El punto, la recta y el plano se denominan entes fundamentales de la geometría porque no tienen definición y su comprensión depende de comparaciones con elementos similares. El punto es adimensional y se nombra con letras mayúsculas del alfabeto. La recta está formada por infinitos puntos que se extienden en una misma dirección. Las rectas pueden ser paralelas, secantes o perpendiculares. El plano es un ente bidimensional, es decir, posee dos dimensiones y se suele nombrar con letras del alfabeto griego.
Ángulos
La región del plano comprendida entre dos semirrectas se denomina ángulo. De acuerdo a su medida pueden ser nulos (cuando miden 0°), agudos (cuando no son nulos y miden menos de 90°), rectos (cuando miden 90°), obtusos (cuando son menores a 180° y mayores a 90°) y llanos (cuando miden 180°). Se habla de dos ángulos complementarios cuando la suma de estos es igual a 90°, por otra parte, dos ángulos son suplementarios si la suma de ambos es igual a 180°. La sumatoria de los ángulos internos de un triángulo da 180°, mientras que en un cuadrilátero da 360°.
Polígonos
Los polígonos son figuras caracterizadas por estar delimitadas por segmentos finitos rectos denominados lados. Si todos sus lados tienen la misma longitud se denominan polígonos regulares, de lo contrario, se denominan polígonos irregulares. En el caso de los polígonos regulares se cumple que sus ángulos internos son iguales, lo mismo sucede con sus ángulos externos. Los polígonos regulares también se caracterizan por tener igual cantidad de ejes de simetrías que de lados y sus diagonales son todas internas y de la misma longitud.
Cuerpos geométricos
Los cuerpos geométricos pueden clasificarse en poliedros cuando todas sus caras son iguales y planas, y en cuerpos redondos cuando poseen al menos una cara curva. Sus elementos principales son las caras, las aristas y los vértices. Cada uno de los cuerpos geométricos posee su fórmula para determinar su volumen. De igual forma, cada uno de los cuerpos geométricos pueden representarse en construcciones de tres dimensiones.
Circunferencia y círculo
La circunferencia es una línea cerrada que sobresale por ser el perímetro del círculo. Por otra parte, el círculo es una figura geométrica que se encuentra delimitada por una circunferencia. Los elementos principales de una circunferencia son: centro, radio, cuerda, diámetro, semicircunferencia y arco. Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación: recta exterior (cuando no toca ningún punto de la circunferencia), recta tangente (cuando toca un solo punto de la circunferencia) y recta secante (cuando atraviesa la circunferencia en dos puntos). El área de un círculo es igual al producto de el número pi por el radio de la circunferencia al cuadrado.
Aplicación de la geometría
Incontables son las disciplinas y las situaciones en las que se emplea la geometría. Desde que apareció esta rama de la matemática ha permitido resolver infinidad de problemas. El cálculo de áreas de superficies planas puede extenderse a situaciones cotidianas como el cálculo de la extensión de un terreno, esto se debe a que cada figura posee su fórmula particular. Lo mismo sucede con el cálculo de volumen y los cuerpos geométricos.
Las fracciones son números y, como tales, su pueden sumar, restar, dividir y multiplicar. Muchas situaciones en la vida cotidiana se resuelven mediante la suma o resta de fracciones, como por ejemplo, calcular las porciones de torta que quedan luego de repartir una parte.
ADICIÓN Y SUSTRACCIÓN DE FRACCIONES
El procedimiento para sumar o restar fracciones es distinto entre fracciones homogéneas y heterogéneas. Por ello es muy importante saber reconocerlas.
Fracciones homogéneas
Las fracciones homogéneas son las que tienen el mismo denominador. En este caso, la operación de suma o resta consiste simplemente en sumar o restar los numeradores y conservar el mismo denominador.
-En el caso de la suma se cumple que:
Por ejemplo:
a)
En este caso se trata de una suma de dos fracciones homogéneas porque tienen igual denominador, que es 5. Para resolver la suma se coloca el mismo denominador y se suman los numeradores.
El denominador en ambos casos es 5. Entonces sumamos los numeradores (1 + 2 = 3) y conservamos el denominador 5.
-En el caso de la resta se cumple que:
Por ejemplo:
b)
En este caso se trata de una sustracción o resta de dos fracciones homogéneas con denominar igual a 3. Para resolver el problema se coloca el mismo denominador y se restan los exponentes.
Fracciones heterogéneas
Las fracciones heterogéneas son las que entre sí tienen distinto denominador. Para el caso de la suma de fracciones heterogéneas se aplica la siguiente fórmula.
La expresión anterior lo que quiere decir es que para sumar dos fracciones heterogéneas, el numerador de la fracción resultante es igual a la suma del producto del numerador de la primera fracción por el denominador de la segunda y el producto del denominador de la primera fracción por el numerador de la segunda. El denominador de la fracción resultante es igual al producto de los denominadores de las fracciones originales.
En el caso de la resta de las fracciones se aplica casi la misma fórmula pero al momento de calcular el numerador resultante se deben restar los productos del numerador de la primera fracción por el denominador de la segunda y el producto del denominador de la primera fracción por el numerador de la segunda.
Veamos algunos ejemplos con números:
Otro método
El método explicado anteriormente es el más utilizado, aunque también se pueden sumar y restar fracciones heterogéneas a través de fracciones equivalentes. Para ello, se calcula el mínimo común múltiplo entre los dos denominadores, y se amplifican ambas fracciones de manera de que ambas tengan como denominador al mínimo común múltiplo. Una vez que tienen el mismo denominador, sumamos o restamos los numeradores y conservamos el denominador.
MULTIPLICACIÓN Y DIVISIÓN DE FRACCIONES
Otras operaciones que se pueden realizar con fracciones son la multiplicación y la división. Ambas llevan procedimientos diferentes.
Multiplicación
La multiplicación de fracciones es una de las operaciones más sencillas. Para resolverla solamente se debe multiplicar de forma lineal. Es decir, numerador por numerador y denominador por denominador. De la siguiente forma:
Observa el siguiente ejemplo:
Para resolver esta multiplicación primero tenemos que multiplicar el numerador de la primera fracción por el numerador de la segunda: el resultado será el numerador de la fracción resultante. Luego multiplicamos el denominador de la primera fracción por el denominador de la segunda fracción y el número que se obtiene será el denominador de la fracción resultante.
