CAPÍTULO 1 / TEMA 7

RELACIONES

LOS NÚMEROS NATURALES SON LOS QUE USAMOS PARA CONTAR, POR EJEMPLO, LA CANTIDAD DE JUGUETES QUE TENEMOS O LAS HORAS QUE FALTAN PARA SALIR A JUGAR. TODOS ELLOS TIENEN UNA RELACIÓN CON LOS DEMÁS NÚMEROS. PARA ESCRIBIR ESTAS RELACIONES USAMOS ALGUNOS SÍMBOLOS ESPECIALES QUE APRENDERÁS HOY.

RELACIONES ENTRE NÚMEROS

TODOS LOS NÚMEROS NATURALES TIENEN UNA RELACIÓN. EN LA IMAGEN VEMOS UN ORDEN DE 1 EN 1 PORQUE CADA NÚMERO A LA DERECHA TIENE UNA UNIDAD MÁS QUE EL ANTERIOR. SI QUEREMOS SABER QUÉ NÚMERO ES MAYOR O MENOR QUE OTRO PODEMOS UTILIZAR UNA RECTA NUMÉRICA. MIENTRAS MÁS A LA DERECHA DE LA RECTA ESTÉ EL NÚMERO, MAYOR SERÁ SU VALOR.

HAY NÚMEROS QUE REPRESENTAN MÁS CANTIDAD QUE OTROS Y POR LO TANTO, TAMBIÉN HAY NÚMEROS QUE REPRESENTAN MENOS CANTIDAD QUE OTROS. ESTA RELACIÓN SE LLAMA ORDEN Y LA USAMOS CADA VEZ QUE CONTAMOS O COMPARAMOS CIFRAS.

ENTRE DOS NÚMEROS, UNO PUEDE SER MAYOR QUE OTRO, IGUAL A OTRO O MENOR QUE OTRO. CADA RELACIÓN TIENE UN SÍMBOLO ÚNICO PARA QUE PUEDAS DIFERENCIARLO.

MAYOR QUE

CUANDO ESCRIBIMOS NÚMEROS PODEMOS VER QUE UNOS REPRESENTAN MÁS CANTIDADES QUE OTROS. POR EJEMPLO:

  • ¿CUÁNTOS CANGREJOS HAY EN LA CAJA ROJA?

HAY 24 CANGREJOS.

  • ¿CUÁNTO CANGREJOS HAY EN LA CAJA AZUL?

HAY 12 CANGREJOS.

  • ¿CUÁL CAJA TIENE MAYOR CANTIDAD DE CANGREJOS?

LA CAJA ROJA TIENE MAYOR CANTIDAD DE CANGREJOS PORQUE 24 ES MAYOR QUE 12.

 

ESTA RELACIÓN ENTRE DOS NÚMEROS LA PODEMOS ESCRIBIR CON EL SÍMBOLO > QUE SIGNIFICA “MAYOR QUE”.

24 > 12

SI UBICAMOS CADA NÚMERO EN LA RECTA NUMÉRICA TENEMOS QUE:

EL NÚMERO 24 ES MAYOR QUE 12 PORQUE SE ENCUENTRA MÁS A LA DERECHA EN LA RECTA NUMÉRICA.


OTRO EJEMPLO:

OBSERVA ESTOS NÚMEROS, ¿CUÁL ES MAYOR?

365            357

PARA RESPONDER LA PREGUNTA DEBEMOS REPRESENTAR EN LA RECTA NUMÉRICA CADA NÚMERO Y COMPARARLOS:

COMO EL 365 ESTÁ MÁS A LA DERECHA EN LA RECTA, 365 ES MAYOR QUE 357. ENTONCES:

365 > 357

¡A ORDENAR NÚMEROS!

ORDENA DE MAYOR A MENOR ESTOS NÚMEROS. USA EL SÍMBOLO “MAYOR QUE” PARA REPRESENTAR LA RELACIÓN ENTRE CADA UNO DE ELLOS.

125 – 89 – 856 – 632

SOLUCIÓN

856 > 632 > 125 > 89

IGUAL QUE

ES POSIBLE QUE DOS CANTIDADES SEAN IGUALES. POR EJEMPLO:

  • CADA CAJA TIENE CARACOLAS MARINAS, ¿CUÁNTAS HAY EN LA CAJA ROJA?, ¿CUÁNTAS HAY EN LA CAJA AZUL?

EN LAS DOS CAJAS HAY LO MISMO: 15 CARACOLAS MARINAS.

 

CUANDO DOS NÚMEROS SON IGUALES USAMOS EL SÍMBOLO = QUE SIGNIFICA “IGUAL A “.

15 = 15

EL SÍMBOLO DE IGUALDAD TAMBIÉN SIRVE PARA DEMOSTRAR QUE UN NÚMERO ES IGUAL A LA SUMA DE OTROS. EJEMPLO:

15 = 10 + 5

15 = 5 + 5 + 5

15 = 2 + 3 + 2 + 3 + 2 + 3

SI BUSCAMOS REPRESENTAR LA IGUALDAD EN UNA RECTA NUMÉRICA, LOS DOS NÚMEROS SERÁN REPRESENTADOS EN EL MISMO LUGAR.

¡COMPAREMOS NÚMEROS!

INDICA SI ESTAS IGUALDADES SON CORRECTAS:

  • 543 = 500 + 40 + 3
SOLUCIÓN
CORRECTO.
  • 123 = 10 + 2 + 3
SOLUCIÓN
INCORRECTO. LA DESCOMPOSICIÓN ADITIVA DE 123 = 100 + 20 + 3.

LA IGUALDAD

SIEMPRE QUE DOS EXPRESIONES SEAN IGUALES DECIMOS QUE HAY UNA IGUALDAD MATEMÁTICA. EL SIGNO USADO ES =. ESTE SIGNO FUE CREADO POR ROBERT RECORDE EN 1557. ÉL USÓ DOS RECTAS PARALELAS PARA REPRESENTARLO.

MENOR QUE

ALGUNOS NÚMEROS REPRESENTAN MENOS CANTIDADES QUE OTROS. POR EJEMPLO:

  • ¿CUÁNTOS PECES HAY EN LA CAJA ROJA?

HAY 18 PECES.

  • ¿CUÁNTOS PECES HAY EN LA CAJA AZUL?

HAY 21 PECES.

  • ¿CUÁL CAJA TIENE MENOR CANTIDAD DE PECES?

LA CAJA ROJA TIENE MENOR CANTIDAD DE PECES PORQUE 18 ES MENOR QUE 21.

 

ESTA RELACIÓN ENTRE DOS NÚMEROS LA PODEMOS ESCRIBIR CON EL SÍMBOLO QUE SIGNIFICA “MENOR QUE”.

18 < 21

SI UBICAMOS CADA NÚMERO EN LA RECTA NUMÉRICA TENEMOS QUE:

EL NÚMERO 18 ES MENOR QUE 21 PORQUE SE ENCUENTRA MÁS A LA IZQUIERDA EN LA RECTA NUMÉRICA.


OTRO EJEMPLO:

OBSERVA ESTOS NÚMEROS, ¿CUÁL ES MENOR?

433            448

PARA RESPONDER LA PREGUNTA DEBEMOS REPRESENTAR EN LA RECTA NUMÉRICA CADA NÚMERO Y COMPARARLOS:

COMO EL 433 ESTÁ MÁS A LA IZQUIERDA EN LA RECTA, 433 ES MENOR QUE 448. ENTONCES:

433 < 448

¿SABÍAS QUÉ?
LA ABERTURA DE LOS SÍMBOLOS < Y > SIEMPRE IRÁ HACIA EL NÚMERO MAYOR, Y LA PUNTA IRÁ HACIA EL NÚMERO MENOR.

¡A ORDENAR NÚMEROS!

ORDENA DE MENOR A MAYOR ESTOS NÚMEROS. USA EL SÍMBOLO “MENOR QUE” PARA REPRESENTAR LA RELACIÓN ENTRE CADA UNO DE ELLOS.

489 – 511 – 263 – 384

SOLUCIÓN

263 < 384 < 489 < 511

LOS SÍMBOLOS DE RELACIÓN SIRVEN PARA QUE COMPAREMOS CANTIDADES. ES POSIBLE QUE NO NOS DEMOS CUENTA, PERO SIEMPRE LOS USAMOS. POR EJEMPLO, MIENTRAS MÁS AÑOS TENEMOS, MÁS ALTOS SOMOS. SI MARCAMOS EN LA PARED NUESTRA ESTATURA VEREMOS QUE CADA AÑO LA MEDIDA ES MAYOR QUE LA ANTERIOR, O VISTO DE OTRO MODO, QUE LA ESTATURA ANTERIOR ES MENOR QUE LA ACTUAL.

 

¡A PRACTICAR!

