CAPÍTULO 1 / TEMA 2

DESCOMPOSICIÓN DE NÚMEROS

Usamos los números en muchas situaciones de la vida cotidiana, pero algunas veces necesitamos descomponerlos para que una operación matemática sea más sencilla. Estas separaciones de números se pueden hacer de diversas formas y por medio de sumas, multiplicaciones o combinaciones de estas.

DESCOMPOSICIÓN ADITIVA DE UN NÚMERO

Saber cómo formar números a partir de otros más pequeños puede resultar muy útil en nuestro día a día. Si, por ejemplo, necesitamos pagar una cuenta de $ 150, podemos pagar con un billete de $ 100 y otro billete de $ 50; también podríamos pagar con tres billetes de $ 50. Como verás a continuación, esto es una descomposición aditiva.

Un número se puede descomponer en una suma de varios números más pequeños, para ello existen dos formas de realizarlo:

1. Descomposición aditiva por medio de combinaciones básicas

Consiste en descomponer el número a través de una o más sumas que den como resultado el número original. Por ejemplo, el número 589.478,12 se puede descomponer de muchas maneras. Estas son algunas:

589.478,12 = 156.562,3 + 432.915,82

589.478,12 = 101.102 + 359.349,3 + 129.026,82

589.478,12 = 540.000 + 6.254 + 273,127 + 42.950,993

2. Descomposición aditiva por medio del valor posicional

Consiste en descomponer el número a través de la suma de los valores posicionales de cada cifra. De este modo, si queremos descomponer el número 54.268,2789, lo primero que debemos hacer es ubicar cada uno de sus valores en la tabla posicional. Observa:

Vemos en la tabla que:

  • 5 ocupa la posición de las decenas de mil → 50.000
  • 4 ocupa la posición de las unidades de mil → 4.000
  • 2 ocupa la posición de las centenas → 200
  • 6 ocupa la posición de las decenas → 60
  • 8 ocupa la posición de las unidades → 8
  • 2 ocupa la posición de las décimas → 0,2
  • 7 ocupa la posición de las centésimas → 0,07
  • 6 ocupa la posición de las milésimas → 0,006
  • 9 ocupa la posición de las diezmilésimas → 0,0009

Ahora solo debes sumar todos los valores posicionales:

54.268,2769 = 50.000 + 4.000 + 200 + 60 + 8 + 0,2 + 0,07 + 0,006 + 0,0009

Otro ejemplos:

  • 1.567.423,5916 = 1.000.000 + 500.000 + 60.000 + 7.000 + 400 + 20 + 3 + 0,5 + 0,09 + 0,001 + 0,0006
  • 200.874,95 = 200.000 + 800 + 70 + 4 0,9 + 0,05

Observa que no tomamos en cuenta el dígito cero (0) para la descomposición de números.

DESCOMPOSICIÓN POLINÓMICA DE UN NÚMERO

La descomposición polinómica se hace al combinar la suma y la multiplicación de potencias de base 10. Para descomponer de forma polinómica el número 452.328.465, los pasos son los siguientes:

1. Haz la descomposición aditiva del número. Puedes apoyarte en una tabla posicional como esta:

452.328.465 = 400.000.000 + 50.000.000 + 2.000.000 + 300.000 + 20.000 + 8.000 + 400 + 60 + 5

2. Convierte cada sumando en la multiplicación de la cifra respectiva por la unidad seguida de cero.

452.328.465 = 4 x 100.000.000 + 5 x 10.000.000 + 2 x 1.000.000 + 3 x 100.000 + 2 x 10.000 +       8 x 1.000 + 4 x 100 + 6 x 10 + 5

3. Transforma las unidades seguidas de cero a potencias de base 10.

452.328.465 = 4 x 108 + 5 x 107 + 2 x 106 + 3 x 105 + 2 x 104 + 8 x 103 + 4 x 102 + 6 x 10 + 5 x 100
Potencia de base 10

Potencia igual a la unidad seguida de tantos ceros como exprese el exponente. Estas potencias son muy usadas para representar números grandes.

  • 102 = 10 x 10 = 100
  • 103 = 10 x 10 x 10 = 1.000
  • 104 = 10 x 10 x 10 x 10 = 10.000

¿Sabías qué?
Los mayas utilizaban un sistema de numeración posicional de base 20, es decir, las cantidades se agrupaban de 20 en 20. Dichos valores permitían obtener sumas de números grandes.

DESCOMPOSICIÓN MULTIPLICATIVA DE UN NÚMERO

Las matemáticas han permitido que el ser humano resuelva situaciones de una manera más rápida y sencilla. Una de estas facilidades es expresar un número como una multiplicación de sus factores primos.

Un número se puede expresar de otra manera equivalente al utilizar la multiplicación de factores. Esta técnica matemática se realiza con el uso de los números primos.

¿Qué son los números primos?

Un número primo es aquel que solo puede dividirse por sí mismo y por el número uno. Es decir, que posee solo dos divisores. Los primeros 100 números primos son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541.

Ejemplo: el número 60 puede descomponerse en distintas multiplicaciones.

60 = 6 x 10

60 = (2 x 3) x (2 x 5)

60 = 2 x 3 x 2 x 5

Observa que el número 6 se descompone en sus factores primos 2 y 3. Sucede lo mismo con el número 10 que se descompone en dos factores primos: 2 y 5. Otras maneras de descomponer el número 60 son estas:

  • 60 = 4 x 15 = 2 x 2 x 3 x 5
  • 60 = 20 x 3 = 2 x 2 x 5 x 3

Para números más grandes, observa estos ejemplos:

  • 221.269 = 409 x 541
  • 147.413.303 =521 523 x 541
  • 1.738.066 = 2 x 11 x 199 x 397
¡A practicar!

1. Escribe la descomposición aditiva por medio del valor posicional de estos números:

  • 4.856.912
Solución
4.856.912 = 4.000.000 + 800.000 + 50.000 + 6.000 + 900 + 10 + 2
  • 73.892.146,965
Solución
73.892.146,965 = 70.000.000 + 3.000.000 + 800.000 + 90.000 + 2.000 + 100 + 40 + 6 + 0,9 + 0,06 + 0,005
  • 5.198.762,4023
Solución
5.198.762,4023= 5.000.000 + 100.000 + 90.000 + 8.000 + 700 + 60 + 2 + 0,4 + 0,002 + 0,0003

2. Escribe la descomposición polinómica de estos números:

  • 20.279.531
Solución
2 x 107 + 2 x 105 + 7 x 104 + 9 x 103 + 5 x 102 + 3 x 101 + 1 x 100
  • 579.348.670
Solución
5 x 108 + 7 x 107 + 9 x 106 + 3 x 105 + 4 x 104 + 8 x 103 + 6 x 102 + 7 x 101
  • 8.671.690
Solución
8.671.690,5364 = 8 x 106 + 6 x 105 + 7 x 104 + 1 x 103 + 6 x 10 2 + 9 x 10

3. Escribe la descomposición multiplicativa de estos números:

  • 99.301
Solución
99.301 = 199 x 499

Hay más opciones, ¡descúbrelas!

  • 29.884.301
Solución
29.884.301 = 307 x 311 x 313

Hay más opciones, ¡descúbrelas!

  • 2.843.858
Solución
2.843.858 = 2 x 23 x 211 x 293

Hay más opciones, ¡descúbrelas!

  • 1.697.658
Solución
1.697.658 = 2 x 3 x 523 x 541

Hay más opciones, ¡descúbrelas!

RECURSOS PARA DOCENTES

Artículo “Descomposición de números”

En este artículo encontrarás mayor ayuda para la enseñanza de la descomposición y el valor posicional de los números.

VER

Artículo “Valores absolutos y relativos”

En este artículo encontrará apoyo para la identificación del valor de los números al descomponerlos.

VER

Tarjetas educativas “Números”

En estas tarjetas educativas podrás encontrar los números del 1 al 100 y sus descomposiciones aditivas y polinómicas.

VER

CAPÍTULO 2 / TEMA 1

Adición y sustracción

En matemática existen cuatro operaciones básicas: adición, sustracción, multiplicación y división. De las dos primeras se desprenden las otras, lo que quiere decir que aprender a sumar y a restar es fundamental para resolver la mayoría de los ejercicios matemáticos y para realizar cuentas cotidianas como, por ejemplo, en compras del supermercado.

Elementos de la adición

La adición es una de las operaciones básicas de la aritmética que permite combinar dos o más números para obtener un total. Esta operación se representa con el símbolo “+” y es aplicada en los diferentes tipos de números: naturales, enteros, racionales, reales y complejos.

Una adición presenta dos partes básicas: los sumandos y la suma. Los sumandos son todos los números que se van a sumar y la suma se refiere al resultado.

La adición anterior tiene dos sumandos: 352 y 431, y el resultado o suma es 783. Es importante tener presente que en estos casos la palabra “suma” se emplea para hablar de la operación de adición y también para referirse al resultado.

¿Sabías qué?
La aritmética es una rama de la matemática que estudia los números y las operaciones elementales que se realizan con ellos.

Propiedades de la adición

La suma de números enteros cumple tres propiedades básicas:

Propiedad conmutativa

Sin importar cómo se ordenen los sumandos de una suma, el resultado siempre será el mismo. Por ejemplo:

Por lo tanto:

15 + 3 = 18

3 + 15 = 18

Propiedad asociativa

No importa como se agrupen los elementos de una suma, el resultado siempre será el mismo. Por ejemplo:

En el problema: 8 + 2 + 6, se pueden sumar primero el 8 y 2 para luego sumar el 6, o se pueden sumar el 2 y el 6 y después sumar el 8. Entonces:

8 + 2 = 10, 10 + 6 = 16

2 + 6 = 8; 8 + 8 = 16

Propiedad del elemento neutro

El cero es el único número que no altera el resultado en una suma, es decir, la suma de cualquier número con el cero es igual al mismo número:

5 + 0 = 5
45 + 0 = 45
219 + 0 = 219

Conocer las propiedades de la suma permite realizar cálculos de manera más rápida. Por ejemplo, si necesitamos sumar 6 + 85, es más fácil agregar mentalmente 6 a 85 que 85 a 6. También se usa la propiedad asociativa en la suma de números con diferentes cifras, estos se pueden ordenar de mayor a menor y luego realizar una suma por reagrupación más sencilla.

