CAPÍTULO 6 / TEMA 5 (REVISIÓN)

estadística y probabilidad | ¿qué aprendimos?

REPRESENTACIÓN GRÁFICA DE DATOS

Los gráficos son representaciones visuales de alguna información numérica resultante de un proceso estadístico. Son muy efectivos para mostrar relaciones entre diferentes valores y permiten comprender fácilmente distintas situaciones de la realidad. Los datos disponibles de una población se presentan de tal manera que los mismos puedan ser visualizados sistemática y resumidamente. Los gráficos pueden ser de barras, circulares o lineales.

Los gráficos son una gran herramienta visual, porque captan la atención, dan información puntual de los datos y permiten una comparación eficaz.

INTERPRETACIÓN DE DATOS

Los cuadros, los gráficos y las tablas nos brindan información muy valiosa sobre una población determinada. Sin embargo, cuando la cantidad de datos es muy numerosa conviene buscar un valor característico del conjunto, como las que aportan las medidas de tendencia central. La media aritmética o promedio es igual a cociente entre la suma de todos los valores entre la cantidad de valores; la moda es el valor que se presenta con mayor frecuencia; y la mediana, tal como su nombre lo indica, corresponde a un punto medio, equidistante de los extremos.

Un conjunto de datos sin el análisis adecuado solo son valores o números. Requieren de lectura e interpretación adecuada para volverse útiles.

PROBABILIDAD

La probabilidad es un mecanismo matemático que nos permite estudiar sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como lanzar un dado, lanzar una moneda o sacar una carta específica de un mazo. A través del cálculo de probabilidad se puede conocer cuántas posibilidades existen de que un fenómeno tenga lugar o no. A cada una de estas posibilidades se las denomina evento o suceso. El conjunto de eventos posibles constituye lo que se denomina espacio muestral.

Las probabilidades no predicen el futuro, únicamente valoran las diferentes posibilidades de un evento. Esta valoración es producto de un cálculo matemático que va de 0 (imposible) a 1 (totalmente posible).

¿QUÉ ES LA ESTADÍSTICA?

La estadística es una ciencia dentro del área de las matemáticas que se encarga de interpretar los datos obtenidos de la observación de un fenómeno en particular. Busca reunir información sobre determinados individuos o grupos, organizar datos y permitir una correcta interpretación. La finalidad de este proceso es tomar decisiones en base a las predicciones que pueden realizarse.

Los procedimientos estadísticos se hacen sobre el total de una población o sobre una muestra. Por ejemplo, cuando nos hacen un análisis de sangre no toman toda nuestra sangre, solo un poco de esta, es decir, una muestra.

CAPÍTULO 6 / TEMA 4

¿QUÉ ES LA ESTADÍSTICA?

Probablemente has pensado cómo se determina, por ejemplo, la magnitud de un grupo con ciertos ideales religiosos o el porcentaje de mujeres en una población. Existen una serie de procedimientos para recolectar datos, analizarlos y generar conclusiones y así dar respuesta a estos interrogantes. La ciencia que se encarga de ello es la estadística.

La estadística se encarga de interpretar los datos obtenidos de la observación de un fenómeno en particular. Esta reúne información sobre determinados individuos o grupos y organiza dichos datos para interpretarlos de forma clara y rápida. La finalidad de este proceso es lograr tomar decisiones en base a las predicciones que pueden realizarse.

¿Sabías qué?
La estadística nació por la necesidad de analizar los datos del Estado, de allí su nombre, que significa “ciencia del Estado”.

LA ESTADÍSTICA Y SU ramas

La estadística es una rama de las matemáticas que se ocupa de reunir y organizar datos relacionados con fenómenos colectivos. Estudia características o propiedades de los individuos, objetos o acontecimientos que integran un conjunto determinado que se denomina genéricamente “población”.

La utilización de procedimientos estadísticos tiene gran difusión. El campo de estudio de la estadística es realmente amplio, va desde fenómenos como las características biológicas o sociológicas de un conjunto de individuos, hasta fenómenos físicos, de producción, de calidad de vida o de tamaño de una población.

En estadística se puede definir la medición como un procedimiento para asignar un número a cada uno de los miembros de la población estudiada, de acuerdo con unas reglas determinadas. Según esto, una variable estadística será cualquier característica de los miembros de una población a la que se le pueda asignar valores por medio de la medición.

 

Ramas de la estadística

La estadística se divide en dos áreas que van de la mano: la estadística descriptiva y la estadística inferencial.

  • La estadística descriptiva se encarga de describir y resumir de manera cuantitativa las características o propiedades una población. Es común que se empleen medidas de tendencia central como la media aritmética, la mediana o la moda. Por lo general, la estadística descriptiva es la primera parte realizada cuando hacemos un análisis estadístico.
  • La estadística inferencial se caracteriza por usar la inducción y la inferencia, es decir, además de recolectar y resumir datos, trata de deducir y explicar las propiedades de una población. Involucra la obtención de conclusiones correctas.

¿QUÉ PROFESIONES APLICAN LA ESTADÍSTICA?

La aplicación de la estadística es universal y puede encontrarse en casi cualquier campo científico, algunos de los más comunes son los siguientes:

  • En las Ciencias Naturales, para describir modelos termodinámicos, variables biológicas y sistemas químicos.
  • En las Ciencias Sociales, para analizar información relacionada con la demografía y la sociología. Así como, recopilar datos para establecer relaciones entre variables macro y microeconómicas.
  • En la Medicina, para conocer el desarrollo y la evolución de diferentes enfermedades, así como los índices de mortalidad relacionados a distintos proceso o qué tan eficaz es un medicamento.

¿Sabías qué?
La palabra “demografía” viene del griego demos que significa “pueblo” y grafía que significa “trazo” o “descripción”.

Demografía: estudio estadístico de la población humana

La demografía es una ciencia que se encarga de estudiar las poblaciones humanas y sus características, como la estructura, evolución y dimensión, desde una perspectiva cuantitativa. Esta ciencia analiza a través de patrones estadísticos la dinámica poblacional y las leyes que rigen los fenómenos demográficos. Algunos fenómenos demográficos son la fecundidad, la natalidad, la mortalidad y la migración.

USOS DE LA ESTADÍSTICA

La importancia de la estadística radica en sus múltiples y significativos usos, que van desde la resolución de problemas hasta la toma de decisiones. Por medio de las operaciones estadísticas es posible lograr comprender el comportamiento de unos datos que representan una realidad cotidiana.

Por ejemplo, si vendimos helados durante cuatro semanas y queremos saber las ventas totales y cuáles son los sabores más vendidos, podemos registrar los datos en una tabla como esta:

Chocolate Fresa Vainilla Total
1 10 8 12 30
2 20 15 20 55
3 15 10 10 35
4 25 20 15 60
Total 70 53 57 180

Luego graficamos:

De este gráfico podemos concluir que el sabor de helado más vendido en la segunda y cuarta semana fue el de chocolate, y el menos vendido en el primera, segunda y tercera semana fue el de fresa.

¡Es tu turno!

Observa la tabla y la gráfica anterior. Responde.