1. COLOCA EL SÍMBOLO DE RELACIÓN QUE CORRESPONDA:

  • 64 ___ 89
SOLUCIÓN
64 < 89 
  • 159 ___ 685
SOLUCIÓN
159 < 685
  • 745 ___ 700 + 40 + 5
SOLUCIÓN
745 = 700 + 40 + 5
  • 4 + 40 ___ 20 + 7
SOLUCIÓN
4 + 40 = 44 > 27 = 20 + 7
  • 999 ___ 654
SOLUCIÓN
999 > 654
  • 80 + 4 ___ 84
SOLUCIÓN
80 + 4 = 84

 

2. ESCRIBE SI LA RELACIÓN ES VERDADERA O FALSA.

  • 5 = 8
SOLUCIÓN
FALSO. 5 < 8
  • 85 < 85
SOLUCIÓN
FALSO. 85 = 85
  • 196 < 852
SOLUCIÓN
VERDADERO.
  • 458 > 655
SOLUCIÓN
FALSO. 458 < 655
  • 351 < 536
SOLUCIÓN
VERDADERO.
  • 758 = 663
SOLUCIÓN
FALSO. 758 > 663

 

3. ORDENA DE MENOR A MAYOR:

78 – 96 – 499 – 164 – 8 – 968 – 781 – 63 – 19 – 82

SOLUCIÓN
8 < 19 < 63 < 78 < 82 < 96 < 164 < 499 < 781 < 968
RECURSOS PARA DOCENTES

Artículo “Comparar y ordenar números”

En el siguiente artículo hay más ejercicios para la práctica de la relación de números: mayor que y menor que.

VER

CAPÍTULO 5 / TEMA 5 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿QUÉ APRENDIMOS?

LOS PICTOGRAMAS

EL SER HUMANO SIEMPRE HA INTENTADO COMUNICARSE A TRAVÉS DE PINTURAS EN CAVERNAS O CON TALLADOS EN METALES Y MADERA. HOY DÍA TAMBIÉN LO HACEMOS Y EXPRESAMOS NUESTROS SENTIMIENTOS O DESEOS POR MEDIO DE IMÁGENES, COSA QUE LLAMAMOS “PICTOGRAMAS“. ESTOS PICTOGRAMAS SON USADOS EN SEÑALES DE TRÁNSITO, CARTELES PUBLICITARIOS, HISTORIETAS, AVISOS Y GRÁFICOS DE DE INFORMACIÓN QUE PUEDEN SER ENTENDIDOS POR TODAS LAS PERSONAS DEL MUNDO DE FORMA CLARA.

LOS PICTOGRAMAS SON UTILIZADOS EN LAS SEÑALES DE TRÁNSITO COMO ESTE.

TABLAS

LOS DATOS RECOLECTADOS TRAS UNA ENCUESTA PUEDEN ORGANIZARSE EN UNA TABLA. UNA TABLA ES UN CUADRO FORMADO POR FILAS, COLUMNAS Y CELDAS. LAS COLUMNAS SON LAS HILERAS VERTICALES, LAS FILAS SON LAS HILERAS HORIZONTALES Y LAS CELDAS RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA. PUEDEN HACERSE CON NÚMEROS, CON PICTOGRAMAS Y CON MÁS DE DOS DATOS.

LAS TABLAS SON DE GRAN AYUDA PARA CONTROLAR EL DINERO QUE TENEMOS Y EL QUE GASTAMOS.

GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS MUESTRAN CON RECTÁNGULOS UNA INFORMACIÓN. ESTOS GRÁFICOS EXPRESAN A TRAVÉS DE BARRAS EL VALOR DE UNA CATEGORÍA Y SON MUY ÚTILES PARA VER DE FORMA RÁPIDA CUÁL TIENE UN MAYOR VALOR O UN MENOR VALOR. PARA REALIZARLO EN NECESARIO QUE PRIMERO ORGANICEMOS LOS DATOS EN UNA TABLA.

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES O APILADOS.

PROBABILIDAD

LA PROBABILIDAD ESTUDIA LA POSIBILIDAD DE QUE UN EVENTO OCURRA O NO. POR EJEMPLO, SI LANZAMOS UN PAR DE DADOS NO SABEMOS CON SEGURIDAD QUÉ NÚMERO SALDRÁ, PERO SÍ SABEMOS QUE SALDRÁ EN CADA UNO UN NÚMERO MENOR A 7. ESTOS SON SUCESOS ALEATORIOS EN LOS QUE INTERVIENE EL AZAR, ES DECIR, QUE NO PODEMOS PREDECIR.

LOS JUEGOS DE CARTAS Y DADOS SON JUEGOS DE AZAR. HAY PROBABILIDAD DE QUE SALGA CUALQUIER CARTA DEL MAZO, ASÍ COMO CUALQUIER NÚMERO MENOR A 7 EN CADA DADO.

CAPÍTULO 5 / TEMA 4

PROBABILIDAD

¿ALGUNA VEZ HAS LANZADO UN DADO? ¿SIEMPRE SABES QUE NÚMERO SALDRÁ? ¡NO! ¿VERDAD? AUNQUE SABES QUE PUEDE SALIR UN NÚMERO DEL 1 AL 6 NO TIENES SEGURIDAD DE CUÁL DE ESOS NÚMEROS SERÁ. GRACIAS A LA PROBABILIDAD PODEMOS CALCULAR LA CANTIDAD DE VECES QUE UN EVENTO ALEATORIO COMO ESTE PUEDE OCURRIR O NO.

evento ALEATORIO

UN EVENTO ALEATORIO ES AQUEL QUE PUEDE OCURRIR O NO PUEDE OCURRIR Y EN EL QUE INTERVIENE EL AZAR. ES DECIR, QUE SI REPETIMOS EL MISMO EL EVENTO PODEMOS TENER SIEMPRE DISTINTOS RESULTADOS.

– EJEMPLOS:

  • LANZAR UNA MONEDA.
  • LANZAR UN DADO.
  • ELEGIR UNA CARTA DE UN MAZO.
  • SACAR UN CARAMELO ROJO DE UNA BOLSA CON CARAMELOS DE MÚLTIPLES COLORES.

COMO VES, NO PODEMOS PREDECIR EL RESULTADO DE ESTOS EVENTOS.

LOS DADOS SON OBJETOS CON FORMA DE CUBO Y TIENEN SEIS CARAS. CADA CARA REPRESENTA UN NÚMERO DEL 1 AL 6. ES NORMAL QUE LOS VEAS EN JUEGOS DE MESA COMO EL LUDO, EL MONOPOLIO Y EL PASE INGLÉS. CUANDO LANZAMOS UN DADO ESTAMOS SEGUROS QUE SALDRÁ UNO DE ESOS NÚMEROS, PERO NO SABEMOS CON SEGURIDAD CUÁL, ES DECIR, NO PODEMOS PREDECIR EL RESULTADO. ESO ES LO QUE CONOCEMOS COMO AZAR.

sucesos posibles

OBSERVA ESTAS BOLSAS CON BOLAS DE COLORES. SI SACAMOS UNA BOLA CON LOS OJOS CERRADOS NO SABRÍAMOS DE QUÉ COLOR SALDRÍA LA BOLA. SIN EMBARGO, PODEMOS PREDECIR QUÉ TAN PROBABLE ES QUE SAQUEMOS UN COLOR U OTRO.

– EJEMPLO:

NOTA QUE:

  • HAY 2 BOLAS ROJAS.
  • HAY 10 BOLAS AMARILLAS.

HAY MÁS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MÁS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

 

NOTA QUE:

  • HAY 6 BOLAS ROJAS.
  • HAY 6 BOLAS AMARILLAS.

HAY IGUAL CANTIDAD DE BOLAS DE COLOR ROJO Y AMARILLO, ASÍ QUE:

 

ES IGUAL DE PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO O DE COLOR ROJO.

 


NOTA QUE:

  • HAY 10 BOLAS ROJAS.
  • HAY 2 BOLAS AMARILLAS.

HAY MENOS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MENOS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

SEGURO, PROBABLE O IMPOSIBLE

LOS SUCESOS SON CADA UNO DE LOS RESULTADOS POSIBLES DE UN EVENTO ALEATORIO. ESTOS PUEDEN SER SEGUROS, PROBABLES O IMPOSIBLES.

  • LOS SUCESOS SEGUROS OCURREN SIEMPRE.
  • LOS SUCESOS PROBABLES OCURREN A VECES.
  • LOS SUCESOS IMPOSIBLES NO OCURREN NUNCA.

– EJEMPLO:

 ES SEGURO SACAR UNA BOLA AMARILLA.

 ES PROBABLE SACAR UNA BOLA VERDE.

 ES IMPOSIBLE SACAR UNA BOLA AZUL.

¿SABÍAS QUÉ?
LOS SUCESOS QUE OCURREN CON SEGURIDAD SE LLAMAN “SUCESOS DETERMINISTAS”, POR EJEMPLO, LA HORA EN LA QUE ABRE UN BANCO SIEMPRE ES LA MISMA. 
ALFONSO TIENE BLOQUES DE COLOR AMARILLO, AZUL, ROJO, VERDE, BLANCO Y NEGRO PARA JUGAR. SI ESTÁN TODOS EN UNA CAJA Y SACA DE A UNO SIN VER ES SEGURO QUE ALFONSO ELEGIRÁ UN BLOQUE DE CUALQUIERA DE ESOS COLORES, ES PROBABLE QUE ELIJA UN BLOQUE AMARILLO, PERO ES IMPOSIBLE QUE ELIJA UN BLOQUE DE COLOR ANARANJADO O GRIS.

RECOPILACIÓN DE DATOS

TODOS LOS DATOS PUEDEN ORGANIZARSE EN UNA TABLA, EN UNA TABLA DE PICTOGRAMAS O EN UN GRÁFICO DE BARRAS. POR EJEMPLO, SI QUEREMOS ORGANIZAR LOS BLOQUES PARA JUGAR POR COLOR TENEMOS QUE CONTAR UNO POR UNO Y HACER GRUPOS DE COLORES. LUEGO LOS REPRESENTAMOS. POR EJEMPLO:

  • TABLA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO 16
AZUL 28
ROJO 32
VERDE 20

 

  • TABLA DE PICTOGRAMA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO
AZUL
ROJO
VERDE
CLAVE

= 4 BLOQUES

 

  • GRÁFICO DE BARRAS

NOTA QUE TANTO LA TABLA, COMO LA TABLA DE PICTOGRAMAS Y EL GRÁFICO DE BARRAS REPRESENTAN LOS MISMOS DATOS.