VER INFOGRAFÍA

Adición por reagrupación

Es un método en el que se agrupan las unidades, decenas, centenas, etc., de un número. Para resolver problemas de este tipo se suman primero las unidades, luego las decenas, después las centenas y así sucesivamente.

Pasos para resolver adiciones por reagrupación

  1. Colocar los sumandos uno debajo del otro de manera que los valores posicionales iguales estén ubicados en una misma columna: unidades con unidades, decenas con decenas, centenas con centenas…
  2. Sumar cada columna por separado a partir de las unidades. El resultado de la suma de cada columna se escribe en la parte inferior de esta.
  3. En caso de obtener un número de dos cifras al momento de sumar una columna, se anotará el número de la unidad de dicho número y la decena se sumará a la columna siguiente.

Con estos ejemplos podrás ver mejor cómo resolver una suma por reagrupación:

– Sumar 242 + 351

Lo primero es colocar los números uno debajo del otro según sus mismos valores posicionales.

Luego suma la columna de las unidades y anota el resultado debajo de dicha columna.

Repite el procedimiento anterior en las demás columnas de derecha a izquierda hasta completarlas todas. En este caso el resultado es: 242 + 351 = 593.

– Sumar 198 + 23

Ordena los números de la siguiente manera:

Cuando sumas la columna de las unidades tienes que 8 + 3 = 11, entonces solo debes colocar el 1 de la unidad y el 1 de la decena lo sumas en la siguiente columna. Anota el número en la parte superior de la columna para no olvidar sumarlo al final.

Suma la segunda columna. Allí tienes que 9 + 2 = 11, pero hay que sumarle 1 de la columna anterior, entonces el resultado de la segunda columna es 12. Anota el 2 de la unidad y el 1 de la decena lo sumas a la siguiente columna.

En la tercera columna solamente está el número 1, así que el 1 de la columna anterior se suma a este. Anota el resultado.

El resultado de la suma anterior es: 198 + 23 = 221. En caso de sumar la última columna y obtener un número de dos cifras, este se anotará exactamente igual en el resultado.

Elementos de la sustracción

La sustracción es otra operación básica de la aritmética que consiste en quitar una cantidad a otra, por eso se considera como la operación opuesta a la suma. Se representa con el símbolo “−”.

Este tipo de operación cuenta con un minuendo, número al cual se le quita cierta cantidad; un sustraendo, número que resta al minuendo; y la diferencia, resultado de la operación.

¿Sabías qué?
La diferencia de una resta es la cantidad que falta para que ambos números sean iguales.

Propiedades de la sustracción

La sustracción cumple con dos propiedades básicas:

Elemento neutro

El resultado de cualquier número y cero da como resultado el mismo número. Por ejemplo:

3 − 0 = 3

157 − 0 = 157

Elemento simétrico

El resultado de restar un número con su opuesto (número del mismo valor con signo opuesto) da como resultado el número cero.

5 − 5 = 0

74 − 74 = 0

¿Sabías qué?
En la sustracción no existen ni la propiedad conmutativa ni la asociativa.

Sustracción por reagrupación

Este tipo de problemas se realizan mediante la agrupación de los números uno debajo del otro de forma tal que valores posicionales entre las cifras de los números que se restan sean los mismos. Para las restas con naturales, el número mayor debe estar ubicado en la parte de arriba (minuendo) y el número menor debajo (sustraendo).

¿Sabías qué?
La resta por reagrupacion también es conocida como resta con llevada y sirve para restar una cifra mayor a una menor.
Pasos para resolver restas por reagrupación

  1. Colocar el minuendo y el sustraendo uno debajo del otro de manera que los valores posicionales iguales estén ubicados en la misma columna. El número mayor siempre debe estar ubicado en la parte de arriba.
  2. Comenzar a restar desde la columna de las unidades, de derecha a izquierda.
  3. Si en una columna se tiene que la cifra de arriba es menor que la de abajo, esta cifra toma prestado un valor posicional a la columna del minuendo de la izquierda.
  4. En caso de que la cifra del minuendo le haya “prestado” un valor posicional a la cifra de al lado, esta se reduce en una unidad y se debe considerar el nuevo valor de la cifra al momento de restar en su columna.

Con estos ejemplos podrás apreciar mejor cómo resolver una resta por reagrupación:

– Restar 425 − 263

Lo primero es colocar los números uno debajo del otro con sus valores posicionales iguales, todos ubicados en la misma columna.

Luego resta las cifras en la columna de las unidades.

Repite la resta en la columna de las decenas, pero como en este caso el 2 es menor que el 6, el 4 presta una centena al 2. De este modo, 4 centenas y 2 decenas, se convierten en 3 centenas y 12 decenas. Ahora sí es posible restar 12 menos 6 en la columna de las decenas.

 

Resta las cifras en la columna de las centenas. Como el 4 le prestó 1 al 2, entonces quedó en 3 centenas que al restarse con el 2 el resultado de la columna es 1.

Ejercicios

1. Resuelve las siguientes sumas:

a) 452 + 395 =

Solución
847
b) 256 + 122 =
Solución
378
c) 603 + 113 =
Solución
716
d) 126 + 460 =
Solución
586
e) 1.830 + 2.178 =
Solución
4.008

2. Resuelve las siguientes restas:

a) 853 − 741 =

Solución
112
b) 544 − 35 =
Solución
509
c) 1.789 − 1.354 =
Solución
435
d) 957 − 362 =
Solución
595
e) 4.780 − 3541 =
Solución
1.239
RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los números naturales y sus propiedades”

El presente artículo permite profundizar el tema de las operaciones básicas y de sus diferentes propiedades.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

Es una enciclopedia diseñada para explicar de manera didáctica los conceptos matemáticos básicos desde la realidad de los niños.

VER

Video “Suma y resta de números decimales”

En este video se muestra como realizar sumas en el conjunto de los números decimales.

VER

CAPÍTULO 1 / TEMA 6 (REVISIÓN)

NÚMEROS | ¿QUÉ APRENDIMOS?

El universo de los números

El ser humano ha creado muchos inventos, pero uno de los más significativos han sido los números. En la actualidad, el sistema de numeración más usado es el decimal, llamado así porque emplea diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Este sistema es posicional porque cada cifra adquiere un valor distinto de acuerdo a la posición en donde se encuentre. A lo largo del tiempo han existido otros sistemas de numeración como el romano, que es usado hoy en día en ciertas situaciones.

La falta del número cero y la imposibilidad de representar fracciones y números decimales hizo que el sistema romano quedara en desuso.

Números primos y compuestos

Los números enteros que solo son divisibles entre ellos mismos y la unidad se denominan números primos. Hay números que además de ser divisibles entre ellos mismos y la unidad pueden ser divisibles por otros números, y se conocen como números compuestos. Por convención, el 1 no es clasificado como número primo ni compuesto; por otro lado, el 0, al no poder ser dividido entre él mismo, tampoco entra en dichas clasificaciones.

La Criba de Eratóstenes es una tabla que permite identificar de manera simple los números primos.

Un vistazo a los números decimales

Los números que se encuentran entre dos números enteros consecutivos se denominan números decimales y se caracterizan por una parte entera y otra parte decimal. La parte entera puede ser igual o diferente de cero y la parte decimal está ubicada después del separador decimal que puede ser un punto o una coma de acuerdo a la convención de cada país. La suma y resta de decimales se hace igual que con los números enteros, pero se debe tener la precaución que cada cifra esté ordenada de acuerdo a su mismo valor posicional.

Los números decimales pueden tener decimales infinitos como sucede en el caso del número pi: 3,141592…

Valor posicional

Cada cifra adquiere un valor dentro de un número y por medio de una tabla posicional se pueden representar dichos valores. Para números de seis dígitos estos son, de mayor a menor: centena de mil, decena de mil, unidad de mil, centena, decena y unidad. Conocer los valores posicionales facilita realizar operaciones como la descomposición aditiva de un número.

La descomposición aditiva permite expresar un número en forma de suma. Este tipo de descomposición relaciona el valor relativo de cada cifra.

Secuencias

Al conjunto de elementos que guardan relación y conservan un orden particular se lo denomina “secuencia”. El orden de una secuencia viene dado por una regla que puede ser, por ejemplo, su forma, tamaño o color. Además, en el caso de las secuencias numéricas, la regla puede implicar que los números incrementen o disminuyan su valor, en estos casos se denominan secuencias ascendentes y descendentes respectivamente. Conocer las secuencias permite realizar operaciones como las divisiones con restas sucesivas.

Los números naturales corresponden a una secuencia numérica infinita del tipo ascendente donde cada número se encuentra ordenado de 1 en 1.

CAPÍTULO 1 / TEMA 1

Algunos sistemas de numeración

Todas las sociedades, desde las prehistóricas hasta las modernas, han empleado técnicas para saber cantidades. Desde palos, piedras y marcas, hasta llegar a los símbolos actuales, todos los sistemas de numeración nos ayudan a una importarte y necesaria tarea diaria: contar.

Sistema decimal

Es un sistema de numeración posicional compuesto por diez símbolos o cifras llamados números arábigos: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0. Es el sistema que más se utiliza en la vida cotidiana.

Al ser posicional, cada cifra adquiere un valor relativo de acuerdo a la posición en que se encuentre: unidades, decenas y centenas. De este modo, cada dígito del número 333 tiene un valor distinto a pesar de ser el mismo.

Observa que 300 + 30 + 3 = 333

También puedes escribir el número 333 como 33310 por pertenecer a un sistema de base diez.

Hallar la respuesta a la pregunta ¿cuántos hay? ha sido la razón principal por la que el hombre desarrolló distintos métodos de recuento y dio origen al concepto de “número”. Nuestro sistema de numeración decimal permite no solo escribir de manera efectiva cantidades muy grandes, sino también cantidades muy pequeñas por medio de un posicionamiento visible.

