Triángulo como base. Cuadrado como base. Pentágono como base. Hexágono como base.

¡Construyamos poliedros!

Los poliedros son cuerpos geométricos, esto quiere decir que son tridimensionales y puedes construirlos fácilmente con pocos materiales.

Para construir un cubo necesitarás:

  • Tijeras.
  • Regla.
  • Cartón o un papel duro.
  • Pegamento.

Copia esta plantilla en el papel. Luego recortalo y realizar pliegues en las líneas. Los cuadrados quedarán como caras del poliedro y las pequeñas solapas servirán para unir la figura. En esas solapas debes colocar pegamento, para unirlas con las caras correspondientes. Quedará formado un cubo, similar al de la imagen. Será útil, por ejemplo, para hacer tus propios dados.

Para construir un tetraedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un octaedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un dodecaedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un icosaedro sigue los mismos pasos. Esta es la plantilla:

Poliedros en la vida cotidiana

En la vida cotidiana puedes encontrar continuamente poliedros. A lo largo de la historia, dos ejemplos de ellos se han vuelto mundialmente reconocidos: el cubo de Rubik y las pirámides de Egipto. Estas últimas son poliedros piramidales triangulares, cuya base es un polígono cualquiera y sus caras son triángulos con un vértice común.

RECURSOS PARA DOCENTES

Artículo “Poliedro irregulares”

En este artículo encontrarás el desarrollo teórico para ahondar en las características propias de los poliedros irregulares.

VER 

 

CAPÍTULO 5 / TEMA 5

CUADRILÁTEROS

Seguramente habrás notado a tu alrededor múltiples objetos con cuatro lados: una mesa, una caja o un teléfono móvil. Todos ellos tienen forma de cuadriláteros. Este tipo de figura tiene diversas clasificaciones según la longitud de sus lados y amplitud de sus ángulos. Con este artículos podrás diferenciar cada tipo de cuadrilátero y sabrás cómo calcular su perímetro.

¿qué es un cuadrilátero?

El término “cuadrilátero” proviene del latín quattuor que significa “cuatro” y latus que significa “lado”. Así que los cuadriláteros son aquellos polígonos que tienen cuatro lados. Estos lados pueden dibujarse de diversas formas: todos del mismo tamaño, de distintas medidas o con diferentes inclinaciones; pero lo fundamental es que estén unidos de forma tal que constituyan el contorno de una figura.

Todo cuadrilátero se caracteriza por tener cuatro lados. Estas figuras están en gran parte de los objetos que vemos en la cotidianidad: la pantalla que miramos de la computadora o el teléfono, las páginas de los libros, las paredes de la escuela, las hojas de un cuaderno, los anuncios publicitarios o simplemente en las cajas de nuestra casa.

VER INFOGRAFÍA

Elementos de un cuadrilátero

Todos los cuadriláteros tienen:

• 4 lados.
• 4 ángulos interiores.
• 4 ángulos exteriores.
• 4 vértices.
• 2 diagonales.

En la imagen puedes observar:

  • 4 lados: ABBCCD y DA.
  • 4 ángulos interiores: αβγδ.
  • 4 ángulos exteriores: α’β’γ’δ’.
  • 4 vértices: A, B, C y D.
  • 2 diagonales: AC y BD.

Propiedad de los ángulos

  • La suma de los ángulos interiores de un cuadrilátero es 360°.
  • La suma de los ángulos exteriores de un cuadrilátero es igual a 360°.

En el ejemplo anterior:

  • α + β + γ + δ = 360°
  • α’ + β’ + γ’ + δ’ = 360°

Clasificación de los cuadriláteros

Los cuadriláteros se clasifican en paralelogramos, trapecios y trapezoides.

Paralelogramos

Son figuras con lados paralelos dos a dos cuyas diagonales se cortan entre sí en segmentos iguales. Se clasifican en:

Figura Característica
Cuadrado

  • 4 lados iguales.
  • 4 ángulos rectos (90°).

 

Rectángulo

  • Lados iguales dos a dos.
  • 4 ángulos rectos (90°).
Rombo

  • 4 lados iguales.
  • Ángulos iguales dos a dos.
Romboide

  • Lados iguales dos a dos.
  • Ángulos iguales dos a dos.