¡A PRACTICAR!

  1. COMPLETA CON “SEGURO”, “PROBABLE” O “IMPOSIBLE” LAS SIGUIENTES ORACIONES.
  • ES ____ LANZAR UN DADO Y QUE SALGA EL NÚMERO 7.
SOLUCIÓN
IMPOSIBLE
  • ES ____ LANZAR UNA MONEDA Y QUE SALGA CARA.
SOLUCIÓN
PROBABLE
  • ES ____ LANZAR UN DADO Y QUE SALGA UN NÚMERO MENOR A 7.
SOLUCIÓN
SEGURO

 

2. OBSERVA ESTA RULETA. LUEGO RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTAS ZONAS ROJAS HAY?
    SOLUCIÓN
    3
  • ¿CUÁNTAS ZONAS VERDES HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS MORADAS HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS AMARILLAS HAY?
    SOLUCIÓN
    1
  • ¿CUÁL COLOR ES MÁS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL ROJO.
  • ¿CUÁL COLOR ES MENOS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL AMARILLO.
  • ¿CUÁLES COLORES TIENEN IGUAL PROBABILIDAD DE SALIR LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL VERDE Y EL MORADO.
RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Este artículo servirá de ayuda para profundizar sobre los conceptos básicos de la probabilidad.

VER

CAPÍTULO 5 / TEMA 3

GRÁFICO DE BARRAS

EXISTEN MUCHAS FORMAS DE REPRESENTAR UNA INFORMACIÓN, YA SEA POR TABLAS, PICTOGRAMAS O GRÁFICOS DE BARRAS. ¿SABES QUÉ SON LOS GRÁFICOS DE BARRAS? ESTOS GRÁFICOS SE UTILIZAN PARA EXPRESAR DATOS DE FORMA RÁPIDA POR MEDIO DE BARRAS VERTICALES U HORIZONTALES. ¡APRENDAMOS PARA QUÉ SIRVEN Y CUÁLES SON SUS ELEMENTOS!

¿QUÉ ES UN GRÁFICO DE BARRAS?

EL GRÁFICO DE BARRAS ES UNA MANERA DE MOSTRAR UNA INFORMACIÓN CLARA Y ORDENADA. CONSISTE EN UN CONJUNTOS DE BARRAS DONDE CADA UNA REPRESENTA UNA CATEGORÍA. LAS ALTURAS DE LAS BARRAS NOS AYUDAN A COMPARAR DATOS.

EL GRÁFICO DE BARRAS ES TAMBIÉN CONOCIDO COMO DIAGRAMA DE BARRAS. LAS BARRAS PUEDEN SER VERTICALES, COMO LAS DE LA IMAGEN; PERO TAMBIÉN PUEDEN SER HORIZONTALES. EL COLOR Y LA ALTURA DE CADA BARRA NOS PERMITE HACER COMPARACIONES. POR EJEMPLO, LA BARRA VERDE ES MÁS ALTA QUE LA ROJA, ASÍ QUE REPRESENTA UN VALOR MAYOR.

TIPOS DE GRÁFICOS DE BARRAS

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES Y APILADOS.

FUNCIÓN DEL GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS FUNCIONAN PARA COMPARAR DATOS DE FORMA RÁPIDA.

– EJEMPLO:

SE LE PREGUNTARON A LOS ALUMNOS DE 2º GRADO CUÁL ES SU DEPORTE FAVORITO. LAS RESPUESTAS SE REPRESENTAN EN ESTE GRÁFICO DE BARRAS:

AL OBSERVAR EL GRÁFICO VEMOS QUE:

  • EL FÚTBOL FUE ELEGIDO POR 6 ALUMNOS.
  • EL BALONCESTO FUE ELEGIDO POR 2 ALUMNOS.
  • EL BÉISBOL FUE ELEGIDO POR 5 ALUMNOS.
  • EL TENIS FUE ELEGIDO POR 8 ALUMNOS.

¡ES TU TURNO!

OBSERVA LA TABLA ANTERIOR. RESPONDE:

  • ¿CUÁL FUE EL DEPORTE MÁS ELEGIDO POR LOS ALUMNOS?
    SOLUCIÓN
    EL TENIS.
  • ¿CUÁL FUE EL DEPORTE MENOS ELEGIDO POR LOS ALUMNOS?
    SOLUCIÓN
    EL BALONCESTO.

ELEMENTOS DEL GRÁFICO DE BARRAS

LOS ELEMENTOS DEL GRÁFICO DE BARRAS INDICAN LA FUNCIÓN DE CADA PARTE DEL MISMO. VEAMOS:

¿SABÍAS QUÉ?
TODAS LAS BARRAS DE ESTE GRÁFICO TIENEN EL MISMO ANCHO Y NO SE SUPERPONEN.

PROBLEMAS CON GRÁFICOS DE BARRAS

VEAMOS ALGUNOS PROBLEMAS PARA RESOLVER CON GRÁFICOS DE BARRAS. ¿TE ANIMAS?

EL SIGUIENTE GRÁFICO EXPRESA LA CANTIDAD DE LIBROS QUE HAN LEÍDO LOS NIÑOS AMIGOS DE TANIA.

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿CUÁNTOS LIBROS LEYÓ JULIANA?
    SOLUCIÓN
    JULIANA LEYÓ 12 LIBROS.
  • ¿CUÁNTOS LIBROS LEYÓ CAMILA?
    SOLUCIÓN
    CAMILA LEYÓ 4 LIBROS.
  • ¿CUÁNTOS LIBROS LEYÓ LEONEL?
    SOLUCIÓN
    LEONEL LEYÓ 10 LIBROS.
  • ¿QUIÉN LEYÓ MÁS LIBROS?
    SOLUCIÓN
    JULIANA LEYÓ MÁS LIBROS.
  • ¿QUIÉN LEYÓ MENOS LIBROS?
    SOLUCIÓN
    CAMILA LEYÓ MENOS LIBROS.

 

2. EL KIOSCO DE MERCEDES VENDIÓ EN UN DÍA LOS SIGUIENTES PRODUCTOS:

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿CUÁL PRODUCTO FUE EL MÁS VENDIDO?
    SOLUCIÓN
    LOS JUGOS.
  • ¿CUÁL PRODUCTO FUE EL MENOS VENDIDO?
    SOLUCIÓN
    LOS CHOCOLATES.
  • ¿CUÁNTOS JUGOS, CHOCOLATES Y FRUTAS SE VENDIERON?
    SOLUCIÓN
    MERCEDES VENDIÓ 4 CHOCOLATES, 10 JUGOS Y 8 FRUTAS.

 

3. EL SIGUIENTE GRÁFICO MUESTRA LA CANTIDAD DE TORNEOS DE AJEDREZ GANADOS DURANTE TRES AÑOS POR TOMÁS.

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿EN QUÉ AÑO LE FUE MEJOR A TOMÁS? ¿CUÁNTOS TORNEOS GANÓ ESE AÑO?
    SOLUCIÓN
    A TOMÁS LE FUE MEJOR EN EL TERCER AÑO. GANÓ 8 TORNEOS.
  • ¿CUÁL FUE EL AÑO QUE NO LE FUE BIEN Y CUÁNTOS TORNEOS GANÓ ESE AÑO?
    SOLUCIÓN
    A TOMÁS NO LE FUE BIEN EL SEGUNDO AÑO. GANÓ 5 TORNEOS.
  • ¿CUÁNTOS TORNEOS GANÓ EN TOTAL DURANTE LOS TRES AÑOS?
    SOLUCIÓN
    DURANTE LOS TRES AÑOS TOMÁS GANÓ 19 TORNEOS.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Con este recurso se podrá profundizar sobre los distintos tipos de gráficos estadísticos, incluyendo los gráficos de barras.

VER

CAPÍTULO 5 / TEMA 2

TABLAS

SI QUEREMOS INFORMAR SOBRE UN TEMA ESPECÍFICO TENEMOS QUE RECOLECTAR DATOS, POR EJEMPLO, PARA SABER LA CANTIDAD DE HOMBRES Y MUJERES EN UNA ESCUELA DEBEMOS CONTARLOS UNO POR UNO. ESTA INFORMACIÓN SE PUEDE GRAFICAR DE FORMA RESUMIDA Y CLARA EN UNA TABLA. LAS TABLAS PUEDEN SER CON NÚMEROS, PICTOGRAMAS O DE DOBLE ENTRADA.

ES NORMAL QUE VEAMOS TABLAS EN LOS AEROPUERTOS. ESTAS TABLAS MUESTRAN LA HORA DE SALIDA Y LA HORA DE LLEGADA DE UN VUELO. TAMBIÉN NOS DA INFORMACIÓN SOBRE EL AVIÓN Y LAS CIUDADES O PAÍSES ENTRE LAS CUALES SE HACE EL VIAJE. ES POSIBLE QUE TAMBIÉN VEAS TABLAS EN LAS TERMINALES O EN LOS MERCADOS CON LOS PRECIOS DE LOS PRODUCTOS.

¿QUÉ ES UNA TABLA?