  • ¿Cuántos helados en total se vendieron la primera semana?
    Solución
    30
  • ¿Cuántos helados en total se vendieron la segunda semana?
    Solución
    55
  • ¿Cuántos helados en total se vendieron la tercera semana?
    Solución
    35
  • ¿Cuántos helados en total se vendieron la cuarta semana?
    Solución
    60
  • ¿Cuántos helados de chocolate se vendieron en las cuatros semanas?
    Solución
    70
  • ¿Cuántos helados de fresa se vendieron en las cuatro semanas?
    Solución
    53
  • ¿Cuántos helados de vainilla se vendieron en las cuatro semanas?
    Solución
    57
  • ¿Cuántos helados se vendieron en las cuatro semanas? 
    Solución
    180
  • ¿En cuál semana se vendieron más helados?
    Solución
    En la cuarta semana.
  • ¿En cuál semana se vendieron menos helados?
    Solución
    En la primera semana.
  • ¿Cuál fue el sabor de helado más vendido?
    Solución
    Chocolate.
  • ¿Cuál fue el sabor de helado menos vendido?
    Solución
    Fresa.
RECURSOS PARA DOCENTES

Artículo “La estadística”

En el siguiente artículo podrás encontrar los concepto básicos de la estadística.

VER

CAPÍTULO 6 / TEMA 3

PROBABILIDAD

Si lanzas un dado, ¿cuáles son los posibles resultados? ¡6! Esto es así porque los dados tienen 6 caras; no obstante, no sabemos con certeza cuál de esos números saldrá. Esto es lo que se conoce como experimento aleatorio, y gracias a la probabilidad podemos medir la posibilidad de que este ocurra o no ocurra.

Los juegos de azar son aquellos cuyo resultado es aleatorio y dependen principalmente de la casualidad, sin que la habilidad del jugador sea un factor importante. La mayoría de estos involucra apuestas y mientras menor sea la probabilidad de ganar, mayor será el premio obtenido. El bingo, la ruleta y las quinielas son algunos ejemplos de juegos de azar.

VER INFOGRAFÍA

experimento determinista y aleatorio

Todos los fenómenos que ocurren en nuestra vida pueden ser catalogados como deterministas o aleatorios.

Los experimentos o fenómenos deterministas son los que suceden con seguridad, es decir, al repetirlos en las mismas condiciones se obtiene el mismo resultado; por ejemplo:

  • El agua se congela a 0 °C.
  • Al multiplicar 2 × 2 el resultado es 4.

Los experimentos o fenómenos aleatorios suceden al azar, no es posible predecir su resultado; por ejemplo:

  • Sacar una carta de un mazo de naipes.
  • Lanzar una moneda.
Lanzar un dado es un experimento aleatorio que podrías analizar por medio de cálculos de probabilidad. Aquí las variables aleatorias pueden tomar dos o más valores que no se pueden anticipar con certeza. Por ejemplo, al arrojar un dado los posibles resultados son 1, 2, 3, 4, 5 y 6. Sabemos qué valores pueden salir, pero no podemos asegurar cuál de ellos será.

TIPOS DE EVENTOS aleatorios

Los eventos aleatorios pueden ser seguros, posiblesimposibles. 

  • Los eventos imposibles no pueden ocurrir nunca; por ejemplo, lanzar un dado y que salga el número mayor a 7.
  • Los eventos posibles ocurren algunas veces; por ejemplo, lanzar un dado y que salga el número 3.
  • Los eventos seguros ocurren siempre y coinciden con el espacio muestral; por ejemplo, lanzar un dado y que salga un número menor a 7.

¿Qué es el espacio muestral?

Es el conjunto que contiene a todos los resultados posibles de un experimento aleatorio. Lo representamos con E. Se denomina “suceso elemental” a cada uno de los posibles resultados. Por ejemplo:

Experimento Espacio muestral
Lanzar un dado E = {1, 2, 3, 4, 5, 6}
Lanzar una moneda E = {cara, cruz}

PROBABILIDAD DE UN EVENTO

La probabilidad de un resultado o acontecimiento es la proporción de las veces en que ocurrirán. En otras palabras, la probabilidad es el mecanismo matemático a través del cual pueden estudiarse sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como el lanzamiento de un dado, la tirada de ruleta o un juego de cartas.

En los casos donde las posibilidades de obtener uno u otro resultado no son iguales, se analizan las probabilidades por medio de la definición del matemático francés Pierre de Laplace: La probabilidad de un acontecimiento es igual al cociente entre el número de casos favorables y el número de casos igualmente posibles”.

P=\frac{casos \: favorables}{casos\: posibles}

– Ejemplo 1:

En un bolillero hay 24 bolas, 20 rojas y 4 azules, ¿cuál es la probabilidad de extraer una bola roja?,

Casos favorables Casos posibles Casos favorables/Casos posibles
20 24 20/24 = 5/6

La probabilidad de que salga una bola roja es de 5/6.

Podemos expresar la probabilidad como una fracción, un número decimal o porcentaje. Por lo tanto, para este caso podemos decir que:

P = 5/6

P = 0,83

P = 83,33 %

¿Sabías qué?
Para transformar la probabilidad en fracción a porcentaje basta con multiplicar el cociente entre el numerador y el denominador por 100.

– Ejemplo 2:

Al lanzar un dado, ¿cuál es la probabilidad de obtener un número mayor que 4?

Casos favorables Casos posibles Casos favorables/Casos posibles
2

{5, 6}

6

{1, 2, 3, 4, 5, 6}

2/6 = 1/3

La probabilidad de obtener un número mayor que 4 es de 1/3. También podemos expresarlo de la siguiente manera:

P = 1/3

P = 0,33

P = 33,33 %

Baraja francesa

Es un conjunto de cartas divididas en cuatro palos: corazones, picas, tréboles y rombos. De cada palo hay 13 cartas, por lo tanto, el mazo está formado por 52 cartas totales. Los corazones y los rombos son de color rojo, y los tréboles y las picas son de color negro. Estos naipes son ampliamente utilizados en juegos de mesa y azar. Si tuviésemos que sacar una carta del mazo sin ver tendríamos las siguientes probabilidades:

Evento Probabilidad (fracción) Probabilidad (número decimal) Probabilidad (porcentaje)
Sacar una carta de corazones 13/52 = 1/4 0,25 25 %
Sacar el 4 de tréboles 1/52 0,02 2 %
Sacar una carta con dos palos 0 0 0 %
Sacar una carta roja 26/52 = 1/2 0,5 50 %

árbol de probabilidades

Los diagramas de árbol se utilizan en matemática principalmente para identificar formas de agrupar elementos o para indicar los factores que conforman un determinado número. Sin embargo, también pueden aplicarse a experimentos probabilísticos de distinto tipo en la que las formas de ordenar se llamarán “casos posibles”.

– Ejemplo:

Si lanzamos una moneda tres veces, ¿cuántos resultados posibles tendríamos?

En este diagrama de árbol observamos que hay 8 casos posibles u 8 posibles combinaciones de resultados si lanzamos una moneda tres veces.

– Ejemplo 2:

Observa de nuevo el diagrama, ¿cuál es la probabilidad de obtener tres veces cara al lanzar una moneda tres veces seguidas?