Orden y clase

El sistema de numeración decimal tiene órdenes y clases. La unidad, la decena y la centena son el primero, segundo y tercer orden, respectivamente. Cada orden superior equivale a 10 unidades del orden anterior, es decir, una decena equivale a diez unidades y una centena equivale a 10 decenas.

1 U = 1 U

1 D = 10 U

1 C = 10 D = 100 U

Donde:

U: unidad

D: decena

C: centena

Cada grupo de tres órdenes representa una clase. Así, el número 94.256.328.100.079 tienen dígitos en distintas clases. Observa la tabla:

Este número se lee: “noventa y cuatro billones doscientos cincuenta y seis mil trescientos veintiocho millones cien mil setenta y nueve”.

Equivalencias

 

1 unidad = 1 unidad

1 decena = 10 unidades

1 centena = 100 unidades

1 unidad de mil (millar) = 1.000 unidades

1 decena de mil (millar) = 10.000 unidades

1 centena de mil (millar) = 100.000 unidades

1 unidad de millón = 1.000.000 unidades

1 decena de millón = 10.000.000 unidades

1 centena de millón = 100.000.000 unidades

1 unidad de millar de millón = 1.000.000.000 unidades

1 decena de millar de millón = 10.000.000.000 unidades

1 centena de millar de millón = 100.000.000.000 unidades

1 unidad de billón = 1.000.000.000.000 unidades

1 decena de billón = 10.000.000.000.000 unidades

1 centena de billón = 100.000.000.000.000 unidades

¡A practicar!

  • ¿Cuántas unidades equivalen a 15 centenas?
Solución

Si 1 centena = 100 unidades, entonces:

15\: C \times \frac{100\: U}{1\: C} = 1.500\: U

15 centenas equivalen a 1.500 unidades.

  • ¿Cuántas unidades equivalen a 3 decenas de millón?
Solución

Si 1 decena de millón = 10.000.000 unidades, entonces:

3\: DM \times \frac{10.000.000 \: U}{1\: DM}= 30.000.000\: U

También lo puedes representar así:

3\: DM \times \frac{10^{7} \: U}{1\: DM}= 3 \times 10^{7}\: U

3 decenas de millón equivalen a 30.000.000 unidades.

Sistema binario

Es un sistema de numeración posicional que está constituido solo por dos dígitos: 1 y 0. Este sistema utiliza como base el número 2. Un ejemplo de número binario es:

1000100101002

¿Sabías qué?
El sistema de numeración binario se encuentra con frecuencia en los algoritmos usados en las computadoras y otros equipos electrónicos, pues resulta más sencillo operar solo con los dígitos 0 y 1.
Los sistemas electrónicos emplean una lógica binaria, es decir, manejan la información en base a 0 y 1, donde cero (0) significa que no circula corriente y uno (1) significa que circula corriente. Las computadoras procesan y almacenan en cuestión de segundos gran cantidad de información escrita mediante este sistema.

¿Cómo convertir un número del sistema binario al sistema decimal?

Para transformar un número binario, como 1012, al sistema decimal debes seguir estos pasos:

1. Como el número tiene tres cifras, calcula las tres primeras potencias de 2. Inicia por 20 y escríbelas en orden decreciente.

22 = 4

21 = 2

20 = 1

2. Multiplica cada resultado por el dígito correspondiente al número binario. En este caso 1012.

4 x 1 = 4

2 x 0 = 0

1 x 1 = 1

3. Suma los productos. El resultado será el número en el sistema decimal.

4 + 0 + 1 = 5

Por lo tanto:

1012 = 510

¿Cómo convertir un número del sistema decimal al binario?

Para transformar un número del sistema decimal, como 2510, al sistema binario debes seguir estos pasos:

1. Divide el número sucesivamente entre 2 hasta que el cociente sea igual a 1.

2. Lee la cifra, de derecha a izquierda, de abajo hacia arriba. Ese es el número binario equivalente.

2510 = 110012

 

¡A practicar!

Transforma los siguiente números al sistema de numeración decimal o binario según sea el caso.

  • 11001002

Solución
En el sistema decimal es 10010.
  • 3610

Solución
En el sistema binario es 1001002.
  • 1110102

Solución
En el sistema decimal es 5810.

Sistema sexagesimal

Es un sistema de numeración posicional conformado por los mismos símbolos del sistema decimal: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0, pero a diferencia de este último, 60 unidades de un orden forman una unidad de orden superior. Sirve para medir los ángulos y el tiempo.

En el sistema sexagesimal se divide un grado en 60 partes iguales. Cada una de estas partes se llama minuto, y este, a su vez, se divide en otras 60 partes iguales para obtener segundos. Observa la equivalencia:

1 grado = 60 minutos = 3.600 segundos

La unidad de medida de los ángulos es el grado. Esta unidad es el resultado de dividir un ángulo llano (ángulo de 180°) en 180 partes iguales. Por lo general, se utiliza el transportador para medir la amplitud de ángulos. Cada línea en el transportador representa un grado, o lo que es igual, la 1 / 180 parte de un ángulo llano.

¿Cómo se miden los ángulos?

La unidad principal para medir los ángulos es el grado. Si queremos medirlos con mayor precisión utilizamos, además de los grados, los minutos y los segundos.

  • Un grado se escribe .
  • Un minuto se escribe 1′.
  • Un segundo se escribe 1”.

De este modo, 35° 22′ 36” se lee: “35 grados, 22 minutos y 36 segundos”.

Equivalencias

  • 1° = 60′
  • 1′ = 60″
  • 1° = 3.600″

Observa el esquema:

Por ejemplo, para convertir 17 grados a minutos solo debes multiplicar por 60.

17 x 60 = 1.020

17° = 1.020′

Entonces, 17 grados son iguales a 1.020 minutos.

Si quieres convertir esos 17 grados a segundos solo debes multiplicar por 3.600 (60 x 60).

17 x 3.600 = 61.200

17° = 61.200″

Así, 17 grados son iguales a 61.200 segundos.

Esta tabla muestra algunos ejemplos:

Grados (°) Minutos (‘) Segundos (“)
17 17 x 60 = 1.020 17 x 3.600 = 61.200
45 45 x 60 = 2.700 45 x 3.600 = 162.000
22 22 x 60 = 1.320 22 x 3.600 = 79.200

También puedes convertir todas las medidas de un ángulo si sumas sus partes. De esta manera, si quieres pasar a segundos la medida del ángulo 6° 9′ 52″, solo sigue estos pasos:

1. Convierte los grados a segundos. Para esto debes multiplicar por 3.600.

6° = 6 x 3.600 = 21.600″

2. Convierte los minutos a segundos. Para estos debes multiplicar por 60.

9′ = 9 x 60 = 540″

3. Como el resultado final debe ser en segundos, los segundos quedan iguales.

52″ = 52″

4. Suma todos los resultados, lo que es igual a:

6° 9′ 52″ = (6 x 3.600) + (9 x 60) + 52 = 22.192″

Pasa a segundos estas medidas de ángulos

  • 4° 35′ 17″
Solución
4° 35′ 17″ = (4 x 3.600) + (35 x 60) + 17 = 16.517″
  • 5° 8′ 45″
Solución
5° 8′ 45″ = (5 x 3.600) + (8 x 60) + 45 = 18.525″

¿Cómo se mide el tiempo?

Las unidades para medir el tiempo son diversas y van desde los milenios hasta los segundos. Para medir tiempos menores a un día usamos las horas, los minutos y los segundos.

  • 1 hora se escribe 1 h.
  • 1 minuto se escribe 1 min.
  • 1 segundo se escribe 1 s.
Equivalencias

  • 1 h = 60 min
  • 1 min = 60 s
  • 1 h = 3.600 s

Observa el esquema:

Por ejemplo, 3 horas, 20 minutos y 2 segundos se representan así: 3 h 20 min 2 s; y si deseas expresar todo en una sola unidad, como segundos, el procedimiento es similar al de los ángulos. Observa:

  1. 3 h = 3 x 3.600 = 10.800 s
  2. 20 min = 20 x 60 = 1.200 s
  3. 2 s = 2 s

Luego sumas todos los resultados, lo que es igual a:

3 h 20 min 2 s = (3 x 3.600) + (20 x 60) + 2 = 12.002 s

Pasa a segundos estas medidas de tiempo

  • 2 h 31 min 23 s

Solución
2 h 31 min 23 s = (2 x 3.600) + (31 x 60) + 23 = 9.083 s
  • 5 h 50 min 5 s

Solución
5 h 50 min 5 s = (5 x 3.600) + (50 x 60) + 5 = 21.005

Números romanos

Este sistema de numeración desarrollado en la Antigua Roma es no posicional y se caracteriza por usar siete letras mayúsculas del alfabeto latino.

En la actualidad, el sistema decimal es el más utilizado para realizar operaciones, aunque, los números romanos también puedes verlos en la vida cotidiana. Este sistema de numeración romano se utiliza para dar la hora en algunos relojes, nombrar siglos, papas y reyes; también se usa en la enumeración de tomos de libros, sagas de películas, leyes, reformas y lápidas conmemorativas.

Sin importar la posición que ocupe cada letra, esta siempre tendrá el mismo valor. No obstante, es de gran importancia seguir las reglas de escritura:

  • I, X, C y M no pueden escribirse más de tres veces consecutivas en un mismo número.
  • Un símbolo de menor valor ubicado a la derecha de otro de mayor valor, se suma.
  • Un símbolo de menor valor ubicado a la izquierda de otro de mayor valor, se resta.
  • V, L y D se permite escribirlos solamente una vez y no se pueden escribir a la izquierda de otro de mayor valor.
  • I solo puede colocarse a la izquierda de V o X.
  • X solo puede colocarse a la izquierda de L o C.
  • C únicamente se coloca a la izquierda de D o M.
  • Cuando el número supera el valor 3.999, se traza una línea horizontal sobre el número romano la cual multiplica su valor por mil.
  • Si se colocan dos rayas horizontales sobre un número romano, su valor se multiplica por un millón.

¿Cómo se convierte un número romano a número arábigo?