ES UN GRÁFICO CON FORMA CUADRADA O RECTANGULAR. SIRVE PARA ORGANIZAR Y RESUMIR INFORMACIÓN. ESTÁ FORMADA POR FILAS, COLUMNAS Y CELDAS.

GRADO NOMBRE Y APELLIDO EDAD
MARÍA PÉREZ 8
JOSÉ COLINA 7
CARLA GONZÁLEZ 8

 

  • LAS FILAS SON LAS HILERAS HORIZONTALES.

  • LAS COLUMNAS SON LAS HILERAS VERTICALES.

  • LAS CELDAS SON LAS CASILLAS QUE RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA.

TABLA DE DATOS

LAS TABLAS DE DATOS EXPONEN INFORMACIÓN RECOLECTADA. VEAMOS UNA TABLA SIMPLE CON UNA INFORMACIÓN SOBRE UNA FAMILIA.

– EJEMPLO:

PRIMOS DE LUCAS EDAD
ANGÉLICA 5
JOSÉ 9
MARIO 13
CARLA 15

ESTA TABLA EXPRESA UNA INFORMACIÓN SENCILLA, LAS EDADES DE LO PRIMOS DE LUCAS: 5, 9, 13 Y 15. AL MISMO TIEMPO PODEMOS LEER OTRA INFORMACIÓN: LUCAS TIENE 4 PRIMOS.

TAMBIÉN PODEMOS EXPRESAR UNA MAYOR CANTIDAD DE DATOS DE MANERA ORGANIZADA.

– EJEMPLO:

OBSERVA ESTA IMAGEN. ¿QUÉ CANTIDAD HAY DE CADA FRUTA Y VEGETAL?

LA CANTIDAD DE FRUTAS Y VEGETALES LA PODEMOS REPRESENTAR EN UNA TABLA COMO ESTA:

FRUTA O VEGETAL CANTIDAD
MANZANAS 6
PERAS 4
ZANAHORIAS 9
FRESAS 9

¿SABÍAS QUÉ?
LAS COLUMNAS TAMBIÉN SON LLAMADAS “CAMPOS”.

¿CÓMO LEER UNA TABLA DE DATOS?

1. OBSERVA LA PRIMERA FILA. ESTA ES LA FILA DE ENCABEZADO Y MUESTRA LAS CATEGORÍAS DE LOS DATOS. POR EJEMPLO, EN ESTA TABLA LAS CATEGORÍAS SON “DEPORTE FAVORITO” Y “CANTIDAD DE ESTUDIANTES”.

DEPORTE FAVORITO CANTIDAD DE ESTUDIANTES
FÚTBOL 12
BALONCESTO 8
NATACIÓN 5
TENIS 2
BÉISBOL 10
NINGUNO 5

 

2. CADA DATO DE UNA COLUMNA CORRESPONDE AL DATO DE LA OTRA COLUMNA. ASÍ, POR EJEMPLO, SI QUEREMOS SABER LA CANTIDAD DE ESTUDIANTES QUE PREFIEREN EL BALONCESTO, SOLO TENEMOS QUE OBSERVAR LA FILA DE ESE DEPORTE: PARA 8 ESTUDIANTES EL BALONCESTO ES SU DEPORTE FAVORITO.

DEPORTE FAVORITO CANTIDAD DE ESTUDIANTES
FÚTBOL 12
BALONCESTO 8
NATACIÓN 5
TENIS 2
BÉISBOL 10
NINGUNO 5

¡ES TU TURNO!

OBSERVA DE NUEVO LA TABLA ANTERIOR Y RESPONDE:

  • ¿CUÁNTOS ESTUDIANTES PREFIEREN JUGAR BÉISBOL?
    SOLUCIÓN
    10
  • ¿CUÁL ES EL DEPORTE FAVORITO DE LA MAYORÍA DE ESTUDIANTES?
    SOLUCIÓN
    FÚTBOL
  • ¿CUÁNTOS ESTUDIANTES NO TIENEN ALGÚN DEPORTE FAVORITO?
    SOLUCIÓN
    5
  • ¿CUÁNTOS ESTUDIANTES HAY EN TOTAL?
    SOLUCIÓN
    12 + 8 + 5 + 2 + 10 + 5 = 42
    HAY 42 ESTUDIANTES.

TABLA DE PICTOGRAMAS

ASÍ COMO COLOCAMOS LOS DATOS EN FORMA DE NÚMEROS, TAMBIÉN PODEMOS COLOCAR PICTOGRAMAS PARA REPRESENTAR LOS DATOS. POR EJEMPLO: CELESTE, ARIEL, LETICIA Y RAMIRO CONTARON LAS MONEDAS QUE LES QUEDARON PARA LOS JUEGOS. LOS RESULTADOS FUERON LOS SIGUIENTES:

NOMBRE MONEDAS
CELESTE
ARIEL
LETICIA
RAMIRO
CLAVE

 = 1 MONEDA

¡ES TU TURNO!

OBSERVA LA TABLA DE PICTOGRAMAS Y RESPONDE LAS PREGUNTAS:

  • ¿CUÁNTAS MONEDAS TIENE CELESTE?
    SOLUCIÓN
    6
  • ¿CUÁNTAS MONEDAS TIENE ARIEL?
    SOLUCIÓN
    3
  • ¿CUÁNTAS MONEDAS TIENE LETICIA?
    SOLUCIÓN
    5
  • ¿CUÁNTAS MONEDAS TIENE RAMIRO?
    SOLUCIÓN
    6
  • ¿QUIÉNES TIENEN MÁS MONEDAS?
    SOLUCIÓN
    CELESTE Y RAMIRO.
  • ¿QUIÉN TIENE MENOS MONEDAS?
    SOLUCIÓN
    ARIEL.

TABLA DE DOBLE ENTRADA

LAS TABLAS DE DOBLE ENTRADA MUESTRAN LA RELACIÓN ENTRE DOS O MÁS CATEGORÍAS.

– EJEMPLO:

EN EL SALÓN DE 2º GRADO SE LE PREGUNTARON A TODOS LOS ALUMNOS SI LES GUSTABA O NO LES GUSTABA EL ARTE. LAS RESPUESTAS SE GRAFICARON EN ESTA TABLA:

LES GUSTA EL ARTE NO LES GUSTA EL ARTE
NIÑOS 10 5
NIÑAS 12 8

EN ESTA TABLA PODEMOS VER LA CANTIDAD DE NIÑOS Y NIÑAS A LOS QUE LES GUSTA EL ARTE. TAMBIÉN PODEMOS VER LA CANTIDAD DE NIÑOS Y NIÑAS A LOS QUE NO LES GUSTA EL ARTE.

¡ES TU TURNO!

OBSERVA LA TABLA DE DOBLE ENTRADA Y RESPONDE LAS PREGUNTAS:

  • ¿A CUÁNTAS NIÑAS LES GUSTA EL ARTE?
    SOLUCIÓN
    12
  • ¿A CUÁNTOS NIÑOS LES GUSTA EL ARTE?
    SOLUCIÓN
    10
  • ¿A CUÁNTOS NIÑOS NO LES GUSTA EL ARTE?
    SOLUCIÓN
    5
  • ¿A CUÁNTAS NIÑAS NO LES GUSTA EL ARTE?
    SOLUCIÓN
    8
  • ¿A CUÁNTOS NIÑOS Y NIÑAS LES GUSTA EL ARTE?
    SOLUCIÓN
    10 + 12 = 22
    A 22 NIÑAS NO LES GUSTA EL ARTE.
  • ¿A CUÁNTOS NIÑOS Y NIÑAS NO LES GUSTA EL ARTE?
    SOLUCIÓN
    8 + 5 = 13
    A 13 NIÑOS Y NIÑAS NO LES GUSTA EL ARTE.
  • ¿CUÁNTAS NIÑAS HAY EN EL SALÓN DE 2º GRADO?
    SOLUCIÓN
    12 + 8 = 20
    HAY 20 NIÑAS.
  • ¿CUÁNTOS NIÑOS HAY EN EL SALÓN DE 2º GRADO?
    SOLUCIÓN
    10 + 5 = 15
    HAY 15 NIÑOS.
  • ¿CUÁNTOS NIÑOS Y NIÑAS HAY EN EL SALÓN DE 2º GRADO?
    SOLUCIÓN
    10 + 12 + 5 + 8 = 35
    HAY 35 NIÑOS Y NIÑAS.

TABLAS CON OPERACIONES

LAS TABLAS TAMBIÉN SON MUY ÚTILES PARA REPRESENTAR OPERACIONES MATEMÁTICAS COMO LA SUMA Y LA MULTIPLICACIÓN. EN ESTA TABLA VEMOS QUE CADA CELDA DE COLOR ES EL RESULTADO DE LA SUMA ENTRE UN DATO DE LA FILA DE ENCABEZADO Y LA COLUMNA DE ENCABEZADO. POR EJEMPLO, 3 + 6 = 9.

RECURSOS PARA DOCENTES

Artículo “Estadística: tabla de valores”

Con este recurso se podrá profundizar sobre el uso de las tablas de datos en la estadística.

VER

CAPÍTULO 4 / TEMA 5 (REVISIÓN)

GEOMETRÍA DE LAS FORMAS | ¿qué aprendimos?