División
Para dividir fracciones, el método que más se utiliza es multiplicar en forma de cruz. Es decir, primero se multiplica el numerador de la primera fracción por el denominador de la segunda y el producto de estos números sera el denominador de la fracción resultante. Luego se multiplica el numerador de la segunda fracción por el denominador de la primera y el producto de estos números será igual al denominador de la fracción resultante.
Observa el siguiente ejemplo:
a)
En este caso procedemos a realizar la multiplicación en cruz del primer numerador, que es 7, por el denominador de la segunda fracción, que es 5:
Luego multiplicamos el numerador de la segunda fracción por el denominador de la primera fracción:
Finalmente, se resuelven los productos:
PROBLEMAS DE APLICACIÓN
Existen problemas cotidianos que pueden resolverse a través de operaciones con fracciones. Los siguientes ejemplos indican cómo usar las fracciones en estos casos.
1. Juan comió 3/8 de pizza y Luis comió 4/8 de la misma pizza. ¿Cuánto comieron los dos en total?
Análisis: Debemos sumar ambas fracciones. Como los denominadores son los mismos, son fracciones homogéneas. Entonces, sumamos los numeradores y conservamos el denominador.
Cálculos:
Respuesta: Entre Juan y Luis comieron 7/8 de la pizza.
2. Un científico tiene 6/5 partes de una sustancia, si pierde 2/3 de esa sustancia, ¿cuánta sustancia le queda?
Análisis: Para saber cuánta sustancia le queda al científico hay que restar ambas fracciones. Como los denominadores son diferentes, son fracciones heterogéneas. Entonces, seguimos el procedimiento explicado anteriormente:
Cálculos:
Respuesta: Al científico le quedan 8/15 de sustancia.
3. Una modista tiene una tela que mide 5/7 de metro, si la dividió en trozos de 1/8 de metros, ¿cuántos trozos obtuvo?
Análisis: Para saber el número de trozos que obtuvo la modista se deben dividir ambas fracciones.
Cálculos:
Respuesta: El número de trozos que obtuvo la modista fue de 40/7.
¡A practicar!
Realiza los siguientes cálculos.
a)
b)
c)
d)
e)
RESPUESTAS
a)
b)
c)
d)
e)
RECURSOS PARA DOCENTES
Artículo “Adición y sustracción de fracciones”
Este artículo profundiza la información sobre el proceso de resolución de sumas y restas de fracciones a través de fracciones equivalentes.
Artículo “Multiplicación y división de fracciones”
Este artículo, además de mostrar cómo resolver multiplicaciones y divisiones con fracciones, muestra cuáles son los criterios de divisibilidad usados para simplificarlas.
El siguiente micrositio ofrece una serie de tarjetas educativas que muestran un resumen de las formulas generales para la sustracción, la adición, la multiplicación y la división de fracciones.
Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.
NÚMEROS PRIMOS Y COMPUESTOS
De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.
VALOR POSICIONAL
Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.
NÚMEROS DECIMALES
Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.
POTENCIAS
La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.
RAÍZ DE UN NÚMERO
La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.
Estrechamente relacionada con la potenciación, existe otra operación matemática denominada “radicación”. Ambas operaciones matemáticas son inversas. La raíz cuadrada y la raíz cúbica son unas de las formas de radicación más conocidas. Este tipo de operaciones se emplea en varios ámbitos, especialmente en la geometría y en otras ciencias.
¿Qué es una raíz?
La raíz es el número que se obtiene como resultado de la operación matemática denominada “radicación”. La potenciación calcula el número o potencia que resulta de multiplicar la base por si misma las veces que indica el exponente. La radicación por su parte, calcula la base a partir del exponente y de la potencia. Por eso se dice que son operaciones inversas.
Elementos de las raíces
Para saber cómo encontrar la raíz de un número, primero debemos conocer todos los elementos de la radicación:
Radical: es el símbolo que se emplea en la radicación y se denota como (√).
Radicando: es el número al que se le va a hallar la raíz. Se ubica en la parte inferior del radical, por lo cual es denominado también cantidad subradical.
Índice: es el número que indica las veces que hay que multiplicar un número por sí mismo para obtener el radicando. Se ubica en la abertura izquierda del radical.
Raíz: es el número que al multiplicarse por si mismo las veces que indica el índice es igual al radicando.
¿Sabías qué?
Cuando el índice de una raíz es 2, se denomina raíz cuadrada. En este caso basta con escribir el símbolo de radical sin el índice.
Lectura de raíces
Para leer expresiones de este tipo se debe tener en cuenta que todo depende del número índice de la raíz.
Cuando el número índice es mayor a tres, se utilizan números ordinales para leer el valor de la raíz seguido del radicando. Por ejemplo:
= raíz sexta de sesenta y cuatro.
= raíz cuarta de seiscientos veintiocho.
Si el índice es 2 se lee “raíz cuadrada” y luego se menciona el número del radicando:
= raíz cuadrada de cinco.
Cuando el índice es 3 se lee “raíz cúbica” y luego se menciona el número del radicando:
= raíz cúbica de veintisiete.
¿Cómo se encuentra la raíz?
La raíz de un número se debe calcular al buscar un número que multiplicado por sí mismo la cantidad de veces que exprese el índice dé como resultado el radicando.
Por ejemplo: si el índice es 3 y el radicando es 8, se debe buscar un número que multiplicado 3 veces por si mismo dé como resultado 8. En este caso, sería 2 porque 2 × 2 × 2 = 8. Por lo tanto, la raíz cúbica de 8 es igual a 2.
En el siguiente ejemplo, la raíz cúbica de 64, se obtuvo al buscar un número que multiplicado tres veces por sí mismo dé como resultado 64. En este caso, el resultado es 4 porque 4 × 4 × 4 = 64.
Relación entre potenciación y radicación
Existe una estrecha relación entre la potenciación y la radicación, esto se debe a que ambas operaciones son inversas entre sí.