Para responder esta pregunta debemos ver todas las posibles opciones. Como solo una cumple este requerimiento y los posibles casos son 8, decimos que la probabilidad de obtener tres veces cara al lanzar una moneda tres veces seguidas es:

P = 1/8

P = 0,125

P = 12,5 %

¡A practicar!

Expresa en fracción, número decimal y porcentaje la probabilidad de que ocurran los siguientes eventos:

  • Lanzar un dado y que salga un número impar.
Solución

P = 3/6 = 1/2

P = 0,5

P = 50 %

  • Sacar una carta con número par de un grupo de 10 cartas numeradas del 1 al 10.
Solución

P = 5/10 = 1/2

P = 0,5

P = 50 %

  • Sacar una bola verde de una urna que tiene 3 bolas rojas, 5 bolas verdes y 3 bolas amarillas.
Solución

P= 5/11

P = 0,45

P = 45,5 %

  • Sacar una carta de tréboles de un mazo de baraja francesa.
Solución

P = 13/52 = 1/4

P = 0,25

P = 25 %

RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Con este artículo se podrá profundizar sobre el concepto de probabilidad. Además hay algunos ejercicios para poner en práctica lo aprendido.

VER

CAPÍTULO 6 / TEMA 2

INTERPRETACIÓN DE DATOS

Existen diversas maneras de recopilar datos, por ejemplo, en un censo demográfico se hacen encuestas a nivel nacional para saber el tamaño de la población y composición del hogar. Cuando la cantidad de datos es numerosa, necesitamos un valor que sea característico de ese conjunto, para eso empleamos la media, la moda y la mediana.

Las medidas de tendencia central también son llamadas medidas de posición o de centralización. Estas hacen referencia a los valores centrales de una determinada distribución de datos. La moda, media aritmética y mediana comprenden este grupo de medidas. Es usual que las usemos junto a gráficos para comprender el comportamiento de un conjunto de elementos.

media aritmética

La media aritmética o promedio es utilizada con frecuencia en la vida cotidiana, este sencillo cálculo permite determinar el valor característico de un grupo. Dado un conjunto de números (n): x1, x2, x3,…, xn, la media aritmética es igual a la suma de todos los datos entre la cantidad total de estos. La fórmula es la siguiente:

\overline{x}=\frac{x_{1}+\: x_{2}+\: x_{3}+\: ...\: +x_{n}}{n}

– Ejemplo 1:

Pedro vendió galletas durante una semana y registró sus ventas en una tabla. ¿Cuántas galletas en promedio vendió Pedro por día?

Días Galletas vendidas
Lunes 12
Martes 6
Miércoles 7
Jueves 8
Viernes 4
Sábado 7
Domingo 12

Para saber la cantidad de galletas que se vendieron en promedio solo tenemos que aplicar la fórmula. Sumamos todos los valores y dividimos entre la cantidad de días.

\overline{x}=\frac{12+6+7+8+4+7+12}{7}=\frac{56}{7}=\boldsymbol{8}

En promedio, Pedro vendió 8 galletas diarias.


– Ejemplo 2:

María obtuvo las siguientes calificaciones en cada corte del año: 15, 17, 18 y 16. ¿Cuál es su calificación promedio?

\overline{x}=\frac{15+17+18+16}{4}=\frac{66}{4}=\boldsymbol{16,5}

El promedio de calificaciones de María es 16,5 puntos.

¡Es tu turno!

Las estaturas de un grupo de alumnos son: 155 cm, 152 cm, 158 cm, 162 cm, 158 cm y 163 cm. ¿Cuál es la estatura promedio?

Solución

\overline{x}=\frac{155+152+158+162+158+163}{6}=\frac{948}{6}=\boldsymbol{158}

Este grupo de alumnos tiene una estatura promedio de 158 cm.

¿Sabías qué?
Los docentes suelen utilizar el cálculo del promedio o media aritmética para informar las calificaciones finales de sus alumnos.

LA MODA

La moda (Mo) es el valor que se presenta con mayor frecuencia en una muestra, es decir, es el valor que más se repite. Para hallar la moda es recomendable ordenar los datos y verificar la cantidad de veces que aparece cada uno.

– Ejemplo:

En una venta de helados se anotaron los sabores más vendidos durante la semana. El registro está en esta tabla. Obsérvala y responde: ¿cuál es la moda de los sabores?

Sabor del helado Cantidad de helados vendidos
Fresa 45
Chocolate 56
Vainilla 34
Colita 29

La moda es el valor con mayor frecuencia, en este caso el sabor de helado que más se vendió fue el de chocolate porque 56 > 45 > 34 > 29. Así que:

Mo = 56

¡Es tu turno!

¿Cuál es la moda de los siguientes conjuntos de datos?

  • 8, 5, 7, 8, 6, 10, 9, 7, 2 y 7.
    Solución
    Mo = 7
  • 8, 10, 6, 10, 2, 5, 7, 8, 10, 10 y 8.
    Solución
    Mo = 10

Distribución bimodal

La moda es el valor con mayor frecuencia en las distribuciones de los datos y en gráfico estadístico es fácil de distinguir porque representa la punta más alta. Sin embargo, puede suceder que se encuentren dos modas, en este caso la distribución de los datos se llama “bimodal”. En la imagen podemos ver una distribución normal (izquierda) y una bimodal (derecha).

 

LA MEDIANA

La mediana (Me), tal como su nombre lo indica, corresponde a un punto medio, equidistante de los extremos. Esta corresponde al valor para el cual la cantidad de datos menores y mayores a él es igual. Cuando los elementos del conjunto de datos son un número impar, la mediana queda definida. Si la cantidad de datos es par, la mediana es el promedio entre los dos datos centrales.

– Ejemplo 1:

Las calificaciones de 7 alumnos son: 12, 15, 12, 11, 16, 19 y 12. ¿Cuál es la mediana?

Primero organizamos de menor a mayor los datos, luego ubicamos el valor central.

11, 12, 1212, 15, 16, 19 

Nota que hay tres valores tanto a la derecha como a la izquierda del centro. Por lo tanto:

Me = 12


– Ejemplo 2:

En un grupo de baile hay 8 alumnos cuyas edades son: 22, 16, 18, 21, 20, 21, 14, 17. ¿Cuál es la mediana?

Organizamos lo datos y ubicamos los valores centrales:

14, 16, 17, 18, 20, 21, 21, 22

Como la cantidad de datos es par, hay dos valores centrales: 18 y 20. Para saber la mediana calculamos la media aritmética de ambos valores:

\overline{x}=\frac{18+20}{2}=\boldsymbol{19}

Por lo tanto,

Me = 19

¡Es tu turno!

  • 14, 16, 12, 12, 10, 18, 20, 14
    Solución
    Me = 14
  • 12, 13, 14, 15, 16, 17, 18, 19, 20
    Solución
    Me =16

TABLAS DE DOBLE ENTRADA

Las tablas de doble entrada son un recurso muy útil a la hora de organizar la información. Las mismas posibilitan presentar los datos de forma clara. Se trata de un conjunto de filas y columnas que representan la interacción entre dos o más variables.

