Problemas con fracciones
La fracciones están presentes en la vida cotidiana. Su utilidad es inmensa y sin ellas muchos cálculos matemáticos serían más complejos. La resolución de operaciones como la suma, la resta, la división y la multiplicación se lleva a cabo de una manera particular cuando involucran fracciones.
Cálculo de fracciones equivalentes
Las fracciones equivalentes son aquellas que representan la misma cantidad pero sus numeradores y denominadores no son iguales. Se pueden calcular por amplificación o por simplificación:
Para encontrar una fracción equivalente por amplificación tenemos que multiplicar el numerador y denominador por un mismo número. En este caso, las fracciones y son equivalentes porque:
Por otro lado, para calcular una fracción equivalente por simplificación, debemos hacer el procedimiento contrario, es decir, dividir el numerador y denominador por un mismo número. En este caso, ambos términos de la fracción deben tener un divisor común, de lo contrario se dice que la fracción es irreducible.
Las fracciones y son fracciones equivalentes porque:
Adición y sustracción de fracciones homogéneas
Sumar o restar fracciones homogéneas es sencillo. Primero se suman o restan los numeradores según indique el signo y el número obtenido será el numerador de la fracción resultante, luego se coloca el mismo denominador. Por ejemplo:
Calcula:
Suma los dos numeradores, que son 1 y 4, y luego coloca el mismo denominador de las fracciones. La fracción resultante es entonces .
Calcula:
Resta los numeradores, 7 y 3, y el número obtenido será el numerador de la fracción resultante cuyo denominador será el mismo de las fracciones originales. En este caso, el resultado es .
Adición y sustracción de fracciones heterogéneas
Las fracciones heterogéneas son aquellas que tienen distinto denominador. Un método para resolver adiciones y sustracciones de este tipo de fracciones es el método en cruz, el cual consiste en calcular fracciones equivalentes con el mismo denominador y luego sumar o restar según indique el signo.
- Multiplica el numerador de la primera fracción por el denominador de la segunda fracción, luego coloca el signo según indique la operación y seguido de eso multiplica el denominador de la primera fracción por el numerador de la segunda. La suma o resta de esos dos productos será el numerador de la fracción resultante.
- Multiplica el denominador de la primera fracción por el denominador de la segunda, el resultado de esa multiplicación será el denominador de la fracción resultante.
Calcula:
Se aplican los pasos anteriores, es decir: multiplicamos el numerador de la primera fracción (4) por el denominador de la segunda (2), colocamos el signo más (+) y luego multiplicamos el denominador de la primera fracción (3) por el numerador de la segunda fracción (5). Ambos productos forman parte del numerador de la fracción resultante.
Luego multiplicamos los denominadores y el producto formará parte del denominador de la fracción resultante.
Resolvemos los productos.
Finalmente, resolvemos la suma en el denominador y obtenemos el resultado:
Calcula:
El procedimiento es el mismo que el anterior, pero al momento de realizar los productos cruzados colocamos el signo menos (−) y luego restamos. El procedimiento sería el siguiente:
Podemos simplificar la fracción y llevarla a su mínima expresión, para esto solo dividimos el numerador y el denominador por dos (2). Por lo tanto:
Multiplicación de fracciones
La multiplicación de fracciones se realiza de forma lineal entre sus elementos, es decir, primero multiplicamos todos los numeradores y el producto será el numerador resultante. Luego multiplicamos todos los denominadores y el producto será el denominador de la fracción resultante.
Calcular: .
Podemos simplificar la fracción y llevarla a su mínima expresión, para esto solo dividimos el numerador y el denominador por tres (3). Por lo tanto:
1. Resuelve las siguientes adiciones y sustracciones de fracciones:
a)
b)
c)
d)
e)
2. Resuelve las siguientes multiplicaciones:
a)
b)
c)
d)
e)