Si consideramos el ejemplo anterior se podría afirmar que como cuatro elevado al cubo es igual a sesenta y cuatro, a su vez, la raíz cúbica de sesenta y cuatro es cuatro. En el siguiente diagrama podemos observar de forma más clara a esta relación:
¿Sabías qué?
No todos los números tienen una raíz exacta. Por ejemplo,
Cálculo de raíces
Como vimos anteriormente, para encontrar una raíz debemos hacer multiplicaciones de un número por sí mismo según indique el índice. Sin embargo, en la radicación podemos encontrar uno o más cálculos dentro del radicando. Cuando esto sucede, debemos seguir los siguientes pasos.
Resolver las operaciones que están dentro del radicando.
Resolver la raíz
En los siguientes ejemplos veremos el cálculo cuando dentro del radicando existen sumas y restas:
→
→
Cuando se encuentren otras operaciones además de la suma o resta, se resuelven aquellas primero y luego se resuelven las sumas y restas:
→ →
→ →
¡A practicar!
1. ¿Cómo se leen las siguientes raíces?
a)
b)
c)
d)
e)
f)
g)
RESPUESTAS
a) = raíz cúbica de mil.
b) = raíz cuadrada de cuarenta y nueve.
c) = raíz cúbica de ciento veinticinco.
d) = raíz cuadrada de ciento cuarenta y cuatro.
e) = raíz cuarta de doscientos cincuenta y seis.
f) = raíz cúbica de trescientos cuarenta y tres.
g) = raíz cuadrada de ciento veintiuno.
2. Calcula las siguientes raíces.
a)
b)
c)
RESPUESTAS
a) = 3 → porque 3 x 3 x 3 (o 33) es 27.
b) = 6 → porque 6 x 6 (o 62) es 36.
c) = 4 → porque 4 x 4 (o 42) es 16.
d) = 9 → porque 9 x 9 (o 92) es 81.
e) = 2→ porque 2 x 2 x 2 (o 23) es 8.
f) = 4 → porque 4 x 4 x 4 (o 43) es 64.
g) = 3 → porque 3 x 3 (o 32) es 9.
Resuelve los cálculos y luego encuentra las raíces:
a)
b)
c)
RESPUESTAS
a)
b)
c)
RECURSOS PARA DOCENTES
Artículo destacado “La radicación”
El siguiente artículo explica qué es la radicación, cuáles son sus principales elementos y cómo resolver problemas de este tipo.
El siguiente artículo te ayudará a conocer en mayor profundidad cuáles son las propiedades de la radicación. Además, contiene algunos ejemplos en donde son aplicadas.
LAS LÍNEAS SON UNA SUCESIÓN DE PUNTOS. SEGÚN SU FORMA, PUEDEN SER RECTAS SI TIENEN LA MISMA DIRECCIÓN; CURVAS SI CAMBIAN CONSTANTEMENTE DE DIRECCIÓN; MIXTAS SI ESTÁN FORMADAS POR LA COMBINACIÓN DE RECTAS Y CURVAS; O QUEBRADAS SI ESTÁN FORMADAS POR RECTAS QUE SE CORTAN ENTRE SÍ. ASIMISMO, LAS LÍNEAS PUEDEN SER ABIERTAS O CERRADAS. LAS LÍNEAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL, MIENTRAS QUE LAS LÍNEAS CERRADAS NO TIENEN PUNTO DE INICIO NI PUNTO FINAL. POR OTRO LADO, TAMBIÉN LAS PODEMOS CLASIFICAR COMO HORIZONTALES, VERTICALES U OBLICUAS SEGÚN SU POSICIÓN.
FORMAS
CASI TODOS LOS OBJETOS QUE NOS RODEAN TIENE UNA FORMA SIMILAR A LA DE UNA FIGURA GEOMÉTRICA, PUEDEN SER CUADRADOS, CIRCULARES, TRIANGULARES O RECTANGULARES. PERO NO TODOS LOS OBJETOS SON PLANOS, TAMBIÉN PUEDEN SER UN CUBO, UNA ESFERA O UN CILINDRO. LA PARTE EXTERIOR DE ESTOS SE LLAMA SUPERFICIE Y PUEDE SER PLANA, COMO LA DE UNA MESA, O CURVA COMO LA DE UN GLOBO.
FIGURAS PLANAS
TODAS LAS FIGURAS PLANAS ESTÁN DELIMITADAS POR LÍNEAS RECTAS O CURVAS, Y ADEMÁS, SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. LAS FIGURAS PLANAS MÁS CONOCIDAS SON EL CUADRADO, EL TRIÁNGULO, EL RECTÁNGULO Y EL CÍRCULO. LAS PRIMERAS TRES SE CARACTERIZAN POR TENER LADOS Y VÉRTICES, MIENTRAS QUE LA ÚLTIMA, EL CÍRCULO, SE CARACTERIZA POR TENER UN CENTRO, UN DIÁMETRO Y UN RADIO.
FIGURAS TRIDIMENSIONALES
LAS FIGURAS TRIDIMENSIONALES TIENEN TRES DIMENSIONES: ALTO, ANCHO Y LARGO. LAS MÁS CONOCIDAS SON EL CONO, LA ESFERA, EL CUBO, EL PRISMA RECTANGULAR, LA PIRÁMIDE Y EL CILINDRO. ESTAS FIGURAS CUENTAN CON CARAS, ARISTAS Y VÉRTICES. A SU VEZ, SE CLASIFICAN EN POLIEDROS Y CUERPOS REDONDOS. LOS POLIEDROS SOLO TIENEN SUPERFICIES PLANAS Y NO PUEDEN RODAR; MIENTRAS QUE LOS CUERPOS REDONDOS TIENEN AL MENOS UNA SUPERFICIE CURVA Y SÍ PUEDEN RODAR.
CONSTRUCCIÓN DE FIGURAS GEOMÉTRICAS
LAS FIGURAS GEOMÉTRICAS ESTÁN PRESENTES EN NUESTRO DÍA A DÍA, ESTÁN EN LOS OBJETOS Y CREACIONES QUE NOS RODEAN. PARA PODER CONSTRUIRLAS ES NECESARIO QUE EMPLEEMOS LOS INSTRUMENTOS ADECUADOS, COMO LA REGLAGRADUADA, EL COMPÁS, LA ESCUADRA, EL CARTABÓN Y EL TRANSPORTADOR. SI DESEAMOS CONSTRUIR FIGURAS TRIDIMENSIONALES PODEMOS USAR PLANTILLAS.