– Ejemplo:

Esta tabla muestra la cantidad de veces que Marcos, Pedro y Lucía fueron al museo en tres meses:

Febrero Marzo Abril
Marcos 1 2 3
Pedro 4 5 1
Lucía 5 4 2

De la tabla podemos concluir que:

  • Lucía visitó el museo más veces en febrero.
  • Pedro visitó el museo más veces en marzo.
  • Marcos visitó el museo más veces en abril.

¡Es tu turno!

1. Calcula el promedio de las visitas por persona.

Solución
  • Marcos: {1, 2, 3}

\overline{x}=\boldsymbol{2}

  • Pedro: {4, 5, 1}

\overline{x}=\boldsymbol{3,33}

  • Lucía: {5, 4, 2}

\overline{x}=\boldsymbol{3,66}

2. Calcula el promedio de las visitas por mes.

Solución
  • Febrero: {1, 4, 5}

\overline{x}=\boldsymbol{3,33}

  • Marzo: {2, 5, 4}

\overline{x}=\boldsymbol{3,66}

  • Abril: {3,1, 2}

\overline{x}=\boldsymbol{2}

Para presentar los datos recopilados se utilizan tablas que permiten apreciar en forma organizada los valores obtenidos. Estas tablas cuentan con algunos elementos como la frecuencia o la amplitud de la variable. Una vez confeccionada una tabla de valores estadísticos se puede realizar un gráfico para visualizar con mayor facilidad los resultados.

¡A practicar!

1. Un grupo de 11 alumnos recibió sus calificaciones de música: 7, 2, 5, 6 ,8 ,9 ,6, 5, 4, 6 y 8. ¿Cuál es el promedio, la moda y la mediana?

Solución

\overline{x}=6

Mo=6

Me=6

2. Las estaturas en centímetros de un grupo de alumnos son las siguientes: 139, 134, 128, 135, 129, 139. ¿Cuál es el promedio, la moda y la mediana?

Solución

\overline{x}=134

Mo=139

Me=134,5

RECURSOS PARA DOCENTES

Artículo “Las medidas de tendencia central”

En el siguiente artículo encontrarás detalladas las principales medidas de tendencia central explicadas con ejercicios adecuados para la edad de los alumnos.

VER

CAPÍTULO 6 / TEMA 1

REPRESENTACIÓN GRÁFICA DE DATOS

Habrás observado que muchas veces la información en los medios de comunicación está acompañada por una variedad de gráficos. Los gráficos son representaciones visuales de un conjunto de datos; por ejemplo, la cantidad de habitantes de cada ciudad del país o el porcentaje del crecimiento interanual de una economía. Son muy efectivos para mostrar relaciones entre diferentes valores y permiten comprender fácilmente distintas situaciones de la realidad.

Es frecuente encontrar gráficos en los análisis estadísticos que refuercen de forma visual la información necesaria. Estas representaciones se adaptan en cada caso a aquello que se busca transmitir y al objetivo de la investigación. Dichos resultados se presentan de forma rápida, directa, atractiva y comprensible para un conjunto amplio de personas.

LOS DATOS Y LAS GRÁFICAS

Un dato no es más que una información que permite describir alguna característica de una situación de estudio. Este puede ser un número, una palabra o cualquier símbolo. Si un dato describe una cualidad se dice que es cualitativo, pero si señala una cantidad se llama cuantitativo. Por ejemplo:

Datos cualitativos Datos cuantitativos
– Profesión: {médico, policía, ingeniero}

– Color de ojos: {negro, azul, verde, marrón}

– Estado civil: {soltero, casado, viudo}

– Edad: {10 años, 11 años, 13 años}

– Peso: {40 kg, 37 kg, 41 kg}

– Cantidad de hermanos: {1, 3, 4}

Cuando tenemos una cantidad numerosa de datos recurrimos a las tablas. Allí, organizamos en filas y columnas los valores obtenidos y luego los clasificamos de acuerdo a los objetivos de la investigación. Posteriormente graficamos la información, pues estas gráficas brindan una mayor rapidez en la comprensión de los datos porque los presentan de forma clara, organizada y llamativa.

– Ejemplo:

30 personas fueron encuestadas acerca de cuál era su fruta favorita. Las respuestas obtenidas fueron las siguientes:

Manzana Pera Ananá Ananá Naranja Naranja
Banana Fresa Naranja Manzana Naranja Manzana
Naranja Durazno Manzana Ananá Naranja Pera
Banana Fresa Banana Fresa Manzana Fresa
Ananá Naranja Manzana Ananá Naranja Banana

Con estos datos podemos realizar una tabla que muestre la frecuencia o al cantidad de veces que cada fruta se repite.

Fruta Frecuencia
Manzana 6
Banana 4
Naranja 8
Pera 2
Ananá 5
Fresa 4
Durazno 1
Total 30

Si bien los datos se ven claramente en esta tabla, podemos graficarlos para que sea aún más sencillo visualizar cuáles son las frutas más o menos preferidas por este grupo de personas.

Elementos de los gráficos

Existen diferentes tipos de gráficos y la selección dependerá de la información que se quiera mostrar, sin embargo todos los gráficos tienen algunos elementos en común:

  • Título: todo gráfico debe tener un título para saber rápidamente de qué se trata. El mismo se ubica en la parte superior de la gráfica, debe ser claro, breve e informar sobre el contenido del cuadro.
  • Cuerpo: el cuerpo varía en función al estilo de gráfico que se seleccione, entre los más usados se encuentran el lineal, el de barras y el circular.

VER INFOGRAFÍA

TIPOS DE GRÁFICOS

Gráficos de barras

En este tipo de gráficos se construyen barras cuyas longitudes permiten comparar las categorías, observar los diferentes valores y obtener información con respecto a lapsos de tiempo. Las variables estudiadas se colocan en el eje horizontal y las frecuencias se colocan en el eje vertical, luego ubicamos los puntos y trazamos barras verticales para cada variable.

– Ejemplo:

Esta gráfica muestra la cantidad de hombres y mujeres en cada grado de un colegio.

Con esta gráfica vemos de forma muy clara la cantidad de hombres y mujeres que hay en cada grado. Nota que las barras de colores azul corresponden a los hombres y las barras de color naranja corresponden a las mujeres.

De acuerdo a la tabla, el grado con mayor cantidad de hombres es 6º (20), y el grado con menor cantidad de hombres es 1º (9).

¡Es tu turno!

Realiza la tabla de datos de acuerdo a la gráfica anterior.

Solución
Grado Hombres Mujeres Total
9 11 20
10 15 25
14 14 28
15 17 32
14 10 24
20 11 31
18 15 33
Total 100 93 193

¿Sabías qué?
Los gráficos de barras pueden ser verticales, horizontales, agrupados o apilados.

Gráficos lineales

Los gráficos lineales, también llamados gráficos poligonales, se representan en un plano (dos dimensiones) mediante el uso de un sistema de coordenadas. Para construirlos basta con ubicar los puntos en el plano y luego unirlos por medio de líneas.

– Ejemplo:

Con los mismos datos del ejemplo anterior en el que realizamos un gráfico de barras podemos dibujar un gráfico lineal.

Gráficos circulares

También son conocidos como gráficos de torta o pastel. Se usan para comparar porcentajes con respecto a un total de datos. Son útiles cuando deseas mostrar una sola serie de datos, por ejemplo, el sexo de la población. Para hallar los porcentajes parciales se dividen los 360° del círculo de acuerdo a los valores dados.