Eje de simetría de los paralelogramos

Todos los paralelogramos tienen un eje de simetría. El eje de simetría es el segmento que divide a la figura en dos partes iguales. El punto de intersección de las diagonales es el centro de simetría del paralelogramo.

VER INFOGRAFÍA

¿Sabías qué?
Para diferenciar un rombo de un cuadrado invertido debes prestar atención a los ángulos, solo el cuadrado tiene cuatro ángulos rectos.

Trapecio

Son figuras con 2 lados paralelos denominados bases. Se clasifican en:

Figura Característica
Trapecio rectángulo

  • 2 ángulos rectos (90°), uno agudo (menor a 90°) y uno obtuso (mayor a 90°).
  • Un lado es perpendicular a sus bases (paralelas).
Trapecio isósceles

  • Sus lados no paralelos son de igual longitud.
  • 2 ángulos internos agudos (menores a 90°) y 2 ángulos obtusos (mayores a 90°) iguales entre sí.
  • Sus ángulos opuestos son suplementarios.
Trapecio escaleno

  • Todos sus lados y ángulos son diferentes.

Trapezoide

Son figuras sin lados paralelos.

Figura Características
  • Lados opuestos no paralelos.
La clasificación de cuadriláteros es de gran ayuda en la vida de algunos profesionales. Ingenieros, arquitectos y diseñadores habitualmente necesitan estos conocimientos básicos para poder construir, medir o diseñar. Pero no solo ellos acuden a estos conocimientos; quienes trabajan en publicidad también precisan la geometría.

CÁLCULO DEL PERÍMETRO DE PARALELOGRAMOS

El perímetro es la suma de las longitudes de los lados de cualquier figura geométrica, con excepción del círculo; sin embargo, con el fin de agilizar su cálculo puedes aplicar las siguientes fórmulas:

Figura Fórmula de perímetro 
Cuadrado

P = 4 × l
Rectángulo

P = 2 × l + 2 × b
Romboide

P = 2 × l1 + 2 × l2
Rombo

P = 4 × l

 

– Ejemplo:

Calcula el perímetro de este rectángulo:

P = 2 × b + 2 × a

P = 2 × 10 cm + 2 × 6 cm

P = 20 cm + 12 cm

P = 32 cm

El perímetro del rectángulo es de 32 cm.

 

– Otro ejemplo:

Calcula el área de este rombo:

P = 4 × l

P = 4 × 5 cm

P = 20 cm

El perímetro del rombo es de 20 cm.

Figuras geométricas en la publicidad

Las figuras geométricas son entendidas como símbolo de sencillez y perfección. Incluso, cada una de ellas, tiene un significado propio. Esto quiere decir que las figuras transmiten un concepto y las geométricas nos hablan de perfección. Las empresas no eligen al azar su logotipo sino que se dedican a estudiar su público e invierten mucho dinero para su elaboración. Un gran número de compañías optan por figuras geométricas porque está comprobado que tienen impacto seguro, profundo y duradero.

 

 

¡A practicar!

 

1. Clasifica las siguientes figuras como: paralelogramos, trapecio o trapezoide.

Solución

A. Paralelogramo

B. Paralelogramo

C. Trapecio

D. Trapecio

E. Paralelogramo

F. Trapezoide

G. Trapecio

H. Paralelogramo

I. Trapezoide

 

2. Calcula el perímetro de las siguientes figuras:

Solución

P = 2 × 12 cm + 2 × 9 cm

P = 24 cm + 18 cm

P = 42 cm

Solución

P = 4 × 7 cm

P = 28 cm

Solución

P = 2 × 12 cm + 2 × 6 cm

P = 24 cm + 12 cm

P = 36 cm

 

RECURSOS PARA DOCENTES

Enciclopedia “Matemática tomo 6”

En el tomo 6 de la enciclopedia de matemática encontrarás información detallada, ejemplos y ejercicios sobre una diversidad de temas vinculados a la geometría para el nivel primario.

VER

Artículo “Elementos de los cuadriláteros”

En este artículo encontrarás una sistematización de los elementos de los cuadriláteros, sus características y su clasificación.

VER

CAPÍTULO 2 / TEMA 2

SUSTRACCIÓN

La sustracción es una de las cuatro operaciones básicas de las matemáticas que nos permite resolver infinidad de situaciones cotidianas. Cuando decimos “me queda”, “me falta” o “la diferencia” nos referimos a la sustracción. A continuación aprenderás cómo restar número naturales.