¿QUÉ FORMA TIENE UNA HOJA DE TU CUADERNO? ¿Y UNA LATA DE GASEOSA? LA PRIMERA ES UN RECTÁNGULO Y LA SEGUNDA ES UN CILINDRO. AMBAS SON FIGURAS GEOMÉTRICAS Y PUEDES DIBUJARLAS O CONSTRUIRLAS SI UTILIZAS LOS INSTRUMENTOS ADECUADOS. ES MUY SENCILLO, LEE ESTE ARTÍCULO Y APRENDERÁS CÓMO HACERLO.
¿QUÉ SON LAS FIGURAS GEOMÉTRICAS?
LAS FIGURAS GEOMÉTRICAS SON TODAS AQUELLAS QUE ESTÁN DEFINIDAS POR LÍNEAS RECTAS O CURVAS. PUEDEN TENER DOS O TRES DIMENSIONES Y ADEMÁS CONFORMAN LA SUPERFICIE DE LA MAYORÍA DE LOS OBJETOS QUE NOS RODEAN, POR EJEMPLO, LA PANTALLA DE UN TELÉFONO TIENE FORMA DE RECTÁNGULO Y UNA PELOTA TIENE FORMA DE ESFERA.
LAS FIGURAS GEOMÉTRICAS PLANAS O CON DOS DIMENSIONES SON:
CUADRADO
TRIÁNGULO
CÍRCULO
RECTÁNGULO
LAS FIGURAS GEOMÉTRICAS TRIDIMENSIONALES O CON TRES DIMENSIONES SON:
CUBO
PRISMA RECTANGULAR
PIRÁMIDE
CONO
CILINDRO
ESFERA
¿QUÉ ES UNA LÍNEA?
UNA LÍNEA ES LA UNIÓN DE MUCHOS PUNTOS CONTINUOS EN EL PLANO. PUEDEN SER ABIERTAS, CERRADAS, RECTAS O CURVAS.
LA LÍNEA DE COLOR AZUL ES RECTA Y ABIERTA.
LA LÍNEA DE COLOR AMARILLO ES CURVA Y ABIERTA.
LA LÍNEA DE COLOR VERDE ES RECTA Y CERRADA.
LA LÍNEA DE COLOR ROJO ES CURVA Y CERRADA.
¿SABÍAS QUÉ?
A LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SE LAS CONOCE COMO SÓLIDOS GEOMÉTRICOS.
INSTRUMENTOS PARA CONSTRUIR FIGURAS GEOMÉTRICAS
REGLA
ES UN INSTRUMENTO PLANO Y LARGO QUE SIRVE PARA TRAZAR LÍNEAS RECTAS Y PARA MEDIR LONGITUDES. POR LO GENERAL VIENE CON MARCAS QUE REPRESENTAN LOS CENTÍMETROS. CON UNA REGLA PUEDES TRAZAR LAS RECTAS DE UN CUADRADO O UN RECTÁNGULO.
ESCUADRA Y CARTABÓN
LA ESCUADRA ES UNA PLANTILLA CON FORMA DE TRIÁNGULO RECTÁNGULO ISÓSCELES. SE USA PARA TRAZAR LÍNEAS PARALELAS O PERPENDICULARES JUNTO CON EL CARTABÓN O LA REGLA GRADUADA. EN LA IMAGEN, LA ESCUADRA ES LA DE COLOR ROJO Y EL CARTABÓN ES EL DE COLOR AZUL.
TRANSPORTADOR
ES UN INSTRUMENTO CIRCULAR O SEMICIRCULAR QUE SIRVE PARA MEDIR ÁNGULOS. ES DE MUCHA AYUDA CUANDO DIBUJAMOS TRIÁNGULOS SEGÚN SUS ÁNGULOS.
COMPÁS
ES UN INSTRUMENTO DE GRAN UTILIDAD PARA DIBUJAR CIRCUNFERENCIAS. TIENE DOS PARTES QUE SE UNEN POR UNA BISAGRA AJUSTABLE. UNA PUNTA TIENE UN EXTREMO DE METAL Y LA OTRA TIENE UN LÁPIZ CON EL CUAL SE HACE EL DIBUJO.
CONSTRUCCIÓN DE FIGURAS EN LO COTIDIANO
LA CONSTRUCCIÓN DE FIGURAS GEOMÉTRICAS ES FUNDAMENTAL PARA LOS ARQUITECTOS E INGENIEROS, QUIENES ELABORAN PLANOS QUE MUESTRAN LOS DETALLES DE UNA OBRA EN UN PAPEL. ASIMISMO, GRANDES ARTISTAS DE LA HISTORIA HAN PRODUCIDO INCREÍBLES CREACIONES EN LAS QUE TOMAN LAS FIGURAS GEOMÉTRICAS COMO BASE.
¡CONSTRUYE TUS PROPIAS FIGURAS!
CON ESTAS PLANTILLAS PUEDES CREAR FIGURAS TRIDIMENSIONALES. SOLO TIENES QUE COPIAR LA PLANTILLA, CORTAR Y PEGAR SUS LADOS. ¡INTÉNTALO!
CILINDRO
CONO
CUBO
PIRÁMIDE
PRISMA RECTANGULAR
¡A PRACTICAR!
1. ¿CÓMO SE LLAMAN ESTOS INSTRUMENTOS?
SOLUCIÓN
TRANSPORTADOR.
SOLUCIÓN
REGLA.
SOLUCIÓN
ESCUADRA.
SOLUCIÓN
COMPÁS.
SOLUCIÓN
CARTABÓN.
2. UNE LOS PUNTOS DEL MISMO COLOR EN ESTA CUADRÍCULA. UTILIZA TU REGLA O COMPÁS PARA CREAR LAS FIGURAS.
La potencia es una expresión matemática en la que un número denominado base está elevado a un exponente, el cual indica las veces que la base debe multiplicarse por si misma. Este tipo de operación tiene múltiples aplicaciones en los cálculos combinados y en una forma especial de escribir números: la notación científica.