– Ejemplo:

La siguiente tabla muestra la cantidad de huéspedes en un hotel según su nacionalidad:

Nacionalidad Cantidad de turistas
Colombiana 12
Argentina 23
Chilena 5
Venezolana 15
Italiana 18
Total 73

Es normal colocar los valores de porcentajes en los gráficos de este tipo, para calcularlos solo dividimos la cantidad de cada nacionalidad entre el total de turista. Luego multiplicamos por 100. La suma de todos los porcentajes debe ser igual a 100 %.

Nacionalidad Cantidad de turistas Porcentaje
Colombiana 12 (12/73) × 100 = 16,44 %
Argentina 23 (23/73) × 100 = 31,50 %
Chilena 5 (5/73) × 100 = 6,85 %
Venezolana 15 (15/73) × 100 = 20,55 %
Italiana 18 (18/73) × 100 = 24,66 %
Total 73 100 %

Ahora, para ilustrar los datos en un círculo multiplicamos la fracción de cada nacionalidad por 360°. La suma de todos los grados debe ser igual a 360°. Por conveniencia redondeamos a la unidad cada producto.

Nacionalidad Cantidad de turistas Grados
Colombiana 12 (12/73) × 360° = 59,18° ≈ 59°
Argentina 23 (23/73) × 360° = 113,42° ≈ 113°
Chilena 5 (5/73) × 360° = 24,66° ≈ 25°
Venezolana 15 (15/73) × 360° = 73,97° ≈ 74°
Italiana 18 (18/73) × 360° = 88,77° ≈ 89°
Total 73 360°

De ese modo, tras dibujar la circunferencia, medimos con el transportador los grados correspondientes a cada porción y anotamos el porcentaje redondeado que lo representa.

¿Qué es una muestra?

Se denomina población al conjunto de elementos estudiados, es decir, al total. Una muestra es una parte de esa población, es decir, es una porción seleccionada que resulta representativa del conjunto. Se toman muestras cuando la población que se quiere estudiar es muy amplia e inabarcable, entonces se decide realizar una selección estratégica que recorte la cantidad de individuos a estudiar y que mantengan los rasgos representativos de toda la población analizada.

IMPORTANCIA DE REPRESENTAR DATOS EN GRÁFICOS

La estadística, entre otras cosas, se encarga de recopilar, analizar y sistematizar datos. Luego, debe comunicar la información generada en este proceso. La presentación de datos es uno de los aspectos mayormente utilizados en la estadística descriptiva. Los gráficos son muy importantes ya que posibilitan un abordaje dinámico, claro y entretenido.

En este sentido, los gráficos son una gran herramienta ya que permiten:

  • Registrar datos de manera clara y concreta.
  • Comunicar la información en forma sencilla.
  • Comprender la estructura del conjunto de datos.
La cartografía tiene como objetivo la concepción, redacción y realización de los mapas, es decir, la representación plana y simplificada de toda o de una parte de la superficie terrestre. Los mapas estadísticos o cartogramas son aquellos que presentan datos por regiones o zonas. Al igual que en un mapa topográfico, los colores y las tramas indican áreas que están en el mismo rango de valores.

 

¡A practicar!

Observa los gráficos y responde:

1. Marta vendió magdalenas durante toda la semana. La cantidad de magdalenas vendidas se muestra en el siguiente gráfico:

  • ¿Cuántas magdalenas vendió Marta el lunes?
    Solución
    Vendió 10 magdalenas.
  • ¿Cuál día vendió más magdalenas?
    Solución
    El martes.
  • ¿Cuál día vendió menos magdalenas?
    Solución
    El domingo.
  • ¿Cuántas magdalenas vendió durante la semana?
    Solución
    Vendió 68 magdalenas durante la semana.
  • ¿Cuál día vendió solo 8 magdalenas?
    Solución
    El viernes.

 

2. Se hizo una encuesta sobre el deporte favorito de un grupo de estudiantes. Los resultados se muestran en este gráfico.

  • ¿Cuál es el deporte favorito de la mayoría de encuestados?
    Solución
    El fútbol.
  • ¿Qué porcentaje de encuestados prefiere el béisbol?
    Solución
    El 14 %.
  • ¿Qué porcentaje de encuestados prefiere el baloncesto?
    Solución
    El 23 %.
  • ¿Cuál es el deporte menos preferido por los encuestados?
    Solución
    El béisbol.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Con el siguiente artículo podrás ampliar tu conocimiento sobre tipos de gráficos estadísticos y sus funciones.

VER

Artículo “Lectura de gráficos”

En el siguiente artículo encontrarás ejemplos claros y explicados para abordar la interpretación y lectura de gráficos.

VER 

CAPÍTULO 5 / REVISIÓN

geometría

áreas y perímetros

El cálculo de áreas y perímetros de figuras geométricas se hace a partir de la longitud de sus lados. El área de los rectángulos se calcula como la multiplicación de la base por la altura, y la de los triángulos se define como la multiplicación de la base por la altura dividido por dos. Cuando se calculan los perímetros se recurre a la sumatoria de la longitud de los lados, independientemente de la figura que sea.

Las figuras pueden ser simples o compuestas. Sin embargo, el cálculo del perímetro se realiza de la misma manera a través de la suma de las longitudes del contorno de la figura.

triángulos

Los triángulos son clasificados respecto a sus lados como equiláteros, isósceles y escalenos; y respecto a sus ángulos como acutángulos, rectángulos y obtusángulos. La suma de los ángulos internos de un triángulo es siempre igual a 180º. Los triángulos congruentes son aquellos que son isométricos entre sí, es decir, poseen las mismas dimensiones.

Para la construcción de los triángulos se puede usar el compás. En primer lugar, se traza un segmento con la longitud de los lados, luego se trazan dos arcos y desde el punto de intersección se trazan dos rectas hasta los extremos del segmento inicial.

plano, punto y segmento

Un plano es un conjunto infinito de puntos y segmentos dispuestos de manera bidimensional. Para formar un plano se precisan tres puntos, una recta y un punto o dos rectas no coincidentes. Para ubicar un punto se utiliza un sistema de coordenadas denominado eje cartesiano, en el cual se deben considerar los valores de X e Y. En el sistema de coordenadas, se pueden distinguir cuatro cuadrantes delimitados por los ejes.

Para ubicar un punto se intersecta un eje vertical en el valor de X y un eje horizontal en el valor de Y del punto.

Circunferencia

La circunferencia es una figura geométrica que mantiene todos sus puntos equidistantes de su centro.  Para calcular el área de una circunferencia se recurre a la siguiente fórmula \inline A = \pi \times r^{2}. Donde r es el radio, y π corresponde al número pi. Para la construcción de circunferencias se utiliza un compás: se realiza un segmento con la longitud del radio y a partir de allí se genera el arco completo.

El número pi es un número irracional que se obtiene al dividir la longitud de la circunferencia por su diámetro.