La sustracción o resta es una operación aritmética elemental que consiste en quitar una cantidad a otra para averiguar la diferencia entre las dos; se representa con el signo “–” (menos). La resta es la operación opuesta a la suma. Para realizar problemas de este tipo es necesario reconocer el valor posicional de cada cifra que luego va a permitir ordenarlas.

la susTRACCIÓN 

La sustracción es una operación matemática que consiste en quitar o restar una cantidad a otra con el propósito de obtener la diferencia de ambas. Por esta razón, la sustracción es considerada la operación inversa a la adición.

Los términos de la sustracción son: minuendo, sustraendo y resta o diferencia. Observa:

  • El minuendo es la cantidad a la que se le va a restar la cantidad indicada por el sustraendo.
  • El sustraendo es la cantidad que se resta
  • La resta o diferencia es el resultado de la operación.

La sustracción no cumple con la propiedad conmutativa, es decir, el orden de los factores sí afecta el resultado, por lo tanto, para restar dos cantidades, la cantidad mayor, es decir el minuendo debe escribirse siempre en primer lugar.

¿cómo resolver una sustracción?

Si un número tiene más de tres cifras conviene usar el algoritmo de la resta. Esto consiste en ordenar el minuendo y el sustraendo de tal manera que las unidades, las decenas, las centenas y las unidades de mil estén en las mismas columnas. Luego restamos cada posición desde la derecha. Los pasos son los siguientes:

1. Restamos la unidades: 8 − 2 = 6.

2. Restamos las decenas: 7 − 2 = 5

3. Restamos las centenas: 5 − 3 = 2

4. Restamos la unidades de mil: 9 − 5.

¿Sabías qué?
Si le restamos cero (0) al cualquier número, la diferencia será el mismo número. Por eso el cero (0) es el elemento neutro de la sustracción.

 

– Otro ejemplo:

1. Restamos las unidades: 8 − 1 = 7.

2. Restamos las decenas: 7 − 2 = 5

3. Restamos las centenas: 3 − 3 = 0

4. Restamos las unidades de mil: 5 − 4 = 1

Los ejemplos anteriores representan una sustracción “sin canje” ya que cada cifra del minuendo es menor o igual a las cifras del sustraendo, lo que hace que estas cantidades se resten en forma sencilla.

La resta, al igual que el resto de las operaciones básicas de las matemáticas, tienen relación con muchas de las actividades de la vida cotidiana, por ejemplo, administrar dinero, preparar una receta de cocina, calcular la distancia que tenemos que recorrer para llegar a algún lugar, etc. A través de estas podemos resolver problemas y tomar decisiones.

¡Es tu turno!

Resuelve las sustracciones:

  • 8.971 – 3.801
  • 9.999 – 7.554
  • 5.649 – 2.628
Solución

SUSTRACCIÓN CON CANJE

Las sustracciones con y sin canje se resuelven de la misma manera. Solo se diferencian en que, al resolver sustracciones con canje, si en una posición el dígito del minuendo es menor que el del sustraendo, se desagrupa la cifra de la izquierda y se hace el canje. Para restas de números con más tres cifras los pasos son los siguientes:

1. Restamos las unidades: 9 − 6 = 3.

2. Como no le podemos restar 9 a 7, tomamos prestado o canjeamos una centena de la izquierda. Ahora, la decena 7 se transforma en 17 y la centena 3 se convierte en 2. Restamos 17 − 9 = 8.

3. Restamos las centenas: 2 − 2 = 0.

4. Restamos las unidades de mil: 4 − 2 = 2.

¿Sabías qué?
En una sustracción puede haber canje en una o más cifras.

– Otro ejemplo:

1. Restamos las unidades. Como no podemos restarle 9 a 1, prestamos una decena de de la izquierda. Ahora, a 11 le restamos 9 y la decena 3 se convierte en 2. Entonces. 11 − 9 = 2.

2. Restamos las decenas: 2 − 1 = 1.

 

3. Restamos las centenas: 7 − 3 = 4.

 

4. Restamos las unidades de mil: 9 − 6 = 3.

Ten presente que cuando el cero (0) está en el minuendo debes realizar las transformaciones respectivas. El mismo indica ausencia de valores en un orden específico.