¿Qué es una potencia?
La potenciación es una operación matemática compuesta por dos partes principales: la base y el exponente.
Como podemos observar, el exponente se escribe en la parte superior derecha de la base y su tamaño es mucho menor.
El exponente de una potencia indica cuántas veces se debe multiplicar a la base por si misma. La potencia es el producto de esa multiplicación.
Por ejemplo:
Una potencia es una multiplicación sucesiva de la base por si misma. Por ejemplo si el exponente fuera 6 y la base 5, esta última se repetiría exactamente 6 veces dentro de la multiplicación, es decir:
56 = 5 × 5 × 5 ×5 × 5 × 5.
Resolver potencias
Al calcular una potencia debemos saber que el número correspondiente a la base se va a repetir sin alterarse en todas las multiplicaciones según indique el exponente. Por lo tanto, cuando el número del exponente sea grande, se deben resolver las multiplicaciones de forma separada. Esto quiere decir que se comienza a resolver el primer producto y luego el resultado se multiplica nuevamente por la base y así sucesivamente hasta obtener el resultado. Por ejemplo:
En este caso la base de esta potencia es 5 y se multiplica por si misma las veces que indica el exponente. Como el exponente es 3, se debe multiplicar el 5 tres veces por si mismo. Se recomienda resolver el primer producto 5 × 5 y luego volver a multiplicar por 5 al resultado.
Algunas propiedades de la potencia
Existen algunos casos en las potencias que cumplen con ciertas propiedades. Algunas de ellas son:
Exponente cero
Cuando el exponente es 0 (cero), la potencia siempre va a ser igual a 1 (uno). Esto sucede con cualquier número como base diferente de cero. Por ejemplo: 70 = 1.
Exponente igual a uno
Cuando el exponente es 1 (uno), la potencia siempre va a ser igual al número perteneciente a la base. Por ejemplo: 81 = 8.
Base igual a 10
Cuando la base de una potencia es 10 (diez), la potencia va a ser igual a la unidad seguida de tantos ceros como indique el exponente. Por ejemplo: 106 = 1.000.000.
¿Sabías qué?
Cuando el exponente de una potencia es igual a uno, a menudo se escribe solo el valor de la base y se omite al exponente.
Elementos de la potencia
Los elementos de la potencia son los siguientes:
Base: es el número que se multiplica por si mismo las veces que indique el exponente. Exponente: es el número que indica las veces en las se tiene que multiplicar la base por si misma. También se lo denomina índice. Potencia: es el resultado.
¿Cómo leer una potencia?
La manera correcta es leer primero el número de la base, luego se dice la expresión “elevado a la” y por último se lee el valor del exponente en números ordinales (cuarta, quinta, sexta, etc.). De manera resumida se debe seguir la siguiente estructura:
Base + “elevado a la” + exponente
La expresión 34 se lee como “treselevado a la cuarta“.
Otros ejemplos:
85 = ocho elevado a la quinta.
49 = cuatro elevado a la novena.
17 = uno elevado a la séptima.
Exponentes particulares
Existen dos exponentes que particularmente se leen de forma distinta al restos. Estos son el dos y el tres.
Cuando el exponente es 2, se dice que el número de la base está elevado al cuadrado. Por ejemplo: 42 se lee “cuatro elevado al cuadrado”.
Cuando el exponente es 3, se dice que el número de la base está elevado al cubo. Por ejemplo: 33 se lee “tres elevado al cubo”.
¿Sabías qué?
Si la base es 1, sin importar el exponente, la potencia siempre va a ser igual a 1.
Cálculo de potencias
Como vimos anteriormente, el cálculo de una potencia se realiza al multiplicar la base según indique el exponente. Sin embargo, hay ejercicios que contienen otras operaciones además de la potencia.
Suma o resta de un número y una potencia
En estos casos se resuelve primero la potencia y luego se resuelve la suma o resta.
Observemos el siguiente caso:
82 − 4
Lo primero que debemos resolver es la potencia; es decir, resolver 82:
82= 8 × 8 = 64
Luego se sustituye el valor de la potencia en la expresión inicial y se resuelve:
64− 4 = 60
De esta forma se obtiene que:
82 − 4 = 60
Paréntesis con suma o resta
Cuando la base de una potencia se encuentra entre paréntesis, lo primero que debemos resolver es la operación que se encuentra dentro del paréntesis, posteriormente se resuelve la potencia del resultado obtenido.
Observemos el siguiente caso:
(6 + 2)3
Lo primero es resolver la operación dentro del paréntesis:
6 + 2 = 8
Luego se reemplaza el resultado obtenido en la operación ubicada dentro del paréntesis:
(8)3
Al resolver dicha potencia obtenemos el resultado del problema:
(8)3= 8 × 8 × 8 = 512
De esta forma tenemos que:
(6 + 2)3= 512
¡A practicar!
1. Resuelve las siguientes potencias.
a.
b.
c.
d.
e.
f.
g.
RESPUESTAS
a.
b.
c.
d.
e.
f.
g.
2. Escribe cómo deberían leerse las siguientes potencias.
a.
b.
c.
d.
e.
f.
RESPUESTAS
a. = ocho elevado a la séptima.
b. = tres elevado a la cuarta.
c. = cuatro elevado al cubo.
d. = nueve elevado a la quinta.
e. = seis elevado a la sexta.
f. = uno elevado al cuadrado.
3. Resuelve los siguientes cálculos.
a.
b.
c.
RESPUESTAS
a.
b.
c.
RECURSOS PARA DOCENTES
Artículo destacado “Potenciación: operaciones de exponentes”
El siguiente artículo ayuda a conocer cómo leer y resolver las operaciones básicas de las potencias. De igual forma, explica sus propiedades.
La geometría se encuentra inmersa dentro de diferentes ciencias y situaciones de la vida. Muchos desarrollos de la actualidad no se habrían logrado sin los aportes de la geometría. La astronomía, la computación y la cartografía son algunos de los muchos campos donde la geometría es empleada.
