Ácidos y bases

Desde la antigüedad se clasifican sustancias en base a su sabor o a la sensación que generan en la piel, este es el caso de los ácidos y las bases. Ambas forman soluciones de electrólitos y son capaces cambiar el color de ciertas compuestos. Con el propósito de dar una explicación al comportamiento físico y químico de los ácidos y bases se han propuesto diversas teorías llamadas teorías ácido-base.

Ácido Base
Concepto según la teoría de Arrhenius

Sustancia que en solución acuosa incrementa la concentración de iones hidrógeno H+.

 

HNO_{3} (ac) \rightarrow {\color{Red} H^{+}} (ac) + NO_{3}^{-}(ac)

 

Sustancia que en solución acuosa incrementa la concentración de iones hidroxilo OH-.

 

NaOH (ac) \rightarrow Na^{+}(ac) + {\color{Blue} OH^{-}}(ac)

 

Concepto según la teoría Brønsted-Lowry Especie capaz de ceder iones H+.

 

{\color{Red} CH_{3}COOH} (ac) + H_{2}O \rightleftharpoons CH_{3}COO^{-} (ac) + {\color{Red} H_{3}O^{+}} (ac)

 

Especie capaz de aceptar iones H+.

 

CH_{3}COOH (ac) + {\color{Blue} H_{2}O} \rightleftharpoons {\color{Blue} CH_{3}COO^{-}} (ac) + H_{3}O^{+} (ac)

 

Concepto según la teoría de Lewis Sustancia capaz de aceptar un par de electrones.

 

{\color{Red} BF_{3} }+ NH_{3} \rightarrow BF_{3}NH_{3}

 

Sustancia capaz de donar o ceder un par de electrones.

 

BF_{3}+ {\color{Blue} NH_{3}} \rightarrow BF_{3}NH_{3}

 

Rango de pH 0 a 6 8 a 14
Sabor Agrio. Amargo.
Viraje de color en papel tornasol Cambia a color rojo el papel azul. Cambia a color azul el papel rojo.
Neutraliza Bases. Ácidos.
Viraje de color en fenolftaleína Cambia de rojo a incoloro. Cambia de incoloro a rosado.
Reactividad Reacciona con metales, como el magnesio, zinc o hierro. No reacciona con metales. Reacciona con los ácidos.
Conductividad eléctrica Conductor eléctrico en solución acuosa. Conductor eléctrico en solución acuosa.
Al tacto Son punzantes, queman la piel. Son jabonosos.
Ejemplos
  • Ácido sulfúrico (H2SO4), presente en las baterías.
  • Ácido clorhídrico (HCl), presente en el estómago.
  • Ácido fosfórico (H3PO3), presente en algunas bebidas gaseosas.
  • Ácido nítrico (HNO3), presente en los fertilizantes niitrogenados.
  • Ácido acético (CH3COOH), componente principal del vinagre.
  • Hidróxido de sodio (NaOH), presente en limpiadores de tuberías de desagües.
  • Hidróxido de magnesio (Mg(OH)2), presente en la leche magnesia.
  • Hidróxido de calcio (Ca(OH)2), también llamada cal, con múltiples usos industriales y en construcción.
  • Hidróxido de aluminio (Al(OH)3), presente en los antiácidos.
  • Amoniaco (NH3), presente en fertilizantes y limpiadores.

 

Conceptos de ácido y base: el concepto de Brönsted y Lowry.

Los iones H3O+ y OH-, cuya presencia caracteriza respectivamente las disoluciones acuosas de ácidos y de bases, se forman en realidad a partir de moléculas de agua que, respectivamente, incorporan o pierden un ion H+ o, lo que es lo mismo, un protón. Con otros disolventes distintos del agua, los ácidos y las bases se comportarían del mismo modo, es decir cediendo o aceptando protones, pero los iones formados serían distintos en cada caso.

A partir de estas y similares consideraciones, en 1923, Brönsted y Lowry propusieron, independientemente uno de otro, las siguientes definiciones de ácido y de base: ácido es toda sustancia que puede ceder protones, y base toda sustancia que puede ganar protones. Es decir, un ácido es propiamente un dador de protones, mientras que una base es un aceptor de protones. Pero, puesto que el proceso de perder o ganar un protón es reversible, el ácido, al perder un protón, se transforma en una base y, a su vez, esta, al ganarlo, se transforma en un ácido. Así, pues, un ácido y su base correspondiente forman un sistema conjugado.

Thomas M. Lowry fue un químico británico. Trabajó en el campo de la química-física y propuso, junto con Brönsted, un concepto innovador de ácido y base.

