CAPÍTULO 3 / TEMA 2

FRACCIONES EQUIVALENTES

Hay fracciones que aunque parezcan diferentes representan la misma cantidad. Por ejemplo, si un amigo te ofrece 1/2 de un alfajor y otro te ofrece 2/4 de un alfajor, ¿quién te ofrece más? ¡Ninguno! ¡Los dos ofrecen lo mismo! Este tipo de fracciones son conocidas como fracciones equivalentes y son muy fáciles de distinguir.

¿QUÉ ES UNA FRACCIÓN EQUIVALENTE?

Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad, es decir, al mismo número. Veamos un ejemplo:

\boldsymbol{\frac{2}{3}} =

 

\boldsymbol{\frac{4}{6}}=

Podemos observar que en ambas fracciones pintamos la misma porción del entero, lo que quiere decir que ambas fracciones representan la misma cantidad. Por lo tanto, decimos que \frac{2}{3} y \frac{4}{6} son fracciones equivalentes, y las podemos escribir así:

\boldsymbol{\frac{2}{3}=\frac{4}{6}}

 

¿Hay una sola fracción equivalente?

Cada fracción tiene muchas fracciones equivalentes. Por ejemplo, otra fracción equivalente de \frac{2}{3} es \frac{8}{12}:

Entonces, como las 3 fracciones son equivalentes entre sí, podemos escribir:

\boldsymbol{\frac{2}{3}=\frac{4}{6}=\frac{8}{12}}

 

Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad, es decir, al mismo número. Por lo tanto, hay muchas formas de decir media sandía: 1/2 , 2/4 , 4/8 , 8/16 , 16/32 y muchas más. Todas ellas son fracciones equivalentes que indican la mitad de un entero.

 

¿Cómo saber si dos fracciones son equivalentes?

Dos fracciones son equivalentes si al multiplicar sus términos en forma de cruz el resultado el mismo.

  • \boldsymbol{\frac{3}{4}} y \boldsymbol{\frac{6}{8}} son fracciones equivalentes porque \boldsymbol{3\times 8=4\times 6}

 

  • \boldsymbol{\frac{3}{5}} y \boldsymbol{\frac{6}{18}} no son equivalentes porque \boldsymbol{3\times 18\neq 5\times 6}

¡Es tu turno!

¿Estas fracciones son equivalentes?

  • \boldsymbol{\frac{2}{5}} y \boldsymbol{\frac{6}{15}}
Solución

\boldsymbol{\frac{2}{5}} y \boldsymbol{\frac{6}{15}} son fracciones equivalentes porque \boldsymbol{2\times 15=5\times 6}

  • \boldsymbol{\frac{4}{7}} y \boldsymbol{\frac{3}{5}}
Solución

\boldsymbol{\frac{4}{7}} y \boldsymbol{\frac{3}{5}} no son fracciones equivalentes porque \boldsymbol{4\times 5\neq 7\times 3}

¿cómo CONVERTIR FRACCIONES EQUIVALENTES?

Las fracciones equivalentes se pueden obtener por medio de dos métodos: amplificación y simplificación.

Amplificación de fracciones

Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número distinto de cero.

Si al numerador y al denominador de la fracción \frac{3}{5} los multiplicamos por 3, obtenemos \frac{9}{15} y por lo tanto, ambas fracciones son equivalentes.

Así, si multiplicamos al numerador y al denominador por 4, obtenemos otra fracción equivalente: \frac{12}{20}.

Y si multiplicamos por 5, obtenemos otra: \frac{15}{25}.

 

 

Podemos escribir las fracciones obtenidas de la siguiente manera:

\boldsymbol{\frac{3}{5}=\frac{9}{15}=\frac{12}{20}=\frac{15}{25}}

¡Puedes comprobarlo!

Las fracciones equivalentes, a pesar de tener numeradores y denominadores diferentes, representan una misma cantidad. Puedes corroborar esto si divides el numerador entre el denominador.

\boldsymbol{\frac{3}{5}=3\div 5=0.6}

\boldsymbol{\frac{9}{15}=9\div 15=0.6}

\boldsymbol{\frac{12}{20}=12\div 20=0.6}

\boldsymbol{\frac{15}{25}=15\div 25=0.6}

Simplificación de fracciones

Para obtener fracciones equivalentes por simplificación debemos dividir al numerador y al denominador de la fracción por un mismo número distinto de cero. Pero en este caso, el número debe ser un divisor común entre el numerador y el denominador. Es decir, tanto el numerador como el denominador se deben poder dividir por el número.

Si al numerador y al denominador de la fracción \frac{30}{15} los dividimos por 3, obtenemos \frac{10}{5}, que es una fracción equivalente.

Los divisores comunes entre 30 y 15 son: 3, 5, 15. Entonces, también podemos simplificar la fracción \frac{30}{15} si dividimos el numerador y denominador por 5, cuyo resultado es \frac{6}{3}.

Y si dividimos por 15, obtenemos \frac{2}{1}, otra fracción equivalente.

Como todas representan la misma cantidad, podemos escribirlas de este modo:

 

\boldsymbol{\frac{30}{15}=\frac{10}{5}=\frac{6}{3}=\frac{2}{1}}

¿Sabías qué?
Cuando una fracción no puede simplificarse se dice que es una fracción irreducible.
Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número distinto de cero; y para obtener fracciones equivalentes por simplificación debemos dividir al numerador y al denominador de la fracción por un mismo número distinto de cero que sea divisor común entre ambos.