Para conocer qué cantidad corresponde a un número romano se deben aplicar las reglas antes mencionadas. Por ejemplo, si deseas saber el número arábigo correspondiente al número romano \overline{DCLXXIX}, sigue estos pasos:

1. Determina los valores de cada letra.

D = 500

C = 100

L = 50

X = 10

I = 1

2. Suma los valores de las letras a la derecha de otra de mayor valor.

DC = 500 + 100 = 600

LXX = 50 + 10 + 10 = 70

3. Resta los valores de las letras a la izquierda de otras de mayor valor.

IX = 10 − 1 = 9

4. Suma todos los resultados, y como el número tiene una barra, multiplica su valor por mil.

\overline{DCLXXIX} = (600 + 70 + 9) \times 1.000 = 679.000

¿Existen estos números?

  • VL

Solución
No. V no puede estar delante de un número de valor mayor como L. Para escribir el número 45 lo correcto es XLV.
  • LXXXXV

Solución
No. X solo puede escribirse un máximo de tres veces consecutivas en un número. Para escribir el número 95 lo correcto es XCV.

VER INFOGRAFÍA

¿Sabías qué?
El número cero (0) fue posterior al sistema de numeración romana, se originó con la creación de los números arábigos.
Ejercicios

1. ¿A cuántas unidades equivalen?

  • 2 unidades de millón.
Solución
2.000.000 unidades.
  • 5 centenas de mil.
Solución
500.000 unidades.
  • 4 decenas de billón.
Solución
40.000.000.000.000 unidades.

2) Indica orden y clase del número 3 en las siguientes cifras.

  • 32.512.874
Solución
Decena de millón.
  • 35.294
Solución
Decena de mil.
  • 953.812.549.798.400
Solución
Unidad de billón.

3) Transforma los siguientes números al sistema de numeración decimal o binario según sea el caso.

  • 11012
Solución
1310
  • 110002
Solución
2410 
  • 2310
Solución
101112

4) Convierte a segundos.

  • 1° 22′ 15”
Solución
4.935”
  • 2° 1′ 30”
Solución
7.290”
  • 35 min 3 s
Solución
2.103 s

5) Completa la siguiente tabla.

Solución

RECURSOS PARA DOCENTES

Enciclopedia “Matemáticas primaria”

El siguiente recurso le brindará nociones sobre los sistemas de numeración y una variedad de ejercicios prácticos para desarrollar el tema.

VER

Tarjetas educativas “Números romanos”

Estas tarjetas le brindarán una herramienta pedagógica mediante imágenes para la enseñanza del tema.

VER

CAPÍTULO 1 / TEMA 5

SeCUENCIAS

Al contar los números naturales, ya sea de 1 en 1, 2 en 2, o de 5 en 5, se aplican secuencias de números ordenados que se rigen por ciertas reglas, de manera que cumplen con un orden establecido. Una de las más conocidas es la sucesión de Fibonacci, pero las secuencias pueden ser de varios tipos: finitas o infinas, ascendentes o descendentes.

SeCUENCIAS con figuras

Una secuencia es un conjunto de elementos que están relacionadas entre sí y que se encuentran ordenadas según un criterio.

En las secuencias ordenadas en función de un patrón de figuras, se observa que los objetos están organizados de acuerdo a uno o más atributos. Algunos ejemplos son:

  • Por tamaño:

  • Por color:

  • Por forma:

  • También pueden contener imágenes y patrones más complejos:

El orden de una secuencia numérica no siempre es el mismo, por ejemplo, los elementos pueden estar ordenados de forma ascendente, de manera alternada o de manera decreciente.

Partes de una secuencia numérica

Una de las primeras secuencias que la mayoría de las personas aprende es la secuencia de los números naturales y se expresa de la siguiente forma: \mathbb{N} = {1, 2, 3, 4 ,…} en donde cada uno de los números denominados elementos, se encuentran ordenados de 1 en 1. Los tres puntos suspensivos al final de la secuencia indican que los números continúan.

Las secuencias pueden ser infinitas, como pasa con los números naturales, que siguen la secuencia de manera ilimitada, y también pueden ser finitas como sucede con la secuencia de las vocales: {a, e, i, o, u}.

¿Sabías qué?
Las secuencias numéricas permiten desarrollar el razonamiento matemático.

Secuencias ascendentes y descendentes

– Secuencias ascendentes

Las secuencias numéricas tienen una regla que permite determinar el valor de cada término o elemento de la misma. Por ejemplo, cuando se cuentan los números de 2 en 2, en realidad se incrementan 2 números por cada elemento, es decir, la regla en este caso sería sumar 2 a cada elemento:

En la imagen se puede observar como cada elemento de la secuencia se incrementa por 2, esto significa que es una secuencia ascendente porque todos sus elementos van en aumento, por lo tanto, cada número es mayor que el anterior. Si a 2 se le suma 2, el resultado es 4 y si a este número se le suma 2 el resultado es 6, y así sucesivamente. En este caso, la secuencia numérica se representa como: {2, 4, 6, 8, …}.

– Secuencia descendente

Las secuencias descendentes, en cambio, se desarrollan en forma regresiva y cada número es menor que el anterior. En la siguiente imagen se puede observar un ejemplo de secuencia descendente:

La regla en esta secuencia descendente es restar 3 a cada número, de manera que es fácil calcular el número a continuación del 9, para ello realizamos la regla: 9 – 3 = 6, así, el número siguiente a 9 en esta secuencia es 6.

¿Sabías qué?
Hay secuencias ascendentes cuya regla consiste en multiplicar un número a cada elemento y secuencias descendentes donde se divide un número a cada elemento.

Números de Fibonacci

Son conocidos también como secuencia de Fibonacci. Su nombre proviene de quien la describió por primera vez en Europa: el matemático italiano Leonardo Fibonacci. Es una secuencia en la cual el número siguiente se obtiene al sumar los dos números anteriores a este y se detalla a continuación {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 ,…}. En la secuencia se puede observar que, por ejemplo, los dos números anteriores al 13 son el 5 y el 8, que al sumarlos dan como resultado al número siguiente: 5 + 8 = 13. Esto se cumple para todos los números de la secuencia.

VER INFOGRAFÍA

Divisiones y restas sucesivas

Antes de comenzar con este tema es importante recordar que multiplicar es lo mismo que sumar muchas veces el mismo número, por ejemplo:

4 x 3 = 12   es igual a   4 + 4 + 4= 12

Esto se debe a que la multiplicación está muy relacionada con la adición. Algo similar sucede con la división, la cual guarda relación con la resta. Por ejemplo, si se tiene la división 12 ÷ 3, hay que restarle 3 a 12 tantas veces como sea posible:

Al observar la imagen se razona que 12 fue restado 4 veces por el número 3. De esta manera se tiene que 12 ÷ 3 = 4.

Pasos para dividir a través de restas sucesivas

Las divisiones pueden realizarse a través de restas sucesivas de la siguiente manera:

  1. Resta el divisor al dividendo tantas veces como sea posible. Hazlo hasta que el resultado sea 0 o un número menor al divisor.
  2. Se cuenta el número de veces que se restó el divisor.
  3. El cociente de la división será igual al número de veces que se restó el divisor y el resto será igual al último número que dio como resultado la resta.

Otro ejemplo:

– Resuelve la división 30 ÷ 5

Se resuelve a través de los pasos anteriores, para simplificar se sugiere utilizar una tabla similar a esta:

El resultado es 30 ÷ 5 = 6, y se trata de una división exacta porque el resto es igual a 0.

A continuación se muestra otro ejemplo de división pero en este caso es inexacta:

En el ejercicio anterior 27 ÷ 4 = 6 pero existe un resto igual a 3, como 3 es menor que el divisor no se puede continuar las restas en este método.

Ejercicios

  1. Completa las siguientes oraciones:
    a. En las secuencias ________ todos sus elementos van en aumento.
    Solución
    ascendentes
    b. La secuencia {25, 20, 15, 10 , …} es una secuencia ______.
    Solución
    descendente
    c. Las divisiones pueden calcularse con el método de ______.
    Solución
    restas sucesivas
  2. Completa las siguientes secuencias numéricas:
    a. {50, 40, ___, 20, …}
    Solución
    30
    b. {12, ___, 8, 6, …}
    Solución
    10
    c) {15, 30, ___, 60, 75, …}
    Solución
    45
    d) { ___, 5.000, 4.000, 3.000, 2.000, …}
    Solución
    6.000
  3. Resuelve las siguientes divisiones a través de restas sucesivas
    a. 20 ÷ 5
    b. 24 ÷ 6
    c. 16 ÷ 5
    d. 20 ÷ 3
    Solución
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

El siguiente artículo explica la diferencia entre una serie y una sucesión:

VER

Video “Aprendiendo restas por descomposición” 

El video muestra cómo realizar restas por descomposición que el docente puede emplear para relacionar la secuencias de sistema decimal con las secuencias numéricas estudiadas.

VER

CAPÍTULO 1 / TEMA 4

Valor posicional

El sistema de numeración decimal es el más usado en todo el mundo. Se caracteriza por ser posicional, es decir, cada cifra toma un valor diferente de acuerdo al lugar que ocupe dentro de un número. Esta característica es conocida como valor posicional, y es aplicable a todos los números incluidos los enteros y decimales.

Valor posicional de cifras hasta 100.000

Como se mencionó al comienzo, las cifras de un número adquieren distinto valor según la posición que ocupen. No es lo mismo una cifra ubicada en la columna de las unidades de mil que la misma localizada en la columna de las decenas. Por ejemplo, la posición que ocupa la cifra 1 en los números 1.524 y 4.314 no tiene el misma valor. En el número 1.524 está en la columna de las unidades de mil y en el número 4.314 ocupa el lugar de las decenas. Aunque es la misma cifra, representa magnitudes diferentes: 1.000 y 10 respectivamente. Por eso se dice que el valor de las cifras depende de la posición que ocupen.

Valores de una cifra

Toda cifra tiene dos valores: uno absoluto y otro relativo. El valor absoluto es el valor de la cifra en sí mismo, es decir, el que tiene por su figura. El valor relativo es el que tiene una cifra de acuerdo a la posición que ocupa dentro de un número. Por ejemplo, en el caso del número 5.050 el valor absoluto de los dos 5 es el mismo, es decir 5. Pero el valor relativo no es igual. Para el primer cinco, el valor relativo es 5.000 por estar en el lugar de las unidades de mil y para el segundo cinco el valor relativo es de 50 por estar ubicado en la columna de las decenas.

