Álgebra

El álgebra es una rama de la Matemática que estudia a las operaciones matemáticas en un sentido general, abstracto y genérico. Se divide en varias clases: lineal, vectorial, tensorial, conmutativa, diferencial, booleana y elemental, entre otras. La que se suele aprender en la escuela es la elemental, el resto es parte de los contenidos de educación superior.

Estatua del matemático Al-Khwarizmi frente a Itchan Kala en la ciudad de Jiva, Uzbekistán.

Al-Kwaritzmi es un erudito persa que se destacó en varias áreas: astronomía, geografía, filosofía, astrología y matemáticas, entre otras. Se lo considera el padre del álgebra, dado que en su obra principal desarrolló contenidos de este tema, aplicándolos a la vida cotidiana de aquel entonces. En su obra, Hisāb al-ŷabr wa’l muqābala, realizó explicaciones sumamente didácticas e incorporó el sistema de numeración que actualmente se utiliza: el sistema arábigo.

Gracias a este extraordinario matemático actualmente se utilizan los términos guarismo, algoritmo y álgebra.

El tradado matemático de Al-Khwaritzmi se tradujo al latín y se utilizó en universidades europeas durante siglos.

ÁLGEBRA ELEMENTAL

El álgebra elemental incluye gran cantidad de temas que se abarcan durante varias etapas de la escolaridad. Si se estudian ecuaciones, se está aprendiendo álgebra, del mismo modo con los polinomios, los radicales, las funciones, etc. Gran parte de lo que se aprende en la escuela corresponde a esta rama de la Matemática.

introducción al álgebra: CONCEPTOS FUNDAMENTALES

Notación algebraica

La notación es un sistema de signos que se utilizan para representar conceptos, éstos dependen principalmente de la disciplina a la cual correspondan. En el caso del álgebra, estos signos convencionales son: números y letras.

Números: corresponden a cantidades determinadas y conocidas.

Letras: pueden representar cantidades desconocidas o conocidas. Por lo general se suelen utilizar las últimas letras del alfabeto para las cantidades desconocidas: x, y, z.

Signos

Se dividen en tres tipos:

  • Signos de operación: el álgebra comparte con la aritmética los signos de operación +, -, ÷, ⋅, √ y (potencia).
  • Signos de agrupación: estos signos determinan la jerarquía de operaciones, es decir cuál de ellas debe realizarse primero. Son los paréntesis, los corchetes y las llaves.
  • Signos de relación: sirven para comparar dos cantidades. Éstos son: >, <, ≤, ≥, =.

Fórmulas

Las fórmulas algebraicas permiten establecer generalizaciones. Por ejemplo, en geometría la longitud de una circunferencia puede resolverse mediante la fórmula L = 2πr.

Expresión algebraica

Cualquier expresión con números y letras es una expresión algebraica, puede ser que esté compuesta por varias operaciones o por un solo símbolo.

Expresión algebraica compuesta por un solo símbolo: x

Expresión algebraica compuesta por varias operaciones: 2ab+5c-ab2

En esta última, los signos + y – separan a la expresión algebraica en términos, en el ejemplo que precede se observan tres términos: 2ab, 5c y ab2.

Tipos de términos

Los términos en una expresión algebraica pueden ser:

  • Enteros: aquellos que no tienen denominador literal. Por ejemplo: 3x.
  • Fraccionarios: son los que tienen al menos una letra en el denominador. Por ejemplo: \frac{2}{b}.
  • Racionales: incluyen a los enteros y fraccionarios.
  • Irracionales: cuentan con un radical, ya sea en numerador o en denominador: \frac{\sqrt{b}}{3}.
  • Homogéneos: son los que poseen un mismo grado absoluto. Por ejemplo: a2b4 y a3b3.
  • Heterogéneos: su grado absoluto es distinto. Por ejemplo: ab3 y a4b2
GRADO ABSOLUTO DE UN TÉRMINO

Es la suma de los exponentes de sus factores literales o de su factor literal. Ejemplos: a2b4 es un término de grado 6, a4 es un término de grado 4 y xy2z2 es un término de grado 5.

TÉRMINOS SEMEJANTES

Dos términos son semejantes cuando su parte literal y el exponente de ésta son iguales. Por ejemplo:

2a y 3a son semejantes.
3ab y 7ab son semejantes.
x2 y 4x2 son semejantes.

2a y 2b no son semejantes.
2ab y 3ab2 no son semejantes.
ab2 y a2bc no son semejantes.

Cuando se tienen varios términos semejantes se puede realizar la operación de reducción de términos. Ésta consiste en convertir en un solo término dos o más términos semejantes.

Pueden ocurrir tres situaciones:

  1. Si todos los términos semejantes tienen el mismo signo: se suma la parte numérica, se escribe la parte literal y el término resultante tendrá el mismo signo que tienen todos. Por ejemplo:
    2ab +3ab +7ab = 12ab
    -5y -2y = -7y
  2. Si dos términos semejantes tienen distinto signo: se restan los coeficientes y se coloca en el resultado el signo del que mayor valor absoluto. Por ejemplo:
    4x2y – 6x2y = -2x2y
    En este ejemplo se restaron los coeficientes 4 y 6 y se colocó el signo de -6.-9a+5a= -4a
  3. Si varios términos semejantes tienen distinto signo: se procede a agrupar todos los términos con el mismo signo y al reducir a dos términos se realiza el procedimiento anteriormente citado. Por ejemplo:
    4x+6x-7x+3x-8x=

    POSITIVOS NEGATIVOS
    4x
    6x
    3x
    7x
    8x
    13x 15x

    No es indispensable en la resolución realizar la tabla precedente, la misma se ha confeccionado para la mejor visualización del procedimiento.
    4x+6x+3x-7x-8x= 13x-15x = -2x

Ábaco, instrumento que sirve para realizar manualmente operaciones sencillas. Es el más antiguo instrumento de cálculo.

A PRACTICAR LO APRENDIDO

Reducir los siguientes términos semejantes:

  1. 3ab + 5ab =
  2. -8xy2 -7xy2=
  3. 19xyz -7xyz=
  4. -26a +12a=
  5. 4ab2+7ab2-18ab2+14ab2-12ab2=
  6. 10x-7x-15x+24x+8x=

RESPUESTAS

  1. 8ab
  2. -15xy2
  3. 12xyz
  4. -14a
  5. -5ab2
  6. 20x
¿Sabías qué...?
La palabra álgebra tiene origen en la palabra árabe al-jabru, ésta significa “reducción”.