¡Es tu turno!

Resuelve las siguientes sustracciones:

  • 4.353 – 1.845
  • 6.957 – 3.529
  • 9.843 – 7.626

Solución

En la sustracción no se cumple la propiedad conmutativa, lo que significa que el cambio del orden de los términos da como resultado diferente cantidad y cambia el signo de la respuesta. Esta operación tampoco cumple con la propiedad asociativa, lo que significa que cuando se restan más de dos números, importa el orden en el que se realiza la resta.

¡COMPRUEBA SUSTRACCIONES!

Cuando resuelvas sustracciones, es muy importante que verifiques su solución, de esta manera evitarás resultados incorrectos.

La sustracción se puede comprobar con su operación matemática inversa: la suma. Para comprobarla basta con sumar la diferencia con el sustraendo, si el resultado es igual al minuendo; entonces la operación está correcta. Ejemplo:

También podemos expresarlo como:

Sustraendo + Diferencia = Minuendo 

¡A practicar!

Resuelve las siguientes restas:

  • 2.652 − 1.398
Solución
2.652 − 1.398 = 1.254
  • 1.563 − 581
Solución
1.563 − 581 = 982
  • 3.862 − 1.475
Solución
3.862 − 1.475 = 2.387
  • 7.539 − 2.864
Solución
7.539 − 2.864 = 4.675
  • 2.841 − 1.563
Solución
2.841 − 1.563 = 1.278
  • 1.349 − 580
Solución
1.349 − 580 = 769

RECURSOS PARA DOCENTES

Artículo “Suma y resta utilizando el algoritmo de descomposición”

El siguiente artículo te permitirá trabajar con sus alumnos las operaciones de adición y sustracción por medio del algoritmo de descomposición.

VER

Artículo “Operaciones Matemáticas”

En este artículo se explican las operaciones básicas o elementales en matemática. También se hace un enfoque en sus diferentes propiedades y sus elementos.

VER

Video “Aprender a restar por descomposición”

Con este material audiovisual podrás explicar con mayor profundidad cómo realizar restas o sustracciones por medio de la descomposición de los números.

VER

CAPÍTULO 6 / TEMA 2

combinaciones

Las combinaciones forman parte de nuestra vida: combinamos el café con la leche en el desayuno, las frutas para una ensalada, o la ropa cuando nos vestimos. En ninguno de estos casos el orden de los elementos importa, por lo que pueden agruparse de distintas maneras, dos de ellas son las tablas de doble entrada y los diagramas de árbol.

¿Qué son las combinaciones?

Las combinaciones son una forma de agrupar elementos de un conjunto sin importar el orden. Por ejemplo, una ensalada es una combinación de verduras como cebolla, lechuga y tomate. No importa el orden en el que coloques las verduras, la ensalada será la misma.

Lo mismo sucede si vamos a una heladería. Si hay vasos y conos; y además, solo tienen tres sabores para escoger: fresa, chocolate y vainilla, podemos hacer varias combinaciones, como un cono con helado de fresa o una vaso con helado de vainilla.

Podemos representar estos arreglos por medio de tablas de doble entrada o diagramas de árbol.

¿Sabías qué?
El cubo de Rubik tiene más de 40 trillones de combinaciones.

Tablas de doble entrada

Las tablas de doble entrada son una forma gráfica de analizar los datos y combinarlos de todas las maneras posibles. Estas tablas ordenan los elementos para poder ilustrar todas las combinaciones.

– Ejemplo:

Esta tabla muestra las posibles combinaciones entre los conos, los vasos y los tres sabores de helados de la heladería.

En total hay 6 posibles combinaciones porque:

2 recipientes × 3 sabores = 6 combinaciones posibles

 

– Otro ejemplo:

Un grupo de niños quieren comprar artículos de playa: cubo, pala y rastrillo; y a estos elementos los venden de tres diferentes colores. Para saber cuántos artículos de colores distintos pueden comprar, deben comparar los artículos y los colores.

Hay 9 combinaciones posibles porque:

3 colores × 3 artículos = 9 combinaciones posibles

El sistema Braille

El sistema Braille les permite a las personas no videntes poder leer artículos, libros y cuentos, entre otros textos. Este sistema está compuesto por la combinación de seis puntos en relieve que permiten obtener 64 combinaciones diferentes, incluida la que no tiene ningún punto en relieve que se utiliza para separar palabras y números.

diagrama de árbol

Los diagramas de árbol son formas gráficas de contar las posibles combinaciones que pueden surgir entre varios elementos. En ellos podemos usar dibujos, letras o palabras.