Transformaciones isométricas

La ampliación y la reducción son transformaciones en las dimensiones de las figuras geométricas sin alterar las propiedades de la figura original. Las transformaciones isométricas como la rotación y la traslación permiten variar la posición de la figura en el plano sin alterar sus dimensiones. Hay figuras geométricas que poseen uno o más ejes de simetría en donde cada uno de sus puntos opuestos se encuentran a una misma distancia entre sí.

Las reducciones son usadas generalmente en los planos para expresar longitudes a una menor escala.

PRISMAS Y PIRÁMIDES

Los prismas son figuras geométricas tridimensionales formadas por dos caras o bases iguales y paralelas que se encuentran unidas por paralelogramos. Las pirámides presentan una base en la que todas sus caras son triángulos que se encuentran unidos en un vértice. Para su construcción se realiza primero la base y luego la base paralela (en el caso de un prisma) o el vértice (en el caso de una pirámide) a una determinada altura. Por último, se unen las bases por paralelogramos o triángulos según corresponda al tipo de figura.

La Gran Pirámide de Guiza es una pirámide rectangular y fue construida hace 4.600 años.

CAPÍTULO 5 / TEMA 4

la circunferencia

La circunferencia es una línea curva, plana y cerrada que representa el perímetro de un círculo. Unas de sus características es que todos sus puntos se encuentran a una misma distancia de otro denominado origen. Sin importar su tamaño, siempre que se divida su longitud entre su diámetro da como resultado al número pi.

elementos de la circunferencia

La circunferencia es la forma geométrica en la cual todos sus puntos se encuentran equidistantes del centro, también conocido como origen. Eso quiere decir que todos los puntos están a la misma distancia de ese punto.

La circunferencia y sus elementos

  • Centro: es el punto interior que se encuentra a la misma distancia de todos los puntos de la circunferencia.

  • Radio: es la línea recta que une el centro con cualquier punto de la circunferencia.

  • Diámetro: es la mayor linea recta que puede unir dos puntos de la circunferencia. Es el doble del valor del radio y siempre pasa por el origen.

  • Arco: es un segmento curvilíneo de puntos pertenecientes a la circunferencia.

  • Cuerda: es el segmento de recta que une dos puntos de la circunferencia sin pasar por el origen.
  • Secante: es una recta que intersecta la circunferencia en dos puntos.

  • Tangente: es una recta que intersecta la circunferencia en un solo punto.

La circunferencia es una figura única. Sus puntos equidistantes entre sí respecto al centro han permitido resolver diversos problemas, desde cálculos matemáticos hasta problemas tan cotidianos como el transporte. Y es que aunque parezca sencilla, la rueda ha sido uno de los inventos que cambió definitivamente la vida del ser humano hasta la actualidad.

El número pi

Su nombre proviene de la letra griega pi (π) que se usa para expresarlo. Es un número irracional, es decir; un número decimal infinito, cuyos decimales no siguen un patrón que se repite. En la geometría y otras áreas ha tenido un fuerte impacto en la manera de resolver problemas porque relaciona la longitud de una circunferencia con su diámetro. La fórmula para calcular el número pi es π = C/D, donde C es la longitud de la circunferencia y D es el diámetro de la misma. El valor de este número con sus primeras 5 cifras decimales es: 3,14159…

¿Sabías qué?
Para simplificar los cálculos, el número pi suele escribirse como 3,14 para obtener resultados aproximados.

área de un Círculo

El círculo es la figura geométrica que se encuentra delimitada por una circunferencia; es decir, la circunferencia representa su perímetro. Para resolver el área de un círculo simplemente debemos multiplicar el cuadrado de su radio por el número pi.

A = \pi \times r^{2}

Dónde:

A = área del círculo.
π = número pi.
r = longitud del radio de la circunferencia.

Ejemplos de cálculos de área de un círculo

1. Calcular el área de una circunferencia cuyo radio mide 3 cm.

En este caso simplemente tenemos que sustituir el valor del diámetro y del número pi en la ecuación de área:

A = \pi \times r^{2}

A = 3,14 \times (3\, cm)^{2}

Luego se resuelve la potencia. Recuerda que en este caso la unidad es centímetro y al resolver la potencia dicha unidad quedara expresada en centímetros cuadrados (cm2).

A = 3,14 \times 9\, cm^{2}

Al resolver el producto se obtiene que el área de la circunferencia es la siguiente:

A = 28,26\, cm^{2}

Recordemos que el valor de pi que usamos para los cálculos es un aproximado porque 3,14 tiene dos decimales pero ¡pi en realidad tiene infinitos decimales! Como resultará lógico pensar, es imposible multiplicar el valor de pi con todos sus decimales, por esta razón en ejercicios cotidianos se emplean únicamente dos para obtener un resultado que, aunque no corresponde al valor exacto, si se encuentra cercano a este.

2. Calcular el área de un círculo con diámetro igual a 4 cm.

En este caso, el dato que nos proporciona el problema es el diámetro. Para aplicar la fórmula necesitamos el valor del radio. Lo único que debemos hacer es dividir el diámetro entre 2 (porque el diámetro corresponde al doble del valor del radio).

r = \frac{D}{2}=\frac{4\, cm}{2}= \mathbf{2\, cm}

Luego se reemplaza en la ecuación y se resuelve de la misma forma que en el ejercicio anterior.

A = 3,14 \times (2\, cm)^{2}

A = 3,14 \times 4\, cm^{2}

A = 12,56\, cm^{2}

construcción de circunferencias

Para la construcción de las circunferencias, se emplea el compás y una regla o escuadra para medir. Debemos seguir los siguientes pasos:

  • Paso 1
    Trazar un segmento con la longitud del radio de la circunferencia que se desea construir.

  • Paso 2
    Ubicar la punta del compás en uno de los extremos del segmento y abrir la bisagra del mismo hasta que la otra punta con lápiz se encuentre a la misma distancia del otro extremo.
  • Paso 3
    Marcar firmemente la circunferencia con la punta que contiene el lápiz de marcado al tiempo que se mantiene en su lugar la otra punta.

Al momento de realizar los trazados de circunferencias, es importante que el área de trabajo esté limpia al igual que los instrumentos que vas a usar. En el caso del compás hay varios tipos que varían en la forma, lo importante en cualquier caso es verificar que el extremo que contenga al lápiz o punta de grafito se encuentre afilado para que pueda realizar trazos uniformes.

¡A practicar!

  1. ¿Cuál es el área de las siguientes circunferencias?

a)

Solución
 A = 3,14\, cm^{2} 

b)

Solución
A = 50,24\, cm^{2} 

c)

Solución
A = 200,96\, cm^{2} 

d)

Solución
A = 78,5\, cm^{2} 

e)

Solución
A = 113,04\, cm^{2} 

f)

Solución
A = 254,34\, cm^{2} 

g)

Solución
A = 314\, cm^{2} 

h)

Solución
A = 153,86\, cm^{2} 

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

En este artículo se explican los elementos de la circunferencia y sus principales características.

VER

Artículo “Ángulos en una circunferencia”

En este artículo destacado se explican otros elementos de las circunferencias: los ángulos.

VER

CAPÍTULO 5 / TEMA 6

PRISMAS Y PIRÁMIDES

Los primas y las pirámides son cuerpos geométricos que se caracterizan porque todas sus caras son polígonos. Se diferencian porque los prismas tienen dos de sus caras paraleles e iguales mientras que las pirámides tienen una base que puede ser cualquier polígono y sus caras son triángulos.