EL PUNTO Y LA LÍNEA

EL PUNTO ES EL ENTE FUNDAMENTAL DE LA GEOMETRÍA. UNA SUCESIÓN INFINITA DE PUNTOS FORMA UNA LÍNEA. SEGÚN LAS DIRECCIÓN QUE TENGAN ESTOS PUNTOS LAS LÍNEAS PUEDEN SER RECTAS, COMO LAS DEL BORDE DE UNA PANTALLA DE CELULAR; O PUEDEN SER CURVAS, COMO EL BORDE UN GLOBO. CUANDO EL PUNTO DE INICIO Y FIN SON EL MISMO EN UNA LÍNEA, DECIMOS QUE LA LÍNEA ES CERRADA, PERO SI ESTOS PUNTOS NO COINCIDEN, LA LÍNEA ES ABIERTA.

CUANDO OBSERVAMOS UN PAISAJE PODEMOS VER MUCHAS LÍNEAS FORMADAS POR LA NATURALEZA.

FIGURAS PLANAS

LAS FIGURAS PLANAS SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. EXISTEN DOS TIPOS DE FIGURAS PLANAS, LAS POLIGONALES Y LOS CÍRCULOS. LAS PRIMERAS ESTÁN FORMADAS POR LÍNEAS POLIGONALES CERRADAS, COMO UN CUADRADO O RECTÁNGULO. LAS SEGUNDAS ESTÁN FORMADAS POR LÍNEAS CURVAS CERRADAS, COMO EL CÍRCULO. TODOS LOS PUNTOS QUE CORRESPONDEN A LA LÍNEA CURVA SE ENCUENTRAN A LA MISMA DISTANCIA DEL CENTRO DE FIGURA. ESTA LÍNEA QUE DELIMITA AL CÍRCULO SE LLAMA CIRCUNFERENCIA.

UNA LUPA TIENE FORMA DE CÍRCULO.

FIGURAS TRIDIMENSIONALES

LAS FIGURAS TRIDIMENSIONALES OCUPAN UN LUGAR EN EL ESPACIO Y TIENEN TRES DIMENSIONES: ALTO, LARGO Y ANCHO. LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SON LLAMADAS CUERPOS GEOMÉTRICOS Y EXISTEN DOS TIPOS: LOS POLIEDROS Y LOS CUERPOS REDONDOS. LOS PRIMEROS ESTÁN CONFORMADOS POR CARAS PLANAS COMO EL PRISMA Y LA PIRÁMIDE; Y LOS SEGUNDOS TIENEN SUPERFICIES CURVAS, COMO EL CILINDRO, LA ESFERA Y EL CONO.

LOS CUERPOS GEOMÉTRICOS NO SE PUEDEN TRAZAR EN UNA REGIÓN DEL PLANO SINO QUE SE CONSTRUYEN PARA QUE TENGAN SUS DIMENSIONES REALES.

POSICIÓN Y DESPLAZAMIENTO

LOS CUERPOS GEOMÉTRICOS, LOS PUNTOS, LAS FIGURAS Y LOS OBJETOS TIENEN UNA DETERMINADA POSICIÓN EN EL ESPACIO, PERO LA POSICIÓN NO SIEMPRE ES LA MISMA. DOS DE LOS MOVIMIENTOS MÁS COMUNES SON LA TRASLACIÓN Y LA ROTACIÓN. POR OTRO LADO, ES POSIBLE UBICAR CADA PUNTO EN EL ESPACIO GRACIAS A LOS EJES CARTESIANOS, UN CONJUNTO DE LÍNEAS QUE SE CRUZAN PARA DARNOS LAS COORDENADAS O POSICIÓN DE UN PUNTO.

LA ROTACIÓN Y LA TRASLACIÓN DE ELEMENTOS GEOMÉTRICOS SE ASEMEJAN A LOS MOVIMIENTOS QUE REALIZA LA TIERRA.

CAPÍTULO 5 / TEMA 1

LOS PICTOGRAMAS

DESDE LA ANTIGÜEDAD, EL SER HUMANO HA INTENTADO COMUNICARSE A TRAVÉS DE PINTURAS EN CAVERNAS O CON TALLADOS EN METALES. LA NECESIDAD DE COMUNICARSE Y FALTA DE SÍMBOLO PARA ESCRIBIR LLEVARON AL HOMBRE A GRAFICAR LO QUE QUERÍA EXPRESAR A TRAVÉS DE DIBUJOS. A ESTAS REPRESENTACIONES HOY SE LAS LLAMAN PICTOGRAMAS.

¿QUÉ SON LOS PICTOGRAMAS?

UN PICTOGRAMA ES UN TIPO DE GRÁFICO QUE SE REPRESENTA A TRAVÉS DE DIBUJOS. EN LA ACTUALIDAD ES ENTENDIDO COMO UN AVISO CLARO DE UNA CIERTA INFORMACIÓN QUE SE NECESITA EXPRESAR.

LA SEÑALES DE TRÁNSITO

LAS SEÑALES DE TRÁNSITO RESULTAN DE LA COMBINACIÓN DE FORMAS GEOMÉTRICAS Y COLORES A LAS QUE SE LES AÑADE UN SÍMBOLO O PICTOGRAMA QUE TIENE UN SIGNIFICADO RELACIONADO A LA SEGURIDAD EN EL TRÁFICO. ESTOS PICTOGRAMAS SIRVEN PARA COMUNICAR DE FORMA SIMPLE Y RÁPIDA UNA INFORMACIÓN A CUALQUIER PERSONA DEL MUNDO.

¿SABÍAS QUÉ?
LAS HISTORIETAS, CÓMICS Y LOS CHISTES GRÁFICOS QUE NO TIENEN TEXTO TAMBIÉN SON PICTOGRAMAS.

INFORMACIÓN A TRAVÉS DE PICTOGRAMAS

LOS PICTOGRAMAS SON ÚTILES PARA REPRESENTAR DATOS. SI TENEMOS UNA TABLA CON PICTOGRAMAS LO PRIMERO QUE TENEMOS QUE VER ES LA CLAVE O LEYENDA.

– EJEMPLO:

MARÍA VENDIÓ HELADOS DE CHOCOLATE DURANTE 4 SEMANAS. DESPUÉS DE CONTAR SUS VENTAS SE OBTUVO LA SIGUIENTE TABLA:

COMO CADA DIBUJO REPRESENTA 5 UNIDADES, TENEMOS QUE MULTIPLICAR LA CANTIDAD DE DIBUJOS POR 5, DE ESTA MANERA SABREMOS LA CANTIDAD TOTAL DE HELADOS EN CADA SEMANA.

¡ES TU TURNO!

OBSERVA EL PICTOGRAMA ANTERIOR Y RESPONDE:

  • ¿EN CUÁL SEMANA MARÍA VENDIÓ MÁS HELADOS DE CHOCOLATE?
    SOLUCIÓN
    EN LA SEGUNDA SEMANA.
  • ¿EN CUÁL SEMANA VENDIÓ MENOS HELADOS DE CHOCOLATE?
    SOLUCIÓN
    EN LA CUARTA SEMANA.
  • ¿CUÁNTOS HELADOS DE CHOCOLATE VENDIÓ LA PRIMERA SEMANA?
    SOLUCIÓN
    15 HELADOS.

– EJEMPLO 2:

EN UNA ESCUELA SE CONTARON LOS ESTUDIANTES QUE PRACTICAN ALGÚN DEPORTE Y SE OBTUVO ESTA TABLA:

¡ES TU TURNO!

OBSERVA EL PICTOGRAMA ANTERIOR Y RESPONDE:

  • ¿EN CUÁL GRADO HAY MÁS ESTUDIANTES QUE PRACTICAN ALGÚN DEPORTE?
    SOLUCIÓN
    EN 5º.
  • ¿EN CUÁL GRADO HAY MENOS ESTUDIANTES QUE PRACTICAN ALGÚN DEPORTE?
    SOLUCIÓN
    EN 1º.
  • ¿CUÁNTOS ESTUDIANTES PRACTICAN ALGÚN DEPORTE EN TOTAL?
    SOLUCIÓN
    4 + 8 + 16 + 12 + 20 + 12 = 72
    72 ESTUDIANTES PRACTICAN ALGÚN DEPORTE.

GRAFICAR INFORMACIÓN EN PICTOGRAMAS

PARA GRAFICAR INFORMACIÓN EN UN PICTOGRAMA ES NECESARIO QUE:

  • SEPAMOS LOS DATOS.
  • ESCOJAMOS UN DIBUJO.
  • DEMOS UN VALOR A CADA DIBUJO.
  • DIBUJEMOS UNA TABLA.
  • COLOQUEMOS LOS DIBUJOS Y LAS CUENTAS DENTRO DE LA TABLA.

– EJEMPLO:

MARCOS VENDIÓ 12 PANES EL LUNES, 9 PANES EL MARTES Y 6 PANES EL MIÉRCOLES. GRAFIQUEMOS CON PICTOGRAMAS ESTOS DATOS.

SI NOS UBICAMOS EN LA TABLA DEL 3, VEMOS QUE PODEMOS OBTENER TODOS LOS RESULTADOS POR MEDIO DE MULTIPLICACIONES CON ESTE NÚMERO. ASÍ QUE LA CLAVE ES ASÍ:

AHORA SOLO TENEMOS QUE REALIZAR UNA TABLA EN LA QUE SE OBSERVEN LOS DÍAS Y LA CANTIDAD DE PANES EQUIVALENTES A LAS VENTAS.

¡A PRACTICAR!

