noción de fracción
En la vida diaria usamos números para decir nuestra edad, dar la hora o para contar. Todos estos números son los que conocemos como números naturales, pero no siempre son útiles. Por ejemplo, si nos comemos medio alfajor, un cuarto de torta, o compramos medio kilo de naranjas, necesitamos emplear otro tipo de números: los fraccionarios.
¿Qué es una fracción?
Una fracción es la forma de representar una parte de un todo. Así, si queremos decir que nos comimos medio alfajor, lo podemos pensar como que a nuestro todo, el alfajor, lo cortamos en dos y de esas dos partes nos comimos una. En forma de fracción lo escribimos como:
En el numerador escribimos la cantidad que nos comimos y en el denominador la cantidad en la que cortamos el alfajor.
Para resolver el problema de repartir 6 panes entre 10 hombres ellos decían que a cada uno le tocaba panes. Esto significaba que cada pan lo dividían en mitades y el último lo hacían en décimos.
¡A practicar!
Escribe las fracciones que están representadas por los gráficos:
Tipos de fracciones
Las fracciones se pueden clasificar en:
- Propias: son las que tienen numerador menor al denominador. Esto quiere decir que representan un número menor a 1 entero. Ejemplo:
- Impropias: son las que tienen el numerador mayor al denominador y representan números mayores a 1 entero. Ejemplo:
- Aparentes: son aquellas en las que el numerador es múltiplo del denominador, por lo cual, al dividirlos resulta un número entero. Ejemplo:
También podemos clasificarlas en:
- Puras: son las que se representan únicamente con una fracción.
Ejemplo: o
- Mixtas: son las que se representan con una parte entera y una parte fraccionaria. Para esto, es necesario que la fracción sea más grande que 1 entero.
Ejemplo: o
¡A practicar!
Clasifica las siguientes fracciones en propias, impropias o aparentes
¿Cómo convertimos una fracción impropia pura a una fracción impropia mixta y viceversa?
De impropia pura a mixta
Dividimos el numerador con el denominador y, según los valores obtenidos, los representamos de la siguiente manera:
De impropia mixta a pura
Multiplicamos el denominador por el entero y le sumamos el numerador. Este valor nos da el numerador de la fracción pura, mientras que el denominador de ambas es el mismo.
Fracción irreducible
Una fracción es irreducible cuando su numerador y su denominador solo tienen como divisor común al 1.
Recordemos el mcd
Para calcularlo descomponemos los números en sus factores primos.
– Ejemplo: halla el mcd entre 15 y 18.
Ahora solo debemos elegir los factores que se repiten en ambos y la menor cantidad de veces que aparece. En este caso, el que se repite es el 3 y aparece una sola vez en el 15.
Entonces:
Veamos algunas fracciones para ver si son irreducibles:
– Ejemplo 1:
Como ya vimos, podemos escribir los números como descomposición de sus factores primos y calcular su mcd:
Entonces, los números 15 y 4 no tienen factores en común por lo tanto la fracción es irreducible.
– Ejemplo 2:
Descomponemos cada número en sus factores primos y calculamos el mcd.
Los números 6 y 8 tienen un factor en común, el número 2, por lo tanto la fracción no es irreducible. Para convertirla en una fracción irreducible lo único que tenemos que hacer es dividir al numerador y denominador por el factor que tienen en común.
Y ahora la fracción que se obtuvo es irreducible.
¡A practicar!
Señala cuáles de las siguientes fracciones son irreducibles
simplificación de fracciones
Simplificar una fracción significa “achicarla” tanto como podamos, o sea, hacerla irreducible. Como lo vimos antes, para convertir una fracción en irreducible hay que dividir el numerador y el denominador por un número que sea divisor de ambos (mcd).
Este valor lo podemos buscar por medio de los factores primos, o si nos damos cuenta, podemos calcular por cuáles números se pueden dividir ambos. Podemos dividir tantas veces como consideremos necesarias hasta lograr la fracción irreducible.
Hagamos algunos ejemplos:
– Ejemplo 1:
Ambas fracciones fueron divididas por 5.
– Ejemplo 2:
Ambas fracciones fueron divididas por 2.
– Ejemplo 3:
Ambas fracciones fueron divididas primero por 5 y después por 3.
¡A practicar!
1. Simplifica las siguientes fracciones hasta su fracción irreducible.
2. Clasifica las siguientes fracciones, en caso de que sea impropia escríbela como fracción mixta. Luego, indica si la fracción es irreducible. Si no lo es, simplifica.