APLICACIÓN DE LAS FRACCIONES EQUIVALENTES EN OPERACIONES DE FRACCIONES

Podemos usar las fracciones equivalentes para sumar y restar fracciones heterogéneas (aquellas que tienen distinto denominador). Para estos solo tenemos que convertirlas en fracciones homogéneas, es decir, en fracciones con igual denominador. Luego sumamos o restamos los numeradores y conservamos el denominador.

– Ejemplo:

\boldsymbol{\frac{2}{4}+\frac{8}{2}=}

Los denominadores son 4 y 2. Pero si en la segunda fracción multiplicamos numerador y denominador por 2, obtenemos \frac{16}{4}, que es una fracción equivalente.

\boldsymbol{\frac{8}{2}=\frac{16}{4}}

Entonces, la suma queda así:

\boldsymbol{\frac{2}{4}+\frac{16}{4}=\frac{2+16}{4}=\frac{18}{4}}

 

También podemos representar esta fracción final de una manera más simple si encontramos un divisor común. Como 18 y 4 son divisible por 2, su fracción equivalente es \frac{9}{2}.

\boldsymbol{\frac{18}{4}=\frac{9}{2}}

Por lo tanto:

\boldsymbol{\frac{2}{4}+\frac{16}{4}=\frac{2+16}{4}=\frac{18}{4}=\boldsymbol{\frac{9}{2}}}


– Otro ejemplo:

\boldsymbol{\frac{6}{5}-\frac{1}{2}=}

 

Los denominadores son 5 y 2, así que debemos encontrar el mínimo común múltiplo entre ambos, que es 10. Para llegar de 5 a 10, debemos multiplicar a 5 por 2. Entonces, amplificamos la fracción \frac{6}{5} por 2:

\boldsymbol{\frac{6}{5}=\frac{12}{10}}

 

Y para llegar de 2 a 10, debemos multiplicar a 2 por 5. Amplificamos esta fracción por 5:

\boldsymbol{\frac{1}{2}=\frac{5}{10}}

 

La resta queda así:

\boldsymbol{\frac{12}{10}-\frac{5}{10}=\frac{12-5}{10}=\frac{7}{10}}

 

Las fracciones equivalentes se pueden utilizar para sumar y restar fracciones heterogéneas (que tienen distinto denominador). Para poder sumarlas o restarlas, debemos convertirlas en fracciones homogéneas, es decir, que tengan el mismo denominador. Y para convertirlas en fracciones homogéneas, utilizamos fracciones equivalentes de las originales.

¡A practicar!

1. Indica si estas equivalencias son verdaderas o falsas.

\boldsymbol{\frac{8}{11}=\frac{33}{44}}

Solución
Falso. Estas fracciones no son equivalentes porque 8 × 44 ≠ 11 × 33.

\boldsymbol{\frac{1}{5}=\frac{3}{15}}

Solución
Verdadero. Estas fracciones sí son equivalentes porque 1 × 15 = 5 × 3.

\boldsymbol{\frac{4}{12}=\frac{20}{24}}

Solución
Falso. Estas fracciones no son equivalentes porque 4 × 24 ≠ 12 × 20.

\boldsymbol{\frac{9}{10}=\frac{36}{30}}

Solución
Falso. Estas fracciones no son equivalentes porque 9 × 30 ≠ 10 × 36.

\boldsymbol{\frac{7}{8}=\frac{14}{16}}

Solución
Verdadero. Estas fracciones sí son equivalentes porque 7 × 16 = 8 × 14.

\boldsymbol{\frac{6}{9}=\frac{24}{36}}

Solución
Falso. Estas fracciones no son equivalentes porque 9 × 24 ≠ 6 × 36.

 

2. Realiza los siguientes cálculos. Utiliza sus fracciones equivalentes:

  • \boldsymbol{\frac{1}{4}+\frac{3}{2}=}
Solución

\boldsymbol{\frac{1}{4}+\frac{6}{4}=\frac{6+1}{4}=\frac{7}{4}}

  • \boldsymbol{\frac{2}{3}+\frac{6}{4}=}
Solución

\boldsymbol{\frac{8}{12}+\frac{18}{12}=\frac{8+18}{12}=\frac{26}{12}=\frac{13}{6}}

  • \boldsymbol{\frac{7}{5}-\frac{2}{2}=}
Solución

\boldsymbol{\frac{14}{10}-\frac{10}{10}=\frac{14-10}{10}=\frac{4}{10}=\frac{2}{5}}

  • \boldsymbol{\frac{8}{3}-\frac{2}{5}=}
Solución

\boldsymbol{\frac{40}{15}-\frac{6}{15}=\frac{40-6}{15}=\frac{34}{15}}

 

RECURSOS PARA DOCENTES

Artículo “Fracciones equivalentes”

En este artículo podrás ahondar en los conceptos de amplificación y simplificación de fracciones, hasta llegar al concepto de fracción irreducible.

VER

Micrositio “Operaciones matemáticas”

En este micrositio, las tarjetas te ayudarán a profundizar en el procedimiento que debe realizarse en las operaciones matemáticas de adición, resta, multiplicación y división de fracciones homogéneas y heterogéneas.

VER