TIPOS

Ya sea para el caso de prismas o pirámides, existen ciertas clasificaciones que los diferencian entre sí y al mismo tiempo tienen ciertas semejanzas. A continuación, veremos qué son estas figuras geométricas y cuáles son sus tipos.

Prismas

Un prisma es una proyección de dos caras paralelas iguales que están unidas por paralelogramos. Estas caras se denominan bases y tienen una determinada cantidad de lados. La forma de estas bases es la que dará la clasificación a los prismas correspondientes.

Tipos de prismas

Los prismas son tan diversos como figuras geométricas existen. El nombre de un prisma viene dado por la figura geométrica que conforma sus bases. Por ejemplo: si la base es un triángulo el nombre de la figura será prisma triangular.

Pirámides

Una pirámide está compuesta por una base y triángulos que se comparten un lado con ella. Todos los triángulos coinciden en un punto en común, denominado vértice.

Tipos de pirámides

En las pirámides al igual que en los prismas, su nombre viene determinado por la figura que conforma su base. Por ejemplo: si la base es un cuadrado, el nombre de la figura será pirámide cuadrangular.

VER INFOGRAFÍA

Esta no es la única clasificación de estos cuerpos geométricos: cada uno reciben una segunda clasificación. Esta depende del ángulo que tiene la base con respecto a las caras; por este motivo, estos cuerpos geométricos pueden ser rectos y oblicuos. Por ejemplo:

Un prisma, si sus ángulos son rectos, se denominará como prisma recto; en cambio, cuando sus ángulos no lo sean, se clasificará como prisma oblicuo. Las pirámides se denominan rectas cuando todas sus caras son triángulos isósceles iguales y la altura cae al punto medio de la base. Las pirámides oblicuas son aquellas en las que no todas sus caras son triángulos isósceles.

elementos principales

Los elementos principales de un prisma y una pirámide son similares entre sí. Solo se diferencian en que la pirámide tiene un vértice. Por lo tanto, los elementos principales de cada una de las figuras geométricas son:

Elementos de un prisma: bases, aristas y caras.

Elementos de una pirámide: base, aristas, caras y vértice.

En este ejemplo, podemos ver todos los elementos característicos de una pirámide. En el caso de los prismas, los elementos son los mismos, con la excepción del vértice, que no está presente.

construcción

Para la construcción de prismas y pirámides lo principal es la base. Esta cara tiene una cantidad de lados que será la misma cantidad que tenga el prisma o pirámide que resulta de su proyección. Por lo tanto, la construcción consta de los siguientes pasos:

Paso 1: construcción de la base.

Paso 2: construcción de la otra base (en prismas) o el vértice (en pirámides) a la altura correspondiente.

Paso 3: unión entre las bases con paralelogramos (en prismas) o entre la base y el vértice (en pirámides).

Construcción de prismas

Construcción de pirámides

reconocimiento de objetos en forma de prisma y pirámides

Para el reconocimiento de prismas y pirámides debemos utilizar el conocimiento previo de los elementos que forman cada una de estas figuras geométricas. Por lo tanto, procederemos a las siguientes definiciones:

Reconocimiento de prismas: se deben observar dos caras unidas entre sí por paralelogramos.

Reconocimiento de pirámides: se debe observar una base y un vértice unidos entre sí por triángulos.

La Gran Pirámide de Giza se encuentra en la meseta de Giza, Egipto. Se construyó hace 4.600 años por orden del faraón Keops por eso también se la conoce como pirámide de Keops. Se trata de una maravilla del Mundo Antiguo y tiene una altura de 138 metros. Sus dimensiones para la época en la que se construyó aún sorprenden a los arquéologos y es la única de las Siete Maravillas originales que aún existe.

ubicación de la altura

La ubicación de la altura en el caso de estas figuras geométricas tiene también cierta similitud. En los prismas la altura está determinada por las aristas; sin embargo, puede calcularse como la distancia entre el centro de las bases. En el caso de las pirámides, puede calcularse como la distancia entre el vértice y el centro de la base.

¡A practicar!

1. Determina si las siguientes figuras son prismas o pirámides, y nombrarlas.

a)

RESPUESTAS
La figura geométrica es un prisma. El nombre es prisma pentagonal ya que sus bases son pentágonos.

b)

RESPUESTAS
La figura geométrica es una pirámide. El nombre es pirámide hexagonal ya que su base es un hexágono.

RECURSOS PARA DOCENTES

Artículo “Prismas”

En el siguiente artículo destacado se explican con mayor profundidad el concepto de prisma, sus elementos, sus tipos y  se proporcionan algunos ejercicios de aplicación.

VER

Video “Dibujar una pirámide”

En este video se observa una animación de los elementos que componen una pirámide y del procedimiento a seguir para dibujarla.

VER

CAPÍTULO 5 / TEMA 5

TRANSFORMACIONES ISOMÉTRICAS

La ampliación y la reducción son transformaciones que permiten cambiar el alto y ancho de una figura sin alterar sus propiedades originales como ángulos, ejes de simetría, etc. Las transformaciones isométricas, en cambio, se refieren al cambio de posición de la figura en el plano sin variar sus dimensiones. La rotación y traslación son ejemplos de este tipo de transformaciones.

AMPLIACIONES DE FIGURAS

La ampliación de figuras es una proyección geométrica que produce una imagen de mayor tamaño. Esta transformación varía las dimensiones de la figura sin alterar su forma. Por lo tanto, las propiedades de cada una de las figuras ampliadas no variarán. El nivel de ampliación de las figuras está afectado por un factor de multiplicación.

Para su cálculo se deben multiplicar cada una de las medidas de la figura por su factor de multiplicación.

Factor de multiplicación

El factor de multiplicación es un factor de escala que se utiliza para ampliar la imagen en cada uno de sus lados en una determinada proporción. La transformación será ampliación cuando el factor sea mayor que 1 ya que este es una medida de cuánto se amplía la figura original.

REDUCCIÓN DE FIGURAS

De forma similar a la ampliación vista anteriormente, existe la reducción de figuras. Esta transformación consta de afectar una figura por un factor de reducción para disminuir las dimensiones de la imagen proporcionalmente de manera que se puedan mantener la forma y las propiedades de la imagen original.

Para su cálculo se deben dividir cada una de las medidas de la figura entre su factor de reducción.

Factor de reducción

El factor de reducción es un factor de escala que se utiliza para reducir la imagen en cada uno de sus lados en una determinada proporción. Muchas veces en los planos se emplean reducciones para expresar magnitudes como el tamaño de un edificio o el de un campo de fútbol, en estos casos se emplean escalas que indican a que proporción del tamaño real equivale cada una de las medidas del plano.

ROTACIÓN DE FIGURAS

La rotación de figuras es una transformación geométrica que consta de un giro de la figura sobre un determinado punto. El resultado de la transformación será una figura en el mismo lugar pero en diferente posición. El movimiento de la figura se da sobre un arco, y como todos los puntos lo hacen en igual proporción, la figura final no tendrá ningún cambio en la forma o en las propiedades.