¿Sabías qué?
Conocer el valor posicional de un número facilita su descomposición, que es de gran ayuda al momento de realizar operaciones y de escribir en letras un número.

Tabla posicional

Permite ver de manera sencilla la ubicación de las cifras de un número. En la tabla se muestra por columna cada valor posicional correspondiente: centena de mil, decena de mil, unidad de mil, centena, decena y unidad.

La tabla posicional para un número de seis cifras se presenta así:

Representación de números en la tabla posicional

Las cifras de un número se ubican en la tabla posicional en la columna a la que corresponda su valor, de derecha a izquierda. De este modo, si quisiéramos representar el número 195.632 en la tabla posicional, quedaría de la siguiente forma:

Se puede observar el valor posicional de cada cifra:

  • El 1 pertenece a las centenas de mil.
  • El 9 pertenece a las decenas de mil.
  • El 5 pertenece a las unidades de mil.
  • El 6 pertenece a las centenas.
  • El 3 pertenece a las decenas.
  • El 2 pertenece a las unidades.

Es por ello que si se deseas conocer el valor relativo de una cifra es aconsejable emplear la tabla posicional.

¿Sabías qué?
Las centenas de mil, decenas de mil y unidades de mil también son conocidas como centenas de millar, decenas de millar y unidades de millar respectivamente.

Descomposición aditiva de un número

Cualquier número puede expresarse a través de la suma, en lo que se conoce como descomposición aditiva. Este tipo de descomposición expresa en forma de suma el valor posicional de cada una de sus cifras.

Por ejemplo, el número 1.458 se descompone de la siguiente manera:

1.458 = 1.000 + 400 + 50 + 8

Toda esta descomposición parte de que el número 1.458 esta formado por:

  • 1 unidad de mil = 1 x 1.000 = 1.000
  • 4 centenas = 4 x 100 = 400
  • 5 decenas = 5 x 10 = 50
  • 8 unidades = 8 x 1 = 8

Otros ejemplos son:

  • 254.331 = 200.000 + 50.000 + 4.000 + 300 + 30 + 1
  • 85.417 = 80.000 + 5.000 + 400 + 10 + 7
  • 30.154 = 30.000 + 100 + 50 + 4
  • 100.540 = 100.000 + 500 + 40
Los números pueden expresarse a través de la suma en una descomposición aditiva. Este tipo de descomposición no es más que una expresión en la que se representa un número en forma de suma y donde cada sumando corresponde al valor posicional que tenga cada dígito dentro de un número. Para realizar este tipo de descomposición es necesario conocer el valor posicional de las cifras.

¿Sabías qué?
Cuando se descomponen números de forma aditiva las cifras iguales a cero se omiten en los sumandos.

Valor posicional de decimales

La tabla posicional de los decimales es similar a la que se usa en los números enteros, la diferencia es que incluyen las cifras de la parte decimal: las décimas, centésimas y milésimas:

El procedimiento para ubicar los números en la tabla posicional es exactamente igual y se debe verificar que la coma o punto decimal se encuentre en su columna correspondiente.

El número 128.457,639 se expresa en la tabla de la siguiente forma:

En la tabla se puede observar el valor de cada cifra:

El 1 pertenece a las centenas de mil.

El 2 pertenece a las decenas de mil.

El 8 pertenece a las unidades de mil.

El 4 pertenece a las centenas.

El 5 pertenece a las decenas.

El 7 pertenece a las unidades.

El 6 pertenece a las décimas.

El 3 pertenece a las centésimas.

El 9 pertenece a las milésimas.

Descomposición aditiva de decimales

Los números decimales contienen dos partes: la parte entera y la parte decimal. La parte entera se descompone de la misma forma como se descomponen los números enteros; en la parte decimal por ser menor que la unidad se debe considerar el valor posicional que es diferente:

  • 1 décima equivale a 0,1 unidades.
  • 1 centésima a 0,01 unidades.
  • 1 milésima equivale a 0,001 unidades.

Al aplicar esto, la descomposición aditiva del número 0,584 sería: 0,584 = 0,5 + 0,08 + 0,004.

Ejercicios

  1. ¿Qué valor posicional tiene la cifra 2 en el número 125.534?
    Solución
    Decena de mil.
  2.  ¿Qué valor posicional tiene la cifra 5 en el número 24,25?
    Solución
    Centésima.
  3. ¿Qué valor posicional tiene la cifra 1 en el número 102.345?
    Solución
    Centena de mil.
  4. ¿Qué valor posicional tiene la cifra 7 en el número 1.007,468?
    Solución
    Unidad.
  5. Expresa la descomposición aditiva de los siguientes números:
    a) 1.865
    Solución
    1.865 = 1.000 + 800 + 60 + 5
    b) 198.456
    Solución
    198.056 = 100.000 + 90.000 + 8.000 + 50 + 6
    c) 74.600
    Solución
    74.600 = 70.000 + 4.000 + 600
    d) 0,54
    Solución
    0,54 = 0,5 + 0,04
    e) 105.111
    Solución
    105.111 = 100.000 + 5.000 + 100 + 10 + 1
    f) 3.333
    Solución
    3.333 = 3.000 + 300 + 30 + 3
    g) 15.287
    Solución
    15.287 = 10.000 + 5.000 + 200 + 80 +7
    d) 0,025
    Solución
    0,025 = 0,02 + 0,005
RECURSOS PARA DOCENTES

Artículo “Valores absolutos y relativos”

El presente artículo permite ampliar el conocimiento del valor absoluto y relativo de una cifra.

VER

Artículo “Sistemas posicionales de numeración”

En el siguiente artículo se explica qué es un sistema de numeración y se mencionan algunos de los tipos más comunes.

VER

Artículo “Composición y descomposición de números”

Este artículo explica qué es una composición aditiva y su diferencia con la descomposición aditiva, así como la aplicación de esta última en problemas cotidianos.

VER

CAPÍTULO 1 / TEMA 3

Un vistazo a los números decimales

Hay ocasiones en las que los números enteros no son útiles para expresar ciertas magnitudes; los números decimales, en cambio, permiten indicar una cantidad ubicada entre dos enteros y por este motivo son usados a diario en diversas situaciones, como por ejemplo en los precios de los productos y la lectura de la temperatura del cuerpo.

¿Qué son los números decimales?

Son números formados por una parte entera y otra parte menor que la unidad. Los números decimales generalmente se representan con una coma (,) para indicar la separación entre la parte entera que puede ser igual a cero y la parte menor a la unidad.

Los decimales de un número pueden ser finitos infinitos.

Por ejemplo:

– El número 3,15 es un decimal con un número finito de decimales.

– El número pi es un número con infinitos decimales: 3,1415926535… Al observar sus decimales se puede apreciar que no son periódicos, por lo tanto no siguen un patrón de repetición, a este tipo de números se lo conoce como número irracional.

VER INFOGRAFÍA

¿Sabías qué?
Los puntos suspensivos (…) son usados para indicar que los decimales de un número son infinitos.

Elementos de un decimal

Como ya sabemos, los números decimales están formados por una parte entera y otra menor a la unidad (conocida también como parte decimal), la parte entera se ubica a la izquierda y la parte decimal a la derecha de la coma.

La parte entera puede ser igual a cero, como por ejemplo 0,5, que es la mitad del número 1.

La parte decimal es conocida también como parte fraccionaria, y siempre representa cantidades menores a la unidad.

Los números decimales pueden ser finitos si su parte fraccionaria es finita; o infinitos si su parte fraccionaria es infinita. Los decimales infinitos, a su vez, se clasifican en periódicos y no periódicos. Los periódicos presentan un patrón infinito en sus decimales, como el número 1,333… y los no periódicos no siguen ningún patrón, como en el caso del número pi.

Lectura de decimales

Antes de aprender a leer números decimales es importante conocer los conceptos de décima, centésima y milésima.

  • Décima: es el resultado de dividir la unidad en diez partes iguales. En la tabla de valor posicional se muestra con la letra d minúscula.
  • Centésima: es el resultado de dividir la unidad en cien partes iguales. En la tabla de valor posicional se muestra con la letra c minúscula. La centésima es menor que la décima.
  • Milésima: es el resultado de dividir la unidad en mil partes iguales. En la tabla de valor posicional se muestra con la letra m minúscula. La milésima es menor que la centésima.

La tabla de valor posicional para un número decimal es:

Para leer un número decimal debes seguir estos pasos:

  1. Lee su parte entera de la misma forma como se hace en la lectura de números enteros en el siguiente orden: centena de mil, decena de mil, unidad de mil, centena, decena, unidad.
  2. Agrega la palabra “unidades” o “enteros”.
  3. Coloca una coma.
  4. Lee la parte decimal de la misma manera en la que se leen los enteros y al final nombra el orden decimal que ocupa la última cifra (décimas, centésimas o milésimas).

Por ejemplo, 535,42 se lee: “quinientas treinta y cinco unidades, cuarenta y dos centésimas“.

En el ejemplo anterior, el 2 corresponde a la última cifra y ocupa el orden de las centésimas por eso se agrega dicho orden al final del número.

Si el decimal tiene una parte entera igual a cero solo se nombra la parte decimal de acuerdo al orden de la última cifra. Por ejemplo, 0,579 se lee: “quinientas setenta y nueve milésimas“.

¿Sabías qué?
Cuando un número decimal termina en cero este número puede omitirse sin alterar su valor. Así, 1,50 es igual a 1,5.

Utilidad de los decimales

Gracias a que permiten expresar números menores a la unidad, uno de sus principales usos son en las mediciones, desde la lectura de la temperatura hasta la determinación del tamaño de una bacteria, por ejemplo. Por esta razón, los decimales son indispensables en los cálculos empleados en disciplinas como la arquitectura, la medicina, la ingeniería y muchas otras más.