Cálculo de área de una superficie
Para el cálculo de superficies usamos las fórmulas de área de las principales figuras geométricas. Las principales fórmulas son las siguientes:
Nombre
Figura
Área
Cuadrado
Donde:
A = área
l = lado
Rectángulo
Donde:
A = área
a = altura
b = base
Triángulo
Donde:
A = área
b = base
h = altura
Rombo
Donde:
A = área
D = diagonal mayor
d = diagonal menor
Paralelogramo
Donde:
A = área
b = base
h = altura
Trapecio
Donde:
a = base menor
b = base mayor
h = altura
Círculo
Donde:
A = área
π = número pi
r = radio
Polígono regular
Donde:
A = área
n = número de lados regulares
b = longitud de un lado
Ap = apotema
Las figuras compuestas
Una figura compuesta es aquella que está formada por dos o más figuras geométricas más simples. Para calcular el área de estas figuras se suelen calcular las áreas de las figuras más simples por separado y la sumatoria de estas será el área total de la figura. Por otra parte, para el cálculo de perímetro suelen usarse ecuaciones trigonométricas, y teoremas como el de Pitágoras para calcular las longitudes de los lados de la figura.
Ejercicios
– Una cancha de fútbol mide 105 metros de largo y 68 metros de ancho. ¿Cuántos metros cuadrados de césped artificial se necesitarían para cubrir toda la cancha?
Es un problema de área porque al calcular los metros cuadrados de césped artificial que se necesitan, se calcula la superficie. Como todos sabemos, una cancha de fútbol tiene una forma rectangular, por lo tanto se debe aplicar la fórmula del rectángulo:
Por lo tanto, para cubrir toda la cancha se necesitarían 7.140 m2 de césped artificial.
– La siguiente figura muestra el plano de una casa. ¿Cuántos metros cuadrados de cerámica se necesitan para cubrir el piso?
El piso de la casa forma una figura compuesta. Por lo tanto, antes de resolver el problema debemos separarlo en formas geométricas más simples:
La figura 1 corresponde a un rectángulo y la figura 2 a un cuadrado (ya que sus cuatro lados miden lo mismo). El área total del piso será igual a:
Donde:
At = área total del piso
A1 = área de la figura 1
A2 = área de la figura 2
Por lo tanto, para calcular el problema tenemos que resolver las áreas por separado:
En la figura 1 se cumple que:
En la figura 2 se cumple que:
Al reemplazar los valores de A1 y A2 se tiene que:
Por lo tanto, el piso de la casa necesita 165 m2 de cerámica para cubrirlo.
¿Sabías qué?
La hectárea (ha) es una medida de área que equivale a 10.000 m2.
Cálculo de volumen de un cuerpo
Todo cuerpo ocupa un lugar en el espacio. Se denomina volumen. Como ya sabemos, los principales cuerpos geométricos se calculan a través de fórmulas:
Nombre
Figura
Fórmula de volumen
Cubo
Donde:
V = volumen
l = lado
Prisma
Donde:
V = volumen
Ab = área basal
h = altura
Pirámide
Donde:
V = volumen
Ab = área basal
h = altura
Cilindro
Donde:
V = volumen
π = número pi (3,14…)
r = radio
h = altura
Cono
Donde:
V = volumen
π = número pi (3,14…)
r = radio
h = altura
Esfera
Donde:
V = volumen
π = número pi (3,14…)
r = radio
En el caso de las pirámides y los primas, las formas de sus bases pueden ser diferentes.
Estas ecuaciones pueden aplicarse a figuras similares para resolver diferentes problemas.
Ejercicios
– Calcula el volumen de la Gran Pirámide de Guiza, cuya base es un cuadrado de aproximadamente 230 m cada lado y de altura mide aproximadamente 186 m.
La fórmula para calcular el volumen de una pirámide es la siguiente:
Lo primero es calcular el valor de Ab que es el área de la base. En este caso, su base es un cuadrado de 230 metros de cada lado. Por lo tanto:
Reemplazamos el valor del área de la base y el de la altura (que es 186 m) en la fórmula:
El volumen aproximado de la pirámide de Guiza es de 3.279.800 m3 (si se considera la pirámide como un cuerpo rígido sin cámaras interiores).
– Calcula el volumen de una canica de 2 centímetros de diámetro.
La forma de una canica es igual a la de una esfera por lo tanto se utiliza la siguiente ecuación:
El problema nos dice que el diámetro de la canica es de 2 cm, pero la fórmula está expresada en función del radio. Como ya sabemos, el radio es la mitad del diámetro, por lo tanto, el radio de la canica es de 1 cm.
La leyenda de la corona
Hay una leyenda popular que cuenta cómo el rey Hieron II de Siracusa le encomendó al reconocido matemático griego Arquímedes que comprobara si la corona que había mandado a hacer era de oro puro o no. Arquímedes pasó mucho tiempo sin resolver el misterio y estaba frustrado hasta que un día, al meterse a la bañera, se percató que el agua que se desplazaba tenía el mismo volumen de su cuerpo. Enseguida dio un salto al tiempo que decía la frase “¡Eureka!”.
Posteriormente le demostró al rey que el volumen desplazado por la corona debía ser el mismo que el desplazado por un lingote de oro puro de la misma masa. Cuando realizó el experimento, la cantidad de agua desplazada no fue la misma y concluyó que la corona no era de oro puro.
Otros usos
Desde su aparición, la geometría ha permitido al ser humano destacarse en varios campos como la arquitectura, la escultura, la pintura y, por su puesto, en las ciencias aplicadas como la física o la química. Disciplinas como la ingeniería aplican la geometría para el cálculo de ángulo y otras medidas. La química emplea la geometría para entender las estructuras moleculares, la agrupación de los átomos y la forma de los cristales de algunos compuestos, entre otros usos.
En el ámbito de la cartografía y la agronomía, se aplica la geometría para determinar áreas, calcular perímetros y planos de terrenos. La astronomía y la computación son otras áreas que emplean conocimientos geométricos.
La geometría y la arquitectura
La arquitectura clásica no habría podido lograr obras de singular belleza o armonía sin hacer uso de conocimientos geométricos. En la actualidad, los arquitectos emplean la geometría para lograr estructuras que se vean bien estéticamente, que permitan un ahorro de materiales y un mejor aprovechamiento de los espacios.