1. COMPLETA ESTE PICTOGRAMA. LUEGO RESPONDE:

SOLUCIÓN

  • ¿EN QUÉ MES SE VENDIERON MÁS TORTAS?
    SOLUCIÓN
    EN ENERO.
  • ¿EN QUÉ MES SE VENDIERON MENOS TORTAS?
    SOLUCIÓN
    EN FEBRERO.
  • ¿CUÁNTAS TORTAS SE VENDIERON EN LOS TRES MESES?
    SOLUCIÓN
    30 + 10 + 20 = 60
    SE VENDIERON 60 TORTAS.
  • ¿EN QUÉ MES SE VENDIERON 20 TORTAS?
    SOLUCIÓN
    EN MARZO.
  • ¿EN QUÉ MES SE VENDIERON MENOS DE 20 TORTAS?
    SOLUCIÓN
    EN FEBRERO.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadisticos”

Este recurso brinda más información sobre los gráficos y sus tipos, incluidos los pictogramas.

VER

CAPÍTULO 4 / TEMA 4

POSICIÓN Y DESPLAZAMIENTO

CASI TODOS LOS CUERPOS ESTÁN EN MOVIMIENTO Y POR LO TANTO, SU POSICIÓN EN EL ESPACIO CAMBIA. JUSTO AHORA PODEMOS ESTAR FRENTE A LA COMPUTADORA, PERO LUEGO PODEMOS ESTAR EN OTRA CASA O CIUDAD. LOS EJES CARTESIANOS AYUDAN A UBICAR PUNTOS EN UN PLANO Y SI LOS USAMOS EN UN MAPA, TAMBIÉN NOS SIRVEN PARA UBICAR PERSONAS Y LUGARES DEL MUNDO.

RELACIONES ESPACIALES

PARA UBICAR ELEMENTOS EN EL ESPACIO USAMOS LAS RELACIONES ESPACIALES. ESTAS NO INDICAN LA POSICIÓN DE ALGO O ALGUIEN RESPECTO A OTRA COSA. POR LO GENERAL SE UTILIZAN LAS SIGUIENTES EXPRESIONES:

ARRIBA

ABAJO

IZQUIERDA

DERECHA

OBSERVA ESTA IMAGEN. ¿QUÉ POSICIÓN TIENEN LOS OBJETOS RESPECTO A OTROS? EJEMPLO:  – LOS LIBROS ESTÁN ARRIBA DE LA REPISA.                                 – LA PANTALLA DE LA COMPUTADORA ESTÁ DEBAJO DE LOS LIBROS.                               – EL RELOJ ESTÁ A LA DERECHA DE LA PANTALLA DE LA COMPUTADORA.                         – LA LÁMPARA ESTÁ A LA IZQUIERDA DE LOS MARCADORES. HAY MÁS RELACIONES ESPACIALES, ¡DESCÚBRELAS!

¡ES TU TURNO!

OBSERVA DE NUEVO LA IMAGEN Y RESPONDE:

  • ¿EN QUÉ POSICIÓN ESTÁ LA PANTALLA DE LA COMPUTADORA RESPECTO A LA MESA?
    SOLUCIÓN
    LA PANTALLA DE LA COMPUTADORA ESTÁ ARRIBA DE LA MESA.
  • ¿EN QUÉ POSICIÓN ESTÁ LA LÁMPARA RESPECTO A LA REPISA?
    SOLUCIÓN
    LA LÁMPARA ESTÁ ABAJO DE LA REPISA.
  • ¿EN QUÉ POSICIÓN ESTÁN LOS MARCADORES RESPECTO A LA LÁMPARA?
    SOLUCIÓN
    LOS MARCADORES ESTÁN A LA DERECHA DE LA LÁMPARA.

¿cómo GRAFICAR LA POSICIÓN DE ELEMENTOS?

PODEMOS GRAFICAR Y UBICAR LA POSICIÓN DE CUALQUIER PUNTO EN UN PLANO POR MEDIO DE EJES DE COORDENADAS EN UN DIAGRAMA CARTESIANO.

LOS EJES CARTESIANOS SON DOS LÍNEAS QUE SE CRUZAN, UNA TIENE UNA ORIENTACIÓN VERTICAL, LLAMADA “Y”, Y LA OTRA UNA ORIENTACIÓN HORIZONTAL, LLAMADA “X“. EN CONJUNTO, DAN A CONOCER LA POSICIÓN DE UN PUNTO EN EL PLANO.

– EJEMPLO:

ESTA ES UNA CUADRÍCULA CON EJES COORDENADOS. CUANDO UN DATO DEL EJE X SE CRUZA CON UNA DATO DEL EJE Y TENEMOS LAS COORDENADAS O UBICACIÓN DEL OBJETO.

¿CÓMO ESCRIBIR LAS COORDENADAS DE UN PUNTO?

PARA ESCRIBIR LAS COORDENADAS PRIMERO VEMOS LAS DEL EJE X Y LUEGO LAS DEL EJE Y. LOS DOS NÚMEROS SE SEPARAN CON UNA COMA Y SE ENCIERRA ENTRE PARÉNTESIS. ENTONCES, LAS COORDENADAS DE LAS FIGURAS EN EL DIAGRAMA CARTESIANO ANTERIOR SON LAS LAS SIGUIENTES:

FIGURA COORDENADAS
ESTRELLA (3, 5)
LUNA (1, 3)
CORAZÓN (6, 2)

– EJEMPLO 2:

CADA PUNTO TIENE UNA LETRA. UBIQUEMOS LAS COORDENADAS DE CADA PUNTO.

PUNTO COORDENADAS
A (4, 2)
B (1, 1)
C (2, 3)
D (5, 6)
E (1, 6)
F (0, 4)

¿SABÍAS QUÉ?
CUANDO UN PUNTO ESTÁ UBICADO DIRECTAMENTE SOBRE UN EJE, QUIERE DECIR QUE EL VALOR DEL OTRO EJE ES CERO, POR EJEMPLO (0, 4) SIGNIFICA QUE EL DATO DEL EJE X ES 0 Y EL DEL EJE Y ES 4.

¡ES TU TURNO!

OBSERVA DE NUEVO LA CUADRÍCULA. COMPLETA LA TABLA CON LAS COORDENADAS DE LOS PUNTOS.

SOLUCIÓN
PUNTO COORDENADAS
A (4, 2)
B (1, 1)
C (2, 3)
D (5, 6)
E (1, 6)
F (0, 4)
G (0, 5)
H (6, 4)
I (3, 5)

TRASLACIÓN

LA TRASLACIÓN ES UN MOVIMIENTO EN EL QUE CADA PUNTO DE LA FIGURA SIGUE UNA MISMA DIRECCIÓN. LA FIGURA GEOMÉTRICA TRASLADADA NO GIRA NI CAMBIA DE TAMAÑO.

ROTACIÓN

LA ROTACIÓN ES UN MOVIMIENTO O GIRO ALREDEDOR DE UN CENTRO DE ROTACIÓN.

MOVIMIENTOS DE LA TIERRA

NUESTRO PLANETA REALIZA TANTO EL MOVIMIENTO DE ROTACIÓN COMO EL DE TRASLACIÓN. CUANDO ROTA O GIRA SOBRE SU PROPIO EJE SE PRODUCE EL DÍA Y LA NOCHE. CUANDO SE TRASLADA ALREDEDOR DEL SOL SE CUMPLE UN AÑO O 365 DÍAS.

LOS MAPAS Y SU IMPORTANCIA

LOS EJES DE COORDENADAS TAMBIÉN LOS VEMOS EN LOS MAPAS. GRACIAS A ELLAS PODEMOS LOCALIZAR CUALQUIER CIUDAD O PERSONA EN EL MUNDO. LOS EJES DE COORDENADAS PERMITEN QUE CADA UBICACIÓN EN NUESTRO PLANETA SEA ESPECIFICADA CON NÚMEROS, LETRAS Y SÍMBOLOS. POR EJEMPLO, LA LATITUD DE LOS MAPAS DETERMINA EL EJE X Y LA LONGITUD DETERMINA EL EJE Y.

ESTE ES UN MAPAMUNDI, TAMBIÉN CONOCIDO COMO PLANISFERIO. EN ÉL VEMOS TODA LA SUPERFICIE DE NUESTRO PLANETA COMO UN PLANO. ESTE MAPA MUESTRA DOS TIPOS DE LÍNEAS: UNAS HORIZONTALES QUE REPRESENTAN LA LATITUD; Y UNAS VERTICALES QUE REPRESENTAN LA LONGITUD. ASÍ COMO EN UNA CUADRÍCULA, LA UNIÓN DE LOS DATOS NOS INFORMA LAS COORDENADAS DE UN PUNTO.

¡A PRACTICAR!

1. OBSERVA LA CUADRÍCULA. EN ELLA SE VEN LOS RECORRIDOS QUE PUEDE HACER EL PERRO HASTA SU HUESO, HASTA SU DUEÑO O HASTA SU CASA. RESPONDE LAS PREGUNTAS.