Para comparar dos números decimales lo primero que se debe hacer es comparar sus partes enteras, la que sea mayor corresponderá al número decimal mayor, por ejemplo: 21,5 es mayor que 9,785 porque 21 es mayor a 9. Cuando dos números decimales tienen igual parte entera se comparan sus partes decimales, por ejemplo: 7,58 es mayor a 7,49 porque 58 es mayor a 49.

¿Se usa punto o coma?

La respuesta es simple: ¡cualquiera de las dos! La diferencia en usar una u otra radica en el lugar en donde te encuentres. La coma y el punto son usados como separadores de los números decimales y ambos son válidos. En gran parte de Europa y América del Sur se emplea la coma, pero algunos países como Estados Unidos, Canadá, México y Reino Unido emplean el punto.

Sumas y restas de decimales

Las sumas y restas de números decimales se hacen del mismo modo que con los números enteros. En estos casos se deben colocar los números que se vayan a sumar o restar uno debajo del otro, de manera tal que las cifras del mismo orden se encuentren en la misma columna, es decir, las centenas con las centenas, las decenas con las decenas, las unidades con las unidades, las décimas con las décimas y así sucesivamente. De igual forma, las comas deben estar ubicadas en la misma columna.

Observa la manera correcta de sumar los números 124,32 + 267,11:

Luego, la suma se realiza como una suma normal sin considerar la coma, al final, la coma en el resultado estará ubicada en la columna correspondiente.

Si las cifras que se suman no tiene la misma cantidad de decimales, se completa con cero la cifra de menor número de decimales. Por ejemplo, 74,874 +41,41 se calcula de la siguiente manera:

En el caso de una resta se cumplen los mismos pasos para restar enteros y las cifras se ubican una debajo de la otra de acuerdo a su valor posicional. Si es necesario se agregan ceros en la parte decimal de forma tal que los números tengan la misma cantidad de decimales.

Por ejemplo, al realizar la resta de 945,5 − 307,182 el procedimiento sería:

Cuando se resuelvan ejercicios con números decimales que tengan la parte entera igual a cero, la suma o resta puede realizarse sin ningún tipo de inconveniente, pero con la previsión de que todas sus cifras estén correctamente ordenadas. Un error común es ubicar las comas de los números en columnas distintas con lo cual el resultado será incorrecto.

 

¡A practicar!

  1. ¿Cómo se leen los siguientes números decimales?
    a) 457,5
    Solución
    Cuatrocientas cincuenta y siete unidades, 5 décimas.
    b) 8,742
    Solución
    Ocho unidades, setecientas cuarenta y dos milésimas.
    c) 0,92
    Solución
    Noventa y dos centésimas.
    d) 100,102
    Solución
    Cien unidades, ciento dos milésimas.
  2. Calcula el resultado de las siguientes sumas:
    a) 178,45 + 278,73
    Solución
    457,18
    b) 14,2 + 29,178
    Solución
    43,378
    c) 402,745 + 61,45
    Solución
    464,195
    d) 652,314 + 174,074
    Solución
    826,388
  3. Calcula el resultado de las siguientes restas:
    a) 279,3 − 142,1
    Solución
    137,2
    b) 542,22 − 419,1
    Solución
    123,12
    c) 547,943 − 390,451
    Solución
    157,492
    d) 482,1 − 125,748
    Solución
    356,352
RECURSOS PARA DOCENTES

Artículo “Números decimales”

El siguiente artículo profundiza la información sobre los números decimales y explica su relación con las fracciones.

VER

Video “Suma y resta de números decimales”

El video muestra ejemplos de sumas y restas de números decimales, así como los elementos a tener en cuenta durante la realización de este tipo de ejercicios.

VER

Tarjetas educativas “Operaciones matemáticas”

Las siguientes tarjetas sirven para mostrar de una manera más didácticas las operaciones matemáticas básicas.

VER

CAPÍTULO 1 / TEMA 2

Números primos y compuestos

Los números naturales son usados comúnmente para contar y se clasifican según sus divisores. Aquellos que solo pueden dividirse de forma exacta entre ellos mismos y entre el 1, es decir, tienen solo dos divisores, se denominan números primos; mientras que los que tienen más de dos divisores se denominan números compuestos.

Divisores de un número

Antes de abordar el tema de los números primos y números compuestos, es indispensable comprender el concepto de divisor. Este es un número natural que al dividir a otro natural da como resultado una división con cociente entero y resto igual a cero.

¿Sabías qué?
El divisor de un número siempre lo divide en partes exactas, por eso el resto siempre es igual a cero.

En este sentido, si deseas saber si un número es o no divisor de otro, debes realizar una división entre el número en cuestión y el posible divisor. Si el resultado es un cociente entero (no decimal) y si el resto es igual a cero (división exacta) entonces decimos que efectivamente es divisor de dicho número.

Por ejemplo:

– Para determinar si el número 2 es divisor del número 6:

Lo primero es dividir 6 entre 2.

En este caso, el número 2 es divisor del número 6 porque el cociente de la división es un número entero (no es decimal) y la división es exacta con el resto igual a cero.

Otro ejemplo:

– Para determinar si el número 3 es divisor del número 14:

 

 

 

Aunque la división es exacta, el número 4 no es divisor del número 14, porque el cociente de la división es un número decimal, en este caso se dice que el número 14 no es divisible entre 4.

Criterios de divisibilidad

Son simples reglas que permiten determinar de manera rápida si un número es divisor o no de otro sin necesidad de realizar la división. Algunos de estos criterios son:

– Un número es divisible entre 2 si es un número par o termina en 0.
Por ejemplo: 20, 54, 12, 1.050, 76 y 80.

– Un número es divisible entre 5 si termina en 5 o en 0.
Por ejemplo: 15, 225, 3.110 y 400.

– Un número es divisible entre 10 si termina en 0.
Por ejemplo: 10, 500, 3.410 y 780.

¡A practicar!

  1. ¿Cuáles de los siguientes números es divisor del número 12?
    a) 5
    b) 2
    c)10
    RESPUESTAS
    2
  2. ¿Cuáles de los siguientes números es divisor del número 25?
    a) 3
    b) 7
    c) 5
    RESPUESTAS
    5
  3. ¿Cuáles de los siguientes números es divisor del número 200?
    a) 10
    b) 3
    c) 6
    RESPUESTAS
    10
  4. ¿Cuáles de los siguientes números es divisor del número 16?
    a) 5
    b) 4
    c) 9
    RESPUESTAS
    4

Números primos

Son números que poseen únicamente dos divisores: ellos mismos y el 1.

Por ejemplo, el número 2 es un número primo porque solamente es divisible entre 2 y entre 1.

 

VER INFOGRAFÍA

¿Sabías qué?
El número uno es divisor de todos los números enteros pero solo es divisible por sí mismo.

Números compuestos

Los números compuestos son números divisibles por ellos mismos, por el uno (1) y por otros números, es decir, tienen más de dos divisores y son más frecuentes que los números primos.

Por ejemplo, el número 24 es un número compuesto, ya que es divisible entre 1, 2, 3, 4, 6, 8, 12 y 24. En total tiene 8 números divisores.

Números especiales

Los números 1 y 0 son números muy particulares. En el caso del 1, su único divisor es él mismo y en el caso del número 0, aunque puede ser dividido entre infinitos números, no puede dividirse entre sí mismo porque la división entre cero no esta determinada. Por estas razones, los números 1 y 0 no se consideran números primos ni compuestos.

Tabla de los números primos y compuestos

Existe un simple procedimiento que permite determinar con facilidad los conjuntos de números primos y compuestos; se conoce como Criba de Eratóstenes y aunque su nombre parezca complicado, su procedimiento no lo es.

1. Lo primero que hay que hacer es realizar una tabla con los números del 1 al 100 y se deberán tachar los números que no son primos. El primer número que se tacha es el 1 al no ser considerado número primo.
2. Luego, el siguiente número es el 2, al ser un número primo no se tacha pero a partir de él se empieza a contar de dos en dos al mismo tiempo que se tachan los números que resulten de dicho conteo.

3. Luego del 2, el siguiente número que no se ha tachado es el 3, a partir de él se empieza a contar de 3 en 3 y se tachan los números al mismo tiempo.

4. El siguiente número sin tachar es el 5, se deja sin tachar y se empieza a contar de 5 en 5 mientras se tachan los números.

5. El siguiente número sin marcar el el 7, se mantiene en la tabla sin tachar y se empieza a contar de 7 en 7 mientras se tachan los números.

Los números que no fueron tachados corresponden a números primos, y los números tachados son los compuestos, es una manera gráfica de identificar estos tipos de números del 1 al 100.

La Criba de Eratóstenes es una herramienta muy práctica para tener una visión general de los números primos y compuestos, sin embargo; en la vida cotidiana no es necesario ni aconsejable memorizarlos para resolver los ejercicios, por el contrario; al entender los elementos de cada número se podrá determinar con mayor rapidez si es primo o no.

 

¡A practicar!

1. ¿Qué número tiene infinitos divisores?

RESPUESTAS
El número cero.

2. ¿Cómo se llaman los números que solo tienen dos divisores?

RESPUESTAS
Números primos.

3. ¿Qué números no son considerados ni primos ni compuestos?

RESPUESTAS
El cero y el uno.

4. Un número es divisible entre dos si es par o termina en __________.

RESPUESTAS
cero

5. ¿Cuáles de estos números no es primo?
a) 7
b) 19
c) 25
d) 2

RESPUESTAS
25

6. El número 32 es un número _________.

a) impar
b) primo
c) compuesto

RESPUESTAS
compuesto

7. Clasifica cada uno de los siguientes números como “primo” o “compuesto”:

a) 21
b) 59
c) 18
d) 13

RESPUESTAS
a) Compuesto.
b) Primo.
c) Compuesto.
d) Primo.
RECURSOS PARA DOCENTES

Artículo “Números primos y compuestos”

En el siguiente artículo se desarrolla el tema de números primos y compuestos. Además se explica qué son los coprimos, y se señalan algunos números especiales.

VER

Artículo “Criterios de divisibilidad”

Este recurso ayuda a conocer los criterios de divisibilidad, ampliados para más números de los que se mencionaron en este artículo.