¡A practicar!
1. Una fábrica de quesos compró una granja de 14.300 m2. ¿Cuáles son las medidas de la granja?
a) 150 m × 100 m
b) 130 m × 110 m
c) 40 m × 10 m
d) 280 m × 100 m
Solución
b) 130 m × 110 m
2. Un tablero de ajedrez mide 44 cm de alto y 44 cm de ancho, ¿cuál es el área del tablero?
a) 88 cm2
b) 1.936 cm2
c) 4.404 cm2
d) 3.854 cm2
Solución
b) 1.936 cm2
3. Una empresa inmobiliaria trabaja con propiedades que no superan los 20.000 m2. ¿Cuál de las siguientes propiedades no cumple con este requisito de la empresa inmobiliaria?
a) Casa de playa de 155 m de ancho por 84 m de alto.
b) Departamento en la ciudad de 18 m de ancho por 14 m de alto.
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto.
d) Chalet de 24 m de ancho por 20 m de alto.
Solución
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto. El área de esta propiedad es de 39.680 m2, por lo tanto, supera los 20.000 m2 aceptados por la inmobiliaria.
4. Una pelota de fútbol tiene 22 cm de diámetro, ¿cuál es su volumen?
a) 2026,34 cm3
b) 44 cm3
c) 220 cm3
d) 5.572,45 cm3
Solución
d) 5.572,45 cm3
5. Una lata de tomates es cilíndrica y tiene una altura de 9 cm y un radio de 3 cm, ¿cuál es su volumen?
a) 384,35 cm3
b) 127,17 cm3
c) 954.44 cm3
d) 506,58 cm3
Solución
c) 254.34 cm3
RECURSOS PARA DOCENTES
Artículo “Los números ocultos en el universo”
El artículo trata de mostrar cómo la mayoría de los fenómenos del universo pueden explicarse a través de los números. También explica algunas formas geométricas que podemos encontrar en nuestro planeta.
Enciclopedia “Nana y Enriqueta en el país de las matemáticas”
En este tomo, se platean los principales elementos de la geometría de una manera didáctica y sencilla. También se dan ejemplos y aplicaciones de la geometría.
El artículo plantea el cálculo de superficie de las principales figuras geométricas. También resuelve una serie de ejercicios y muestra al final algunos problemas propuestos.
Si tienes que elegir entre 1/2 de pizza o 3/4 de pizza, ¿cuál elegirías? Para responder esta pregunta es importante que sepas comparar distintos tipos de fracciones. Estas expresiones matemáticas constan de un numerador y un denominador, y según la relación entre ellos pueden ser mayores o menores que otras. ¡Aprende cómo ordenar fracciones!
Ubicación de fracciones en la recta numérica
Fracciones propias
Las fracciones propias son aquellas que tienen el numerador menor al denominador, por lo que siempre son menores a 1. Para ubicar estas fracciones en la recta numérica dividimos a la unidad en tantos segmentos como indique el denominador de la fracción que queremos representar. Luego, contamos tantos espacios como indique el numerador a partir del cero.
– Ejemplo:
La fracción es propia porque su numerador es menor al denominador (4 < 5).
Para representarla en la recta dividimos el segmento entre el 0 y el 1 en 5 espacios (denominador). Después contamos 4 espacios (numerador) y ubicamos la fracción.
Fracciones impropias
Las fracciones impropias son aquellas cuyo numerador es mayor al denominador, por lo que siempre son mayores a 1. Para representar este tipo de fracciones en la recta numérica tenemos que transformarlas a números mixtos.
¿Qué es un número mixto?
Es aquel que tiene una parte entera y una parte fraccionaria. Por ejemplo:
Este número mixto se lee “dos enteros y un medio”.
¿Cómo transformar una fracción impropia a un número mixto?
Realiza la división entre el numerador y el denominador. Al terminar con la cuenta, el cociente de la división indica el entero del número mixto; el resto junto al divisor van a conformar la parte fraccionaria: el resto será el numerador y el divisor será el denominador.
– Ejemplo:
¿Cuál es el número mixto equivalente a la fracción ?
Por lo tanto:
De este modo, para poder representar el número mixto en la recta numérica consideramos el número entero, en este caso el 2, y a partir de este seguimos los mismos pasos que en las fracciones propias: dividimos el segmento entre el 2 y el 3 en 2 segmentos iguales (denominador), después contamos un espacio (numerador) y ubicamos la fracción.
Representa las siguientes fracciones en una recta numérica.
Solución
Como la fracción es impropia, la transformamos a número mixto.
Solución
Solución
Solución
Como la fracción es impropia, la transformamos a número mixto.
comparación de fracciones
Cuando comparamos fracciones, determinamos cuál es mayor o menor que otra. Para esto, debemos tomar en cuenta sus elementos y ver si los denominadores son iguales o si sus numeradores son iguales.
Comparar fracciones con igual denominador
Entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador.
– Ejemplo:
Observa que los denominadores son iguales (3 = 3) pero los numeradores no; y como 8 > 6, la fracción 8/6 es mayor que 6/3.
Comparar fracciones con igual numerador
Entre dos fracciones con igual numerador será mayor la fracción que tenga menor denominador.
– Ejemplo:
Observa que los numeradores son iguales (12 = 12) pero los denominadores no; y como 5 > 4, la fracción 12/4 es mayor que 12/5.
Fracciones con distintos numeradores y denominadores
Cuando las dos fracciones tienen numeradores y denominadores diferentes, buscamos homogeneizar, es decir, encontrar fracciones equivalentes con igual denominador.
¿Cómo homogeneizar dos fracciones?
Para encontrar las fracciones equivalentes con igual denominador de unas fracciones seguimos estos pasos:
Determinamos el mínimo común múltiplo de los denominadores. Ese será el denominador de las fracciones equivalentes.
Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.
– Ejemplo:
Homogeneiza las fracciones y . Luego compara.
1. Calculamos el m. c. m. de los denominadores 3 y 4.
2. Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.
Como 3 × 4 = 12, entonces también multiplicamos el numerador por 4.
Como 4 × 3 = 12, entonces también multiplicamos el numerador por 3.