  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU HUESO?
    SOLUCIÓN
    5 ESPACIOS HACIA ARRIBA Y UN ESPACIO A LA DERECHA.
  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU DUEÑO?
    SOLUCIÓN
    3 ESPACIOS HACIA ARRIBA Y 3 ESPACIOS A LA DERECHA.
  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU CASA?
    SOLUCIÓN
    5 ESPACIOS A LA DERECHA Y UN ESPACIO HACIA ARRIBA.
  • ¿CÓMO ES EL RECORRIDO DEL DUEÑO HASTA EL PERRO?
    SOLUCIÓN
    3 ESPACIOS A LA IZQUIERDA Y 3 ESPACIOS HACIA ABAJO.
  • ¿CUÁLES SON LAS COORDENADAS DEL PERRO?
    SOLUCIÓN
    (1, 1)
  • ¿CUÁLES SON LAS COORDENADAS DEL HUESO?
    SOLUCIÓN
    (2, 6)
  • ¿CUÁLES SON LAS COORDENADAS DEL DUEÑO?
    SOLUCIÓN
    (4, 4)
  • ¿CUÁLES SON LAS COORDENADAS DE LA CASA DEL PERRO?
    SOLUCIÓN
    (6, 2)
RECURSOS PARA DOCENTES

Artículo “Simetrías”

Con este recurso se podrá ampliar la información sobre los movimientos en el plano

VER

CAPÍTULO 4 / TEMA 3

FIGURAS TRIDIMENSIONALES

LA GEOMETRÍA ES UNA DE LAS DISCIPLINAS MÁS ANTIGUAS. GRACIAS A ELLA SABEMOS LOS ELEMENTOS Y PROPIEDADES DE LAS FIGURAS QUE NOS RODEAN. YA SABEMOS QUE LAS FIGURAS PLANAS SON AQUELLAS QUE TIENEN DOS DIMENSIONES. HOY APRENDEREMOS CUÁLES SON ESAS FIGURAS QUE ADEMÁS DE ALTO Y ANCHO TIENEN PROFUNDIDAD: LAS FIGURAS TRIDIMENSIONALES.

¿QUÉ SON LaS figuras tridimensionales?

LAS FIGURAS TRIDIMENSIONALES, TAMBIÉN LLAMADAS CUERPOS GEOMÉTRICOS, SON AQUELLAS QUE TIENEN TRES DIMENSIONES: ALTO, LARGO Y ANCHO. A SU VEZ TIENEN VOLUMEN, ES DECIR, OCUPAN UN LUGAR EN EL ESPACIO.

EXISTE UNA CLASIFICACIÓN BÁSICA DE LOS CUERPOS GEOMÉTRICOS: LOS POLIEDROS Y LOS CUERPOS REDONDOS.

– EJEMPLOS:

POLIEDROS CUERPOS REDONDOS
LOS POLIEDROS SE DIFERENCIAN DE LOS CUERPOS REDONDOS POR SUS CARAS. LAS CARAS DE LOS POLIEDROS SON PLANAS, EN CAMBIO, LA CARA DE LOS CUERPOS REDONDOS SON CURVAS, ES DECIR QUE PUEDEN RODAR. LOS CUERPOS REDONDOS SON LA ESFERA, EL CONO Y EL CILINDRO. EL CILINDRO Y LA ESFERA NO TIENEN VÉRTICES PORQUE NO HAY UNA UNIÓN ENTRE DOS LADOS PLANOS.

ELEMENTOS DE LAS FIGURAS TRIDIMENSIONALES

POLIEDROS

  • CARAS: SON LAS SUPERFICIES QUE LIMITAN EL CUERPO GEOMÉTRICO. ESAS SUPERFICIES SON FIGURAS GEOMÉTRICAS. LAS CARAS BASALES SON LAS QUE SIRVEN PARA APOYAR EL CUERPO EN EL PLANO.
  • VÉRTICE: ES EL PUNTO DONDE SE UNEN TRES O MÁS CARAS.
  • ARISTAS: SON LAS LÍNEAS QUE SE FORMAN CUANDO SE UNEN DOS CARAS.

CUERPOS REDONDOS

  • CARAS BASALES: SON LAS QUE SIRVEN PARA APOYAR EL CUERPO EN EL PLANO.
  • ALTURA: INDICA LA LONGITUD DEL ALTO DEL CUERPO.

LOS POLIEDROS Y SUS TIPOS

UN POLIEDRO ES UN CUERPO GEOMÉTRICO QUE SOLO PRESENTA SUPERFICIES PLANAS. CADA UNA DE SUS CARAS ES UN POLÍGONO. EXISTEN LOS POLIEDROS IRREGULARES Y LOS REGULARES. VEAMOS CUÁLES SON:

POLIEDROS IRREGULARES

  • PRISMAS: SON POLIEDROS QUE TIENEN DOS CARAS PARALELAS LLAMADAS CARAS BASALES. LOS PRISMAS SE IDENTIFICAN POR SU CARA BASAL, SI ES UN TRIÁNGULO EL PRISMA ES TRIANGULAR, SI ES UN CUADRADO EL PRISMA ES CUADRANGULAR, Y SI ES UN RECTÁNGULO EL PRISMA ES RECTANGULAR.

  • PIRÁMIDE: SON POLIEDROS QUE TIENEN UN POLÍGONO CUALQUIERA COMO BASE Y SUS CARAS LATERALES SON TRIÁNGULOS QUE SE UNEN EN UN VÉRTICE COMÚN.

POLIEDROS REGULARES

SON POLIEDROS CON TODAS LAS CARAS FORMADAS POR POLÍGONOS REGULARES IGUALES. LA CLASIFICACIÓN DE LOS POLIEDROS REGULARES DEPENDE DE SU NÚMERO DE CARAS:

[/su_note]

¿SABÍAS QUÉ?
EL CUBO TAMBIÉN ES UN PRISMA CUADRANGULAR.

FIGURAS TRIDIMENSIONALES EN EL ENTORNO

EN NUESTRO ENTORNO ENCONTRAMOS OBJETOS QUE OCUPAN UN LUGAR EN EL ESPACIO Y TIENEN UN VOLUMEN. AL MISMO TIEMPO, MUCHOS DE ESTOS SE PARECEN O TIENEN LA FORMA DE LOS CUERPOS GEOMÉTRICOS, YA SEAN POLIEDROS O CUERPOS REDONDOS. POR EJEMPLO, UNA CAJA TIENE FORMA DE PRISMAS RECTANGULAR, UNA PIRÁMIDE EN EGIPTO TIENE FORMA DE PIRÁMIDE, UNA PELOTA DE TENIS ES UNA ESFERA, UNA VASO ES SIMILAR A UN CILINDRO Y UN DADO TIENE FORMA DE CUBO.

MUCHOS DE LOS OBJETOS QUE USAMOS COTIDIANAMENTE EN NUESTRAS CASAS O QUE OBSERVAMOS CUANDO RECORREMOS UNA CIUDAD SON CUERPOS GEOMÉTRICOS. POR EJEMPLO, EL JABÓN TIENE FORMA DE PRISMA PORQUE TIENE CARAS, VÉRTICES Y ARISTAS. ES DECIR, UNA BARRA DE JABÓN ES UN POLIEDRO PORQUE SUS CARAS SON PLANAS. SI SOLO TOMAMOS UNA CARA DEL PRISMA PODEMOS VER UNA FIGURA GEOMÉTRICA.

LAS PIRÁMIDES

LOS EGIPCIOS CREÍAN QUE LA PIRÁMIDE ESTABA RELACIONADA CON LAS RIQUEZAS Y LAS RELACIONES SOCIALES, POR ESO SUS MÁS GRANDES OBRAS TENÍAN ESTA FORMA. ESTAS PIRÁMIDES TIENEN UNA BASE CUADRANGULAR Y LAS CARAS SON IGUALES A LOS TRIÁNGULOS.

¡A PRACTICAR!

1. COMPLETA LA SIGUIENTE TABLA:

OBJETO FIGURA TRIDIMENSIONAL QUE REPRESENTA
CUADERNO
DADO
VOLIGOMA
HELADERA
SOLUCIÓN
OBJETO FIGURA TRIDIMENSIONAL QUE REPRESENTA
CUADERNO PRISMA RECTANGULAR
DADO CUBO
VOLIGOMA CILINDRO
HELADERA PRISMA DE BASE CUADRANGULAR

2. OBSERVA LOS SIGUIENTES CUERPOS Y RESPONDE:

  • ¿CUÁNTOS LADOS TIENE LA FIGURA A?
SOLUCIÓN
LA FIGURA A TIENE 3 LADOS.
  • ¿CUÁNTOS LADOS TIENE LA FIGURA B?
SOLUCIÓN
LA FIGURA B TIENE 6 LADOS.
  • ¿AMBAS FIGURAS TIENEN VÉRTICES? ¿POR QUÉ?

SOLUCIÓN
NO. SOLO LA FIGURA B LOS TIENE, YA QUE ES UN POLIEDRO. LOS CUERPOS REDONDOS NO TIENEN VÉRTICES PORQUE SUS LADOS SON CURVOS, EXCEPTO EL CONO.
RECURSOS PARA DOCENTES

Artículo “Poliedros irregulares”

Este recurso será de ayuda para profundizar sobre los cuerpos geométricos y es especial sobre los poliedros irregulares.

VER

CAPÍTULO 1 / TEMA 6

CONJUNTO

A DIARIO PODEMOS ENCONTRAR QUE LOS OBJETOS QUE USAMOS TIENEN CARACTERÍSTICAS EN COMÚN. POR EJEMPLO, EN LOS SUPERMERCADOS VEMOS ESTANTES DE PRODUCTOS POR GRUPOS: LOS VEGETALES, LOS VÍVERES, LOS REFRIGERADOS, LAS GOLOSINAS, LOS REFRESCOS, ENTRE OTROS. ESTOS GRUPOS SE LLAMAN CONJUNTOS ¡APRENDAMOS CÓMO REPRESENTARLOS!

¿QUÉ ES UN CONJUNTO?