VER

 

CAPÍTULO 4 / TEMA 1

LAS LÍNEAS

ES POSIBLE QUE NO TE DES CUENTA, PERO ESTAMOS RODEADOS DE MUCHAS LÍNEAS. LAS USAMOS PARA ESCRIBIR, JUGAR, CAMINAR Y HASTA PARA COMER. LO PRIMERO QUE DEBES SABER ES QUE TODAS ESTÁN FORMADAS POR PUNTOS Y QUE ESTOS PUNTOS PUEDEN TENER RECORRIDOS MUY DIVERSOS.

¿QUÉ ES UNA LÍNEA?

UNA LÍNEA ES LA UNIÓN DE MUCHOS PUNTOS CONTINUOS EN EL PLANO.

ESTA IMAGEN REPRESENTA UNA SUCESIÓN DE PUNTOS. LA UNIÓN DE LOS PUNTOS FORMA UNA LÍNEA.

TE PUEDE PARECER EXTRAÑO QUE UNA LÍNEA ESTÉ FORMADA POR INFINITOS PUNTOS PORQUE SOLO VES UN TRAZO CONTINUO, PERO SI TE APROXIMAS LO SUFICIENTE VERÁS QUE EN REALIDAD SON PUNTOS SITUADOS UNO AL LADO DE OTROS. COMO LAS LÍNEAS DESCRIBEN LA DISTANCIA ENTRE DOS PUNTOS, HAY INFINITAS LÍNEAS.

LÍNEAS ABIERTAS Y CERRADAS

OBSERVA ESTAS LÍNEAS, ¿TODAS SON IGUALES?

NO, NO SON IGUALES.

LAS LÍNEAS DE COLOR ROJO SON LÍNEAS ABIERTAS.

LAS LÍNEAS DE COLOR VERDE SON LÍNEAS CERRADAS.

LAS LÍNEAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL. NO SE CIERRAN. SI ESTUVIERAS DENTRO DE UNA LÍNEA ABIERTA PODRÍAS SALIR.

LA LÍNEA DE COLOR ROJO ES UNA LÍNEA ABIERTA.

LAS LÍNEAS CERRADAS NO TIENEN PUNTO DE INICIO NI PUNTO FINAL. SE CIERRAN. SI ESTUVIERAS DENTRO DE UNA LÍNEA CERRADA NO PODRÍAS SALIR.

LA LÍNEA DE COLOR VERDE ES UNA LÍNEA CERRADA.

LAS LÍNEAS SEGÚN SU FORMA

OBSERVA LAS LÍNEAS DE ESTAS LETRAS Y NÚMEROS, ¿TODAS SON IGUALES?

NO, SON SON IGUALES. TODAS TIENEN FORMAS DISTINTAS.

SEGÚN SU FORMA, LAS LÍNEAS PUEDEN SER RECTAS, CURVAS, MIXTAS O QUEBRADAS.

LA LÍNEA RECTA SIEMPRE TIENE LA MISMA DIRECCIÓN.

 

LAS LÍNEAS DE COLOR ROJO SON LÍNEAS RECTAS.

LA LÍNEA CURVA CAMBIA CONSTANTEMENTE DE DIRECCIÓN.

LAS LÍNEAS DE COLOR AZUL SON LÍNEAS CURVAS.

 

LAS LÍNEAS CURVAS PUEDEN SER ABIERTAS O CERRADAS

LAS LÍNEAS CURVAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL. SI HACES ESTA SUCESIÓN DE PUNTOS CON UN LÁPIZ Y NO LO LEVANTAS DEL PAPEL, NO LLEGARÁS AL PUNTO EN EL QUE COMENZASTE.

LAS LÍNEAS CURVAS CERRADAS NO TIENEN UN PUNTO DE INICIO NI UN PUNTO FINAL. SI HACES ESTA SUCESIÓN DE PUNTOS CON UN LÁPIZ Y NO LO LEVANTAS DEL PAPEL, LLEGARÁS AL PUNTO EN EL QUE COMENZASTE.

LA LÍNEA MIXTA ESTÁ FORMADA POR LA COMBINACIÓN DE LÍNEAS RECTAS Y LÍNEAS CURVAS.

LAS LÍNEAS DE COLOR VERDE SON LÍNEAS MIXTAS.

LA LÍNEA QUEBRADA ESTÁ FORMADA POR VARIAS LÍNEAS RECTAS QUE SE CORTAN ENTRE SÍ Y QUE TIENEN DIRECCIONES DISTINTAS.

LAS LÍNEAS DE COLOR MORADO SON LÍNEAS QUEBRADAS.

¿CÓMO SE LLAMAN ESTAS LÍNEAS?

SOLUCIÓN

1. LÍNEA CURVA.

2. LÍNEA QUEBRADA.

3. LÍNEA RECTA.

4. LÍNEA MIXTA.

LAS LÍNEAS SEGÚN SU POSICIÓN

OBSERVA LOS CAMINOS QUE COMUNICAN A ESTAS TRES CASAS. ¿CUÁNTAS LÍNEAS RECTAS VES?, ¿TODAS SON IGUALES?

HAY SEIS LÍNEAS QUE MUESTRAN LOS CAMINOS. TODAS LAS LÍNEAS SON RECTAS PERO ESTÁN EN DISTINTAS POSICIONES.

LAS LÍNEAS DE COLOR VERDE SON VERTICALES.

LAS LÍNEAS DE COLOR ROJO SON HORIZONTALES.

LAS LÍNEAS DE COLOR AZUL SON INCLINADAS U OBLICUAS.

¡PRACTIQUEMOS LAS POSICIONES!

  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN VERTICAL?
  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN HORIZONTAL?
  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN INCLINADA?

SOLUCIÓN
  • 7 LÁPICES ESTÁN EN POSICIÓN HORIZONTAL.
  • 4 LÁPICES ESTÁN EN POSICIÓN VERTICAL.
  • 3 LÁPICES ESTÁN EN POSICIÓN INCLINADA.

LÍNEAS EN LA VIDA DIARIA

LAS LÍNEAS ESTÁN EN TODO LO QUE NOS RODEA, PUES LIMITAN EL CONTORNO DE LAS FIGURAS Y LOS OBJETOS. OBSERVA ESTOS EJEMPLOS:

LÍNEAS EN LA VIDA

  • EL HORIZONTE ES UNA DELGADA LÍNEA QUE PARECE SEPARAR EL CIELO DE LA TIERRA. ESTE ES IGUAL A UNA LÍNEA RECTA HORIZONTAL.

  • ALGUNOS CAMINOS MUESTRAN UNA LÍNEA CURVA ABIERTA.

  • LAS ESCALERAS SON UN EJEMPLO DE LÍNEA QUEBRADA.

  • LAS RESBALADILLAS O TOBOGANES TIENEN LÍNEAS INCLINADAS.

  • EL CONTORNO DE LAS TIJERAS PRESENTA UNA LÍNEA MIXTA: COMBINACIÓN DE LÍNEAS CURVAS CON LÍNEAS RECTAS.

  • LOS CAPARAZONES DE LOS CARACOLES TIENEN FORMA ESPIRAL, UN TIPO DE LÍNEA CURVA ABIERTA.

  • LOS CHARCOS DE AGUA TIENEN UN CONTORNO IGUAL AL DE UNA LÍNEA CURVA CERRADA.

  • LA SILUETA DE LA PANTALLA DE TU TELEVISOR ESTÁ FORMADA POR LÍNEAS RECTAS.

¿Sabías qué?
LOS CROQUIS SE USAN PARA DIBUJAR LA IMAGEN DE UN LUGAR. PARA HACERLOS SE USAN LAS LÍNEAS RECTAS, CURVAS, MIXTAS Y QUEBRADAS.

¡DIBUJEMOS LÍNEAS!

IDENTIFICA EN ESTE DIBUJO LAS LÍNEAS APRENDIDAS.

SOLUCIÓN

HAY MUCHAS MÁS LÍNEAS. ¡DESCÚBRELAS!

AHORA ES TÚ TURNO. HAZ UN DIBUJO CON LÍNEAS Y CURVAS.

¡A PRACTICAR!

1. ¿CUÁNTAS LÍNEAS RECTAS VES?

SOLUCIÓN

2. UNE LOS PUNTOS DE CADA COLOR CON LAS LÍNEAS INDICADAS.

RECURSOS PARA DOCENTES

Artículo “Geometría para niños”

Este artículo le  permitirá trabajar en clase los aspectos básicos necesarios para entrar en el mundo de la geometría.

VER

CAPÍTULO 1 / TEMA 1

LECTURA DE NÚMEROS

Los números pueden parecer muy difíciles si tienen muchas cifras, pero no son tan complicados cuando conoces la posición de los dígitos y el valor relativo de cada uno. Con unos pasos muy sencillos podrás leerlos, ya sea que pertenezcan a nuestro sistema de numeración decimal o al sistema de numeración romano.

Lectura de números naturales

Brasil es un país ubicado en América del Sur. Tiene una superficie total de 8.515.770 km2 y una población estimada de 210.385.000 habitantes. Se trata del segundo país más poblado de todo el continente americano. ¿Puedes leer esos números?, ¿cuántos habitantes hay en Brasil?, ¿cuál es su superficie? En este artículo, veremos los pasos para saber cómo leerlos.

Los números naturales son aquellos que usas para contar. Inician desde el cero (0) y siguen hasta el infinito. Este conjunto de números fue el primero que se utilizó para calcular y por definición matemática se representan así:

\mathbb{N} = \left \{0,\, 1,\, 2,\, 3,\, 4,\, 5,\, ... \right \}

Estos son los que más empleas día a día. Con ellos das la hora, tu fecha de cumpleaños o tu número de identificación. En cualquier caso, la ubicación de cada cifra cumple un valor relativo. Así, en el número 25.651, el 5 se ubica en dos posiciones: en las decenas y en las unidades de mil. El valor relativo de cada cifra es:

Y el número se lee: veinticinco mil seiscientos cincuenta y uno.