Como puede observarse, la rotación de una figura no afectará su área o su forma. Simplemente es un cambio en la posición y orientación de la figura geométrica.

FIGURAS GEOMÉTRICAS Y EJES DE SIMETRÍA

Hay muchas figuras geométricas que tienen ejes de simetría. Estos ejes son líneas que dividen las figuras de tal forma que cualquiera de los puntos opuestos de las partes son equidistantes entre sí, lo que significa que son simétricos. Existen figuras que tienen incluso más de un eje de simetría. A continuación se observan algunos ejemplos:

¿Sabías qué?
El círculo es una figura geométrica con infinitos ejes de simetría.
Aplicaciones de la rotación

La rotación de figuras sobre ejes se utiliza para generar figuras en tres dimensiones. Por ejemplo, la rotación del triángulo isósceles sobre su propio eje genera un cono tridimensional. La rotación de un rectángulo da origen a un cilindro. A este tipo de cuerpos se los denomina sólidos de revolución.

¡A practicar!

1. Ampliar con un factor de multiplicación de 2 una circunferencia de 5 cm de radio. Calcular su área.

RESPUESTAS

El área será: A = π x r= 314 cm2

2. Reducir con un factor de 3 un triángulo rectángulo si sus catetos son de 6 cm cada uno. Calcular su área.

RESPUESTAS

El área será: A = C1 x C2 / 2 = 2 cm2

3. ¿Cuántos ejes de simetría tiene un rombo?

RESPUESTAS
Un rombo tiene dos ejes de simetría.

4. ¿Cuántos ejes de simetría tiene la figura?

RESPUESTAS
La figura no tiene ejes de simetría.

 

RECURSOS PARA DOCENTES

Artículo “Simetrías”

En este artículo se explican los diferentes tipos simetrías, como la axial, y las diferentes transformaciones isométricas.

VER

CAPÍTULO 5 / TEMA 3

plano, punto y segmento

El plano, el punto y la recta son conceptos abstractos, lo que quiere decir que no se definen; sin embargo, son los pilares fundamentales de la geometría. Un segmento es un fragmento de recta que se encuentra delimitadas entre dos puntos. Todos estos sistemas pueden representarse en sistemas de coordenadas que tienen diferentes aplicaciones.

¿qué es un plano?

Un plano es un conjunto infinito de puntos y rectas expresado en dos dimensiones. Por lo tanto, no tiene volumen ya que es una superficie bidimensional.

¿Cuándo se puede definir un plano?

Para definir un plano se necesita de alguno de los siguientes elementos geométricos:

  • Tres puntos no alineados.
  • Una recta y un punto exterior a ella.
  • Dos rectas no coincidentes.

sistema de coordenadas

Un sistema de coordenadas es la utilización de dos ejes cartesianos coincidentes en un punto denominado origen (0;0). Esta representación sirve para poder ubicar un punto o representación geométrica. Los ejes se representan como X, al eje de las abscisas, y como Y, al eje de las ordenadas.

Este sistema de coordenadas es uno de los más usados hoy en día y fue inventado el el siglo XVII por el filósofo y matemático francés René Descartes. En este sistema se emplea un plano cartesiano que funciona como un mapa en el cuál cada punto está relacionado a las coordenadas determinadas por dos rectas numéricas perpendiculares denominadas ejes.

¿Sabías qué?
En la astronomía se utilizan los sistemas de coordenadas para expresar la ubicación de forma correcta de planetas y estrellas.

VER INFOGRAFÍA

ubicación de puntos en el sistema de coordenadas

Para ubicar un punto en el sistema de coordenadas se debe especificar tanto la coordenada X como la Y. Un punto se representa con una letra mayúscula y presenta la siguiente estructura P(x;y). Para que se pueda ubicar en el sistema de coordenadas se utilizan los valores correspondientes a cada una de estas.

Los cuadrantes

En el sistema de coordenadas se puede hacer una distinción entre cuatro cuadrantes como se ve en la imagen. Ahí también se ven representados ambos ejes de coordenadas.

Los cuadrantes son utilizados comúnmente en la geometría para diferenciar la ubicación de diferentes ángulos:

  • El primer cuadrante estará comprendido entre 0º y 90º. Está formado por las cordenadas X positivas y las coordenadas Y positivas. Por ejemplo, el punto P(3;5) corresponde a este cuadrante.
  • El segundo cuadrante estará comprendido entre 90º y 180º. Está formado por las coordenadas X negativas y las coordenadas Y positivas. Por ejemplo, el punto F(−3;5) corresponde a este cuadrante.
  • El tercer cuadrante estará comprendido entre 180º y 270º. Está formado por las coordenadas X negativas y las coordenadas Y negativas. Por ejemplo, el punto H(−3;−5) corresponde a este cuadrante.
  • El cuarto cuadrante estará comprendido entre 270º y 360º. Está formado por las coordenadas X positivas y las coordenadas Y negativas. Por ejemplo, el punto M(3;−5) corresponde a este cuadrante.

Ejemplo de ubicación de puntos en el sistema de coordenadas

Ubicar en el sistema de coordenadas el punto P(3;5).

Para hacerlo se debe indicar primero cuál es el valor correspondiente a X y cuál es el valor correspondiente a Y:

X = 3, trazamos una línea vertical en el valor de 3 en el eje X.

Y = 5, trazamos una línea horizontal en el valor de 5 del eje Y.

La intersección de las dos rectas será el punto correspondiente.

La ubicación del punto P(3;5) se encuentra con la intersección de las rectas vertical y horizontal en los valores de X e Y correspondientes.

aplicación de los sistemas de coordenadas

Los sistemas de coordenadas tienen una gran cantidad de aplicaciones, no solo matemáticas. Estos se encuentran como representaciones de movimiento en física, como funciones de ingreso y egreso en contabilidad, o para representaciones de vida media en biología, entre otras cosas.

Funciones en sistemas de coordenadas

Una de las principales aplicaciones de los sistemas de coordenadas es la representación de funciones matemáticas. Estas son representaciones de Y en función de X. En la siguiente imagen, se muestran ejemplos de gráficas de funciones cuadráticas.

¡A practicar!

1. ¿A qué cuadrante corresponde cada uno de los siguientes puntos.
a) S(4;3)

Solución
Primer cuadrante.
b) T(1;−5)
Solución
Cuarto cuadrante.
c) D(−2;−8)
Solución
Tercer cuadrante.
d) R(−1;7)
Solución
Segundo cuadrante.

2. ¿Cuántas coordenadas se necesitan para representar un punto?

Solución
Dos

3. ¿Quién inventó el sistema de coordenadas?

Solución
René Descartes

4. ¿Cómo se denominan a los ejes de coordenadas cartesianas?

Solución
Eje X y eje Y.

5.Ubicar en el mismo sistema de coordenadas los siguientes puntos

a) A(−2;3)
b) B(0;1)
c) C(4;-2)

RESPUESTAS

RECURSOS PARA DOCENTES

Artículo “Ejes cartesianos”

En este artículo se explica de manera muy didáctica la forma de ubicar puntos en el sistema de coordenadas. Además hay un complemento teórico sobre los ejes cartesianos, así como también ejercicios para practicar.

VER