Ahora es más sencillo comparar las fracciones, pues tenemos fracciones homogéneas por lo que seguimos los pasos anteriores: entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador. Así que:
Como es la fracción equivalente de ; y es la fracción equivalente de , podemos decir que:
¿Sabías qué?
En el año 1800 a. C. el pueblo babilonio introdujo las fracciones.
Comparación de números mixtos
Entre dos números mixtos, será mayor aquel que tenga mayor parte entera. Por ejemplo:
Pero si las partes enteras son iguales, comparamos la parte fraccionaria por medio de cualquier de los métodos aplicados anteriormente. Por ejemplo:
Las dos partes entera son iguales (1 = 1), pero las partes fraccionarias no. Como ves, ambas son fracciones homogéneas porque los denominadores son iguales (6 = 6), así que comparamos los numeradores, y como 4 > 1, el número mixto es mayor que .
¡A practicar!
1. Representa las siguientes fracciones en la recta numérica.
Solución
Solución
Solución
Solución
2. Compara los siguientes números mixtos.
y
Solución
y
Solución
y
Solución
porque
y
Solución
RECURSOS PARA DOCENTES
Artículo “Partes y porciones”
En este artículo podrás ampliar la información sobre la comparación de fracciones por medio del método del común denominador (sin utilizar recta numérica).
Enciclopedia “Enciclopedia de Matemáticas Primaria”
Con el Tomo 2 de esta enciclopedia podrás profundizar en el concepto de fracciones y su clasificación, así como en la comparación de fracciones y números mixtos.
El círculo es la superficie contenida dentro de una circunferencia. En algunas ocasiones suelen confundirse estos términos por error, pero lo cierto es que gozan de características únicas que desde tiempos antiguos han cautivado a los matemáticos. Su conocimiento es importante para entender conceptos como el número pi.
Diferencia entre la circunferencia y el círculo
Aunque son conceptos que están estrechamente relacionados, circunferencia y círculo son dos cosas geométricamente diferentes. La circunferencia es la línea o perímetro que bordea y delimita la superficie de un círculo. Todos los puntos de la circunferencia se encuentran a una misma distancia del centro. El círculo, por otra parte, es una figura geométrica que está delimitada por una circunferencia.
¿Sabías qué?
El matemático griego Eratóstenes de Cirene fue la primera persona en calcular la circunferencia de la Tierra en el 230 a. C.
En este sentido, cuando hablamos de circunferencia nos referimos a una curva cerrada y cuando hablamos de círculo nos referimos a una superficie o área que está contenida dentro de una circunferencia.
Instrumento muy útil
Desde su invención en el año 200 a. C. por parte de los chinos, el compás ha sido uno de los inventos más usados en la geometría y en otras áreas. Su utilidad ha ido más allá del trazado de arcos y circunferencias, también permite transportar medidas y puede emplearse en la construcción de polígonos y en el cálculo de distancias empleado por la navegación.
Elementos de la circunferencia
Los elementos principales de una circunferencia se detallan a continuación:
Centro: es el punto que se ubica a la misma distancia de todos los puntos que conforman la circunferencia.
Radio: es el segmento de recta que une al centro con cualquiera de los puntos de la circunferencia.
Cuerda: es la recta que une dos puntos de la circunferencia.
Diámetro: es el segmento de recta que une dos puntos de la circunferencia y pasa por el centro. Su longitud es igual al doble del radio.
Semicircunferencia: es la mitad de la circunferencia. El diámetro divide a la circunferencia en dos semicircunferencias.
Arco: es una porción de la circunferencia que se encuentra delimitada por una cuerda. Generalmente, a cada cuerda se le asocia el menor arco que delimita.
Relaciones entre rectas y circunferencias
Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación:
Recta exterior: es aquella recta que nunca corta a la circunferencia.
Recta tangente: es aquella recta que corta a la circunferencia en uno de sus puntos.
Recta secante: es aquella recta que corta a la circunferencia en dos de sus puntos.
Para trazar circunferencias empleamos el compás y debemos seguir los siguientes pasos:
Conocer la distancia que hay desde el centro de la circunferencia hasta alguno de sus puntos (el radio). Para esto puedes usar una regla y abrir el compás a dicha distancia. Otra forma de hacerlo es trazar el segmento de recta igual a la longitud del radio deseado, colocar la aguja de acero sobre uno de los extremos y abrir el compás hasta que la mina de grafito toque el otro extremo.
Apretar con suavidad la aguja de acero contra el papel para que no se mueva y girar el otro brazo de forma firme para trazar la circunferencia.
Marcar el centro de la circunferencia que será el mismo punto donde se apoyó la aguja de acero durante el trazado de la circunferencia.
Área del círculo
Para calcular el área de un círculo simplemente necesitamos conocer la longitud de su radio. La fórmula es la siguiente:
Donde:
A = área del círculo π = número pi r = longitud del radio
Como el número pi (π) es un número irracional, sus decimales son infinitos (3,141592653589793238…), por lo tanto, para efectos de cálculo de área se suele aproximar a 3,14.
¿Sabías qué?
Existe otra fórmula para calcular el área del círculo en función de su diámetro: .
– Calcula el área del siguiente círculo.
De acuerdo a la figura, la longitud del radio es 5 cm, por lo tanto, podemos aplicar la fórmula de área.
¡A practicar!
1. Calcula el área de los siguientes círculos.
a)
Solución
A = 50,24 cm2
b)
Solución
A = 254,34 cm2
c)
Solución
A = 12,56 m2
d)
Solución
A = 314 mm2
e)
Solución
A =153,86 cm2
2. ¿Cuánto debe medir el radio de una circunferencia para que su área sea igual a 113,04 cm2? a) 5 cm
b) 3 cm
c) 6 cm
d) 11 cm
Solución
c) 6 cm
RECURSOS PARA DOCENTES
Artículo “Circunferencia”
El artículo explica los elementos principales de la circunferencia y la relación que tiene esta con el número pi. En el artículo también se explica como calcular la longitud de una circunferencia y determinar el área de un círculo.
El artículo plantea de forma resumida cada uno de los elementos de un círculo como el semicírculo y el segmento circular. También presenta ilustraciones de cada uno para explicar el concepto de manera más clara.