Las posiciones de cada cifra permiten la correcta lectura de los números, en especial, cuando los números son grandes. Para leer un número natural, lo primero que debes hacer es escribirlo correctamente. Esto se logra por medio de agrupación de dígitos. Para leer el número 123604785219, los pasos son los siguientes:

  1. Coloca un punto cada tres dígitos. Empieza de derecha a izquierda.
  2. Cada punto rojo, de derecha a izquierda, representará la palabra “mil”.
  3. Cada punto azul, de derecha a izquierda, representará en orden ascendente la secuencia: millones, billones, trillones, cuatrillones, quintillones, etc.

Por último, se lee el número de izquierda a derecha: ciento veintitrés mil seiscientos cuatro millones setecientos cincuenta y ocho mil doscientos diecinueve.

¿Cómo se leen estos números?

  • 121.568.265

Solución
Ciento veintiún millones quinientos sesenta y ocho mil doscientos sesenta y cinco.
  • 923.645.687.156

Solución
Novecientos veintitrés mil seiscientos cuarenta y cinco millones seiscientos ochenta y siete mil ciento cincuenta y seis.
  • 216.035.548.665.021

Solución
Doscientos dieciséis billones treinta y cinco mil quinientos cuarenta y ocho millones seiscientos sesenta y cinco mil veintiuno.

¿Sabías qué?
El número de Graham es el número más grande que se ha representado matemáticamente. Su símbolo es la letra G y requirió el uso de símbolos y la notación flecha de Knuth para su representación.

LECTURA DE NÚMEROS DECIMALES

Los números decimales se componen de una parte entera y una parte decimal que va separada por una coma. Estos números están presentes en nuestro día a día: en nuestro peso, cuando usamos el termómetro o en los precios de los productos.

Las partes de un número decimal están divididas por un separador. Aunque el Sistema Internacional de Unidades (SI) y la ISO aceptan el punto y la coma como separador decimal, la Real Academia Española aclara que la coma es “el signo igual al ortográfico que se emplea para separar la parte entera de la parte decimal en las expresiones numéricas”.

Para el número 325,086 el valor relativo de cada cifra se representa así:

Según el lugar que ocupe el decimal se representará en orden ascendente la secuencia: décima, centésima, milésima, diezmilésima, cienmilésima, milmilésima, etc. Todos estos son valores más pequeños que uno (1). Observa la tabla:

Décimas Centésimas Milésimas
La décima parte de la unidad es

\frac{1}{10}= 0,1

La centésima parte de la unidad es

\frac{1}{100}= 0,01

La milésima parte de la unidad es

\frac{1}{1000}= 0,001

1 U = 10 d 1 U = 100 c

1 d = 10 c

1 U = 1.000 m

1 d = 100 m

1 c = 10 m

Donde:

U: unidad

d: décimas

c: centésimas

m: milésimas

De centenas a milésimas

Para leer un número decimal debes seguir estos pasos:

  1. Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
  2. Lee toda la parte decimal como se lee la parte entera.
  3. Menciona la posición en la que se encuentra la última cifra decimal.

Entonces, la lectura del número 122,96 es: ciento veintidós enteros noventa y seis centésimas.

Existe otra forma de leer números decimales, los pasos son los siguientes:

  1. Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
  2. Lee toda la parte decimal como se lee la parte entera.

De este modo, la lectura del número 122,96 también es: ciento veintidós coma noventa y seis.

¿Cómo se leen estos números?

  • 2,364

Solución
Dos enteros trescientos sesenta y cuatro milésimas.
  • 5.879.009,587

Solución
Cinco millones ochocientos setenta y nueve mil nueve enteros quinientos ochenta y siete milésimas.
  • 175.756,2

Solución
Ciento setenta y cinco mil setecientos cincuenta y seis enteros dos décimas.

¿Sabías qué?
El número pi (π) es un número con decimales infinitos y es una de las constantes matemáticas más utilizadas. Relaciona el perímetro de una circunferencia con la amplitud de su diámetro.

LECTURA DE NÚMEROS ROMANOS

La numeración romana tiene siete símbolos representados por siete letras del abecedario latino:

Número romano I V X L C D M
Número arábigo 1 5 10 50 100 500 1.000

Por ejemplo, el número XVI es igual a 16 porque:

XVI = 10 + 5 + 1 = 16

Si bien los números romanos están en desuso en la actualidad, es posible verlos en relojes, capítulos y tomos de libros, materias en programas académicos, leyes y reformas, sagas de películas, concursos, actos y escenas de obras de teatro, nombres de papas, nombres de reyes, y en lápidas y esculturas conmemorativas.

Para poder realizar la lectura de los números romanos de pocas o muchas cifras necesitas conocer las siguientes reglas:

1. Regla de la suma

Si a la derecha de una número romano tenemos otro de menor valor, entonces las cifras se suman.

CL = 100 + 50 = 150

XXIII = 10 + 10 + 3 = 23

2. Regla de la resta

  • I solo puede colocarse delante de V y X.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

  • X solo puede restar a L y C.

XL = 50 − 10 = 40

XC = 100 − 10 = 90

  • C solo puede restar a D y M.

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

  • V, L y D nunca pueden usarse para restar otros números.

3. Regla de la repetición

Podemos repetir I, X, C y M un máximo de tres veces. En cambio, V, L y D no se pueden repetir.

III = 1 + 1 + 1 = 3

MMM = 1.000 + 1.000 + 1.000 = 3.000

4. Regla de la multiplicación

Después de 3.999 el sistema es diferente y se coloca una raya horizontal encima del número romano, esto significa que se ha multiplicado por 1.000. Si se colocan dos rayas, el número será multiplicado por 1.000.000.

\overline{V} = 5 \times 1.000 = 5.000

\overline{XLIV} = [(50 - 10)+(5-1)] \times 1.000 = 44 \times 1.000 = 44.000

\overline{MMCXC}= [(1.000+1.000)+(100)+(100-10)]=2.190\times1.000=2.190.000

VER INFOGRAFÍA

De número natural a número romano

Al descomponer un número natural puedes encontrar el equivalente a su número romano. Para ello, solo debes usar los números 1, 5, 10, 50, 100, 500 o 1.000 en la descomposición. Las sumas y restas están permitidas.

Por ejemplo, el número romano equivalente a 279 se encuentra por medio de esta descomposición:

¿Estos números romanos son correctos?

  • VIIII

Solución
No. El número romano I solo puede repetirse un máximo de tres veces. Si deseas escribir el número 9 en números romanos lo correcto es:

IX = 10 − 1 = 9

  • VX

Solución
No. El número romano X solo puede restar a L y C. Si deseas escribir el número 15 en número romano lo correcto es:

XV = 10 + 5 = 15 

  • DDD

Solución
No. El número romano D no puede repetirse. Si deseas escribir el número 1.500 en número romanos, lo correcto es:

MD = 1.000 + 500 = 1.500

VALOR POSICIONAL DE CIFRAS

El sistema de numeración decimal es el más usado en el mundo, se caracteriza por:

  • Estar conformado por 10 cifras: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.
  • Ser posicional, es decir, cada cifra tiene un valor de acuerdo a su posición dentro del número.
Mismos números, distintas posiciones

Con tres dígitos, como 8, 3 y 5, se pueden formar varios números, sin embargo, no todos tendrán el mismo valor posicional.

Según la posición que ocupe un dígito en un número su valor será diferente. Por ejemplo, el dígito 3 ocupa distintos puestos en el número 53.412.130.004.322,18, y por lo tanto, cada uno tiene un valor diferente. Observa la tabla de valores posicionales:

En este número, el dígito 3 ocupa tres posiciones:

  • Unidad de billón, que equivale a 1.000.000.000.000 unidades, entonces:

3 x 1.000.000.000.000 = 3.000.000.000.000

  • Decena de millón, equivalente a 10.000.000 unidades, entonces:

3 x 10.000.000 = 30.000.000

  • Centena, que equivale a 100 unidades, entonces:

3 x 100 = 300

Este número se lee: cincuenta y tres billones cuatrocientos doce mil ciento treinta millones cuatro mil trescientos veintidós enteros dieciocho centésimas.

Tabla de equivalencias

 

1 unidad = 1 unidad

1 decena = 10 unidades

1 centena = 100 unidades

1 unidad de mil (millar) = 1.000 unidades

1 decena de mil (millar) = 10.000 unidades

1 centena de mil (millar) = 100.000 unidades

1 unidad de millón = 1.000.000 unidades

1 decena de millón = 10.000.000 unidades

1 centena de millón = 100.000.000 unidades

1 unidad de millar de millón = 1.000.000.000 unidades

1 decena de millar de millón = 10.000.000.000 unidades

1 centena de millar de millón = 100.000.000.000 unidades

1 unidad de billón = 1.000.000.000.000 unidades

1 decena de billón = 10.000.000.000.000 unidades

1 centena de billón = 100.000.000.000.000 unidades

¿Qué valor posicional tienen los números marcados en rojo?

587.124.687,7956

Solución
Decena.

8.147.561,115

Solución
Unidad de millón.

64.789,185948

Solución
Milésima.

189.547.963.004.279

Solución
Centena de billón.
Ejercicios

1. Lee y escribe en letras los siguientes números:

  • 3465268
Solución
3.465.268 = tres millones cuatrocientos sesenta y cinco mil doscientos sesenta y ocho.
  • 12563,158
Solución
12.563,158 = doce mil quinientos sesenta y tres enteros ciento cincuenta y ocho milésimas.
  • 684812313
Solución
684.812.313 = seiscientos ochenta y cuatro millones ochocientos doce mil trescientos trece.
  • \fn_cm \overline{LXV}
Solución
Sesenta y cinco mil.
  • MM
Solución
Dos mil.
  • 165,5346821
Solución
Ciento sesenta y cinco enteros cinco millones trescientos cuarenta y seis mil ochocientos veintiún diezmillonésimas.
  • \fn_cm \overline{MMMC}
Solución
Tres millones cien mil.
  • \fn_cm \overline{DXI}
Solución
Quinientos once mil.
RECURSOS PARA DOCENTES

Artículo “Números grandes: lectura y escritura”

El siguiente artículo le permitirá ampliar información sobre la lectura y escritura de números grandes.

VER