UN CONJUNTO ES UN GRUPO DE OBJETOS QUE COMPARTEN UNA CARACTERÍSTICA EN COMÚN. LOS OBJETOS QUE CONFORMAN EL CONJUNTO SE LLAMAN ELEMENTOS Y PUEDEN SER DE CUALQUIER TIPO: LETRAS, NÚMEROS, ALIMENTOS, DEPORTES, PERSONAS O JUEGOS.

  • A ES EL CONJUNTO DE LOS ANIMALES.

 

  • N ES EL CONJUNTO DE LOS NÚMEROS.

LA IDEA DE AGRUPAR OBJETOS CON CARACTERÍSTICAS COMUNES ES PARTE DE NUESTRA VIDA COTIDIANA. VEMOS CONJUNTOS DE ZAPATOS EN LAS ZAPATERÍAS, CONJUNTOS DE FRUTAS O VERDURAS EN LAS VERDULERÍAS, CONJUNTOS DE FLORES EN UN JARDÍN, CONJUNTOS DE VÍVERES EN UN MERCADO, CONJUNTOS DE NIÑOS EN LAS ESCUELAS Y CONJUNTOS DE LIBROS EN UNA BIBLIOTECA.

ELEMENTOS DE UN CONJUNTO

SON TODOS LOS OBJETOS QUE CONFORMAN UN CONJUNTO. POR EJEMPLO:

  • U ES EL CONJUNTO DE LOS ÚTILES ESCOLARES. TIENE 9 ELEMENTOS.

  • S ES EL CONJUNTO DE LOS DÍAS DE LA SEMANAS. TIENE 7 ELEMENTOS.

 

AQUÍ PODEMOS VER ROLLOS DE TELA QUE SON ELEMENTOS SIMILARES AGRUPADOS. ¿POR QUÉ ES UN CONJUNTO? PORQUE TODOS LOS ROLLOS QUE SE OBSERVAN COMPARTEN LA MISMA CARACTERÍSTICA. ESTOS TIENEN QUE ESTAR JUNTOS PARA QUE PUEDAN EXPRESARSE COMO UN CONJUNTO. A PESAR DE QUE TENGAN DIFERENTES COLORES, TEXTURAS, RELIEVES, COMPARTEN ALGO EN COMÚN: SON UN TIPO DE TELA.

REPRESENTACIÓN DE CONJUNTOS

PODEMOS REPRESENTAR LOS CONJUNTOS DE DOS MANERAS:

1. DIAGRAMA DE VENN

P ES EL CONJUNTO DE LOS NÚMEROS PARES. ESTE CONJUNTO TIENE SEIS ELEMENTOS: 2, 4, 6, 8, 10 Y 12.

2. LLAVES

P = {2, 4, 6, 8, 10, 12}

P ES EL CONJUNTO DE LOS NÚMEROS PARES. ESTE CONJUNTO TIENE SEIS ELEMENTOS: 2, 4, 6, 8, 10 Y 12.

 

¿SABÍAS QUÉ?
CUANDO UN CONJUNTO SOLO TIENE UN ELEMENTO SE LO LLAMA CONJUNTO UNITARIO.

SUBCONJUNTOS

SON CONJUNTOS DENTRO DE OTRO CONJUNTO. ESTOS COMPARTEN OTRA CARACTERÍSTICA EN COMÚN.

OBSERVA EL CONJUNTO F DE LAS FRUTAS Y VEGETALES.

ESTE CONJUNTO TIENE 12 ELEMENTOS. PERO ADEMÁS DE SER FRUTAS O VEGETALES, VARIOS DE ELLOS TIENEN OTRA CARACTERÍSTICA EN COMÚN: EL COLOR.

ENTONCES, DENTRO DEL CONJUNTO F HAY SUBCONJUNTOS V, R Y A.

ASÍ COMO REPRESENTAMOS CONJUNTOS Y SUBCONJUNTOS CON DIAGRAMAS DE VENN, TAMBIÉN PODEMOS MOSTRARLOS CON LLAVES:

  • CONJUNTO

F = {GUISANTES, PEPINO, LECHUGA, UVAS, FRESA, MANZANA, TOMATE, FRAMBUESA, KIWI, PIÑA, LIMÓN, BANANAS}

  • SUBCONJUNTOS

V = {GUISANTES, PEPINO, LECHUGA}

R = {FRESA, TOMATE, MANZANA}

A = {PIÑA, LIMÓN, BANANAS}

EL GRUPO DE NIÑOS MÚSICOS ES UN CONJUNTO DE 6 ELEMENTOS. DENTRO DE ESTE CONJUNTO TAMBIÉN PODEMOS ENCONTRAR TRES SUBCONJUNTOS EN LOS QUE ALGUNOS ELEMENTOS VAN A COMPARTIR UNA CARACTERÍSTICA. POR EJEMPLO, AQUÍ PODRÍAMOS CLASIFICAR SUBCONJUNTOS DE AQUELLOS QUE TOCAN INSTRUMENTOS DE VIENTO, DE PERCUSIÓN O DE CUERDA.

CUANTIFICADORES

LOS CUANTIFICADORES SIRVEN PARA SABER LA CANTIDAD DE VECES QUE UN ELEMENTO CUMPLE CON UNA CONDICIÓN. LOS EXPRESAMOS CON TÉRMINOS COMO “TODOS“, “ALGUNOS” O “NINGUNO“.

OBSERVA EL CONJUNTO T.

EN EL CONJUNTO T TODOS SON TRIÁNGULOS.

EN EL CONJUNTO T ALGUNOS TRIÁNGULOS SON ROJOS.

EN EL CONJUNTO T NINGÚN TRIÁNGULO ES AMARILLO.

 

– OTRO EJEMPLO:

OBSERVA EL CONJUNTO Q.

 

EN EL CONJUNTO Q TODOS SON ANIMALES.

EN EL CONJUNTO Q ALGUNOS PUEDEN VOLAR.

EN EL CONJUNTO Q NINGUNO TIENE SEIS PATAS.

 

CUANTIFICADORES: ¿QUÉ SON?

LOS CUANTIFICADORES NOS INDICAN LA CANTIDAD DE ELEMENTOS DE UN CONJUNTO  QUE CUMPLEN CON UNA PROPIEDAD PARTICULAR. EN ESTE CASO, VEMOS UN CONJUNTO DE 6 NIÑOS, ES DECIR DE 6 ELEMENTOS. SI NOS PREGUNTAMOS CUÁNTOS DE ELLOS ESTÁN FELICES, AL VER SUS CARAS PODRÍAMOS DECIR QUE TODOS. ALLÍ USAMOS UN CUANTIFICADOR PARA DETERMINAR LA CANTIDAD DE ELEMENTOS DEL CONJUNTO QUE COMPARTEN UN MISMO ESTADO DE ÁNIMO.

¡A PRACTICAR!

1. OBSERVA LOS CONJUNTOS Y RESPONDE LAS PREGUNTAS CON LOS CUANTIFICADORES NECESARIOS.

A = { LORO, GATO, HORMIGA, CUERVO, GAVIOTA, JIRAFA }

  • ¿CUÁNTOS ELEMENTOS PUEDEN VOLAR?
SOLUCIÓN
ALGUNOS
  • ¿CUÁNTOS ELEMENTOS PUEDEN LADRAR?
SOLUCIÓN
NINGUNO
  • ¿CUANTOS ELEMENTOS SON ANIMALES?
SOLUCIÓN
TODOS

 

B = {CÍRCULO, TRIÁNGULO, CUADRADO, RECTÁNGULO}

  • ¿CUANTOS ELEMENTOS SON FRUTAS?
SOLUCIÓN
NINGUNO
  • ¿CUÁNTOS ELEMENTOS SON FIGURAS GEOMÉTRICAS?
SOLUCIÓN
TODOS
  • ¿CUÁNTOS ELEMENTOS TIENEN CUATRO LADOS?
SOLUCIÓN
ALGUNOS

 

2. OBSERVA EL CONJUNTO A DE LOS ANIMALES. CREA DOS SUBCONJUNTOS: CONJUNTO B DE LOS ANIMALES QUE PUEDEN VOLAR Y CONJUNTO C DE LOS ANIMALES QUE PUEDEN NADAR.

A = {ÁGUILA, BALLENA, ORCA, LORO, PEZ GLOBO, GAVIOTA}

SOLUCIÓN

B = {ÁGUILA, LORO, GAVIOTA}

C = {BALLENA, ORCA, PEZ GLOBO}

 

3. OBSERVA EL CONJUNTO T DE LOS MEDIOS DE TRANSPORTE. CREA DOS SUBCONJUNTOS: CONJUNTO D DE LOS TRANSPORTES TERRESTRES Y CONJUNTO F DE LOS MEDIOS DE TRANSPORTES AÉREOS.

T = {AUTOMÓVIL, MOTO, AVIÓN, BICICLETA, HELICÓPTERO, METRO}

SOLUCIÓN

D = {AUTOMÓVIL, MOTO, BICICLETA, METROS}

F = {AVIÓN, HELICÓPTERO}

 

4. ¿CUÁLES SUBCONJUNTOS SE PUEDEN FORMAR EN EL CONJUNTO L DE LAS LETRAS?

SOLUCIÓN

SUBCONJUNTO V DE LAS VOCALES.

V = {A, E, I, O, U}

SUBCONJUNTO C DE LAS CONSONANTES.

C = {B, C, D, F}

RECURSOS PARA DOCENTES

Artículo “Relación entre conjuntos”

En el siguiente artículo encontrarás más información sobre conjuntos y la forma en la que se relacionan entre ellos.

VER