– Ejemplo:

Este diagrama de árbol muestra las posibles combinaciones entre los conos, los vasos y los tres sabores de helados posibles en la heladería.

           

Hay 6 combinaciones posibles porque:

2 recipientes × 3 sabores = 6 combinaciones posibles

 

 

– Otro ejemplo:

Tomás tiene 2 pantalones, 2 camisas y 2 corbatas para vestirse, ¿cuales son las posibles opciones?

                       

Tomás tiene 8 combinaciones posibles porque:

2 pantalones × 2 camisas × 2 corbatas = 8 combinaciones posibles

 

Cuadro de Punnett

Las combinaciones de genes otorgan a un organismo rasgos particulares. Estas se representan en el cuadro de Punnett, el cual determina todos los posibles arreglos de genes que se pueden producir en el cruce entre dos organismos. Los rasgos distintos que tenemos se deben a la unión entre dos copias de un gen, que provienen de nuestros progenitores.

¡A practicar!

1. En la siguiente tabla se encuentran los útiles que compró María para el comienzo de clases. ¿Cuántas combinaciones de útiles y colores compró?

Solución
Puede armar 12 combinaciones.

2. Todas las mañanas, la mamá de Camila le prepara el desayuno y ella puede elegir algunas opciones: puede combinar una bebida con algo dulce para acompañar. Observa las opciones de Camila y elabora diagramas de árbol para saber cuántas combinaciones tiene para armar su desayuno:

Solución
Camila tiene 9 combinaciones para desayunar.

RECURSOS PARA DOCENTES

Artículo “Formas de agrupar”

Este recurso te permitirá profundizar la información sobre el diagrama de árbol.

VER

Artículo “Combinatoria”

El siguiente recurso complementará la información sobre combinaciones y otros temas relacionados.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES │ ¿qué aprendimos?

OPERACIONES CON DECIMALES

Con los números decimales podemos realizar las mismas operaciones aritméticas que con los números enteros. Para la suma y la resta, las cifras deben tener la misma cantidad de decimales y las comas deben estar alineadas en una línea vertical. En la multiplicación, el resultado tendrá el total de decimales que tengan los factores. Existen tres posibles casos para dividir con decimales: decimal entre entero, entero entre decimal y decimal entre decimal.

Los decimales son parte de nuestra vida cotidiana, por ejemplo, los precios de los artículos vienen por lo general expresados en cifras decimales.

OPERACIONES COMBINADAS

Con frecuencia, en matemática debemos realizar cálculos que combinan diferentes operaciones algebraicas, así como varios tipos de números, y en ocasiones se requiere el uso de signos de agrupación que determinan las prioridades de dichas operaciones. Debemos resolver primero las operaciones dentro del paréntesis, luego las del corchete y, por último, las de las llaves. Es importante recordar que las multiplicaciones y las divisiones se resuelven primero que las sumas y las restas.

Los signos de agrupación sirven para expresar el orden de las operaciones. Para aplicar propiedades como la asociativa y la distributiva podemos usar paréntesis.

ECUACIONES

Las ecuaciones son expresiones algebraicas compuestas por miembros separados por una igualdad. Los miembros contienen términos y al menos una variable, también llamada incógnita. Por lo general, para obtener el valor de las incógnitas debemos realizar despejes: proceso que consiste en aplicar en ambos miembros de la ecuación la operación opuesta del término o coeficiente que se desea despejar.

Las ecuaciones son expresiones que deben contener una igualdad y al menos una variable o incógnita.

INECUACIONES

Son expresiones que muestran relaciones de desigualdad por medio de símbolos como <, >, o . Deben contener por lo menos una variable, y la solución la representamos a través de un intervalo de valores que satisfacen la desigualdad. Los despejes en las inecuaciones siguen las mismas reglas que en las ecuaciones pero, además, si se multiplica o divide por un número negativo, debemos cambiar el sentido de la desigualdad.

Las inecuaciones se pueden utilizar para plantear situaciones cuya variable está limitada por algún rango de valores, por ejemplo, la rapidez de un vehículo.