Ácido Protón + Base

Como un protón no puede tener una existencia libre en disolución, debe incorporarse a otra sustancia que se comporta así como base. Los equilibrios se establecen pues en sistemas conjugados dobles del tipo:

Ácido1 + Base2 Ácido2 + Base1

En los que, cuanto más fuerte es un ácido, más débil es su base conjugada y, cuanto más fuerte es una base, más débil es su ácido conjugado. Ejemplos:

HCl + NH3 NH4 + + Cl-

H2SO4 + H2O H3O+ + HSO4

HSO4 – + H2O H3O+ + SO4

Según la teoría de Brönsted y Lowry, un ácido y una base pueden ser tanto compuestos moleculares como iones, y una misma sustancia molecular o iónica puede actuar en un caso como ácido y en otro como base. Por ejemplo, el agua actúa como base frente al cloruro de hidrógeno y como ácido frente al amoníaco. En disoluciones no acuosas se forman iones distintos de los iones H3O+ y OH-, pero el proceso es esencialmente el mismo; así, disueltos en amoníaco, NH3, sustancia que como disolvente tiene un comportamiento muy similar al del agua, los ácidos dan lugar a la formación de iones amonio, NH4 +, y las bases a la formación de iones amida, NH2 -.

Johannes Brönsted

Fue un químico y físico danés. Investigó en termodinámica. Su contribución más importante fue su nuevo concepto de ácido y base.

Concepto de Lewis

La principal dificultad de las definiciones de ácido y base de Brönsted y Lowry es que sólo pueden aplicarse a reacciones que implican la transferencia de un protón, por lo que para que una sustancia pueda actuar como un ácido en el sentido de la definición de Brönsted-Lowry debe contener en su molécula un átomo de hidrógeno ionizable.

Sin embargo, hay muchas reacciones en las que una sustancia que de acuerdo con la teoría de Brönsted-Lowry no sería un ácido se comporta realmente como tal en el sentido más clásico del término (el de formador de sales). Así, por ejemplo, en ausencia de disolvente y, por lo tanto, sin que exista transferencia de protones, el dióxido de carbono, CO2, reacciona con un óxido básico como el óxido de calcio, CaO, para formar una sal:

CaO + CO2 CaCO3

El problema estriba esencialmente en el injustificado papel especial que la teoría de Brönsted-Lowry otorga al protón. Para superar esta dificultad, Lewis propuso en 1923 un innovador concepto de ácido y base. El nuevo punto de vista no tuvo apenas eco en el mundo científico hasta que el propio Lewis volvió a presentar sus ideas más ampliamente desarrolladas en 1938. De acuerdo con esta teoría, un ácido es toda sustancia (molecular o iónica) que puede aceptar un par de electrones, y una base toda sustancia que puede ceder un par de electrones. En otras palabras, un ácido debe tener su octeto de electrones incompleto y una base debe poseer un par de electrones solitarios. Entonces, la unión de un ácido y una base corresponde a la formación de un enlace covalente dativo o coordinado.

El concepto de Lewis propuso corregir los errores de la teoría de Bronsted y Lowry.

El concepto de base propuesto por Lewis coincide esencialmente con el de Brönsted-Lowry, ya que para que una sustancia pueda aceptar un protón (es decir, comportarse como base en el sentido de Brönsted-Lowry) debe poseer un par de electrones no compartidos. Por ejemplo, la molécula de agua, H2O, y el ion cloruro, Cl-, que pueden aceptar un protón, tienen las siguientes estructuras electrónicas:

O sea, que poseen un par de electrones no compartidos que pueden emplear para aceptar un protón, formando, respectivamente, el ion H3O+ y la molécula HCl:

Evidentemente, tanto el agua como el ion cloruro pueden comportarse como bases de Lewis cediendo un par de electrones no compartidos a un ácido. Vemos, pues, que, respecto al concepto de base de la teoría de Brönsted-Lowry, el concepto propuesto por Lewis no amplía de forma significativa el número de compuestos que pueden ser considerados como bases.

Sin embargo, el caso es radicalmente distinto para el concepto de ácido. Para empezar, hay sustancias que son ácidos de acuerdo con la definición de Brönsted-Lowry y que no lo son en el sentido de Lewis. Por ejemplo, para Lewis el HCl no es realmente un ácido sino la combinación de un ácido (H+) y una base (Cl-); ya vimos que el ion Cl- es una base tanto según la definición de Brönsted-Lowry como de Lewis y ahora justificaremos que el ion H+ es un ácido en el sentido de Lewis mediante la reacción:

H+ + H2O H3O+

En la que el H+ acepta un par de electrones de la molécula de agua para formar un ion H3O+, comportándose, por lo tanto, como un ácido. También deben ser considerados como ácidos en el sentido de Lewis los cationes metálicos, que aceptan pares de electrones al hidratarse o solvatarse. Y, volviendo a la reacción que escribimos más arriba entre el dióxido de carbono y el óxido de calcio:

CaO + CO2 CaCO3

También aquí debemos considerar que el CO2 es un ácido en el sentido de Lewis, ya que en esta reacción el átomo de carbono del CO2 acepta en covalencia dativa un par de electrones cedidos por el átomo de oxígeno del CaO:

El modelo de Lewis se utiliza en química orgánica para explicar el comportamiento catalítico de algunos compuestos que son ácidos de Lewis, pero, en general, cuando se estudian reacciones que tienen lugar en disolución acuosa o simplemente que implican una transferencia de protones, la generalización propuesta por Lewis resulta innecesaria y los químicos razonan en estos casos a partir de los conceptos de Arrhenius o de Brönsted-Lowry.

Gilbert Newton Lewis (1875-1946) fue un reconocido fisicoquímico estadounidense.