OPERACIONES CON FRACCIONES
Las fracciones son números y, como tales, su pueden sumar, restar, dividir y multiplicar. Muchas situaciones en la vida cotidiana se resuelven mediante la suma o resta de fracciones, como por ejemplo, calcular las porciones de torta que quedan luego de repartir una parte.
ADICIÓN Y SUSTRACCIÓN DE FRACCIONES
El procedimiento para sumar o restar fracciones es distinto entre fracciones homogéneas y heterogéneas. Por ello es muy importante saber reconocerlas.
Fracciones homogéneas
Las fracciones homogéneas son las que tienen el mismo denominador. En este caso, la operación de suma o resta consiste simplemente en sumar o restar los numeradores y conservar el mismo denominador.
-En el caso de la suma se cumple que:
Por ejemplo:
a)
En este caso se trata de una suma de dos fracciones homogéneas porque tienen igual denominador, que es 5. Para resolver la suma se coloca el mismo denominador y se suman los numeradores.
El denominador en ambos casos es 5. Entonces sumamos los numeradores (1 + 2 = 3) y conservamos el denominador 5.
-En el caso de la resta se cumple que:
Por ejemplo:
b)
En este caso se trata de una sustracción o resta de dos fracciones homogéneas con denominar igual a 3. Para resolver el problema se coloca el mismo denominador y se restan los exponentes.
Fracciones heterogéneas
Las fracciones heterogéneas son las que entre sí tienen distinto denominador. Para el caso de la suma de fracciones heterogéneas se aplica la siguiente fórmula.
La expresión anterior lo que quiere decir es que para sumar dos fracciones heterogéneas, el numerador de la fracción resultante es igual a la suma del producto del numerador de la primera fracción por el denominador de la segunda y el producto del denominador de la primera fracción por el numerador de la segunda. El denominador de la fracción resultante es igual al producto de los denominadores de las fracciones originales.
En el caso de la resta de las fracciones se aplica casi la misma fórmula pero al momento de calcular el numerador resultante se deben restar los productos del numerador de la primera fracción por el denominador de la segunda y el producto del denominador de la primera fracción por el numerador de la segunda.
Veamos algunos ejemplos con números:
El método explicado anteriormente es el más utilizado, aunque también se pueden sumar y restar fracciones heterogéneas a través de fracciones equivalentes. Para ello, se calcula el mínimo común múltiplo entre los dos denominadores, y se amplifican ambas fracciones de manera de que ambas tengan como denominador al mínimo común múltiplo. Una vez que tienen el mismo denominador, sumamos o restamos los numeradores y conservamos el denominador.
MULTIPLICACIÓN Y DIVISIÓN DE FRACCIONES
Otras operaciones que se pueden realizar con fracciones son la multiplicación y la división. Ambas llevan procedimientos diferentes.
Multiplicación
La multiplicación de fracciones es una de las operaciones más sencillas. Para resolverla solamente se debe multiplicar de forma lineal. Es decir, numerador por numerador y denominador por denominador. De la siguiente forma:
Observa el siguiente ejemplo:
Para resolver esta multiplicación primero tenemos que multiplicar el numerador de la primera fracción por el numerador de la segunda: el resultado será el numerador de la fracción resultante. Luego multiplicamos el denominador de la primera fracción por el denominador de la segunda fracción y el número que se obtiene será el denominador de la fracción resultante.
División
Para dividir fracciones, el método que más se utiliza es multiplicar en forma de cruz. Es decir, primero se multiplica el numerador de la primera fracción por el denominador de la segunda y el producto de estos números sera el denominador de la fracción resultante. Luego se multiplica el numerador de la segunda fracción por el denominador de la primera y el producto de estos números será igual al denominador de la fracción resultante.
Observa el siguiente ejemplo:
a)
En este caso procedemos a realizar la multiplicación en cruz del primer numerador, que es 7, por el denominador de la segunda fracción, que es 5:
Luego multiplicamos el numerador de la segunda fracción por el denominador de la primera fracción:
Finalmente, se resuelven los productos:
PROBLEMAS DE APLICACIÓN
Existen problemas cotidianos que pueden resolverse a través de operaciones con fracciones. Los siguientes ejemplos indican cómo usar las fracciones en estos casos.
1. Juan comió 3/8 de pizza y Luis comió 4/8 de la misma pizza. ¿Cuánto comieron los dos en total?
Análisis: Debemos sumar ambas fracciones. Como los denominadores son los mismos, son fracciones homogéneas. Entonces, sumamos los numeradores y conservamos el denominador.
Cálculos:
Respuesta: Entre Juan y Luis comieron 7/8 de la pizza.
2. Un científico tiene 6/5 partes de una sustancia, si pierde 2/3 de esa sustancia, ¿cuánta sustancia le queda?
Análisis: Para saber cuánta sustancia le queda al científico hay que restar ambas fracciones. Como los denominadores son diferentes, son fracciones heterogéneas. Entonces, seguimos el procedimiento explicado anteriormente:
Cálculos:
Respuesta: Al científico le quedan 8/15 de sustancia.
3. Una modista tiene una tela que mide 5/7 de metro, si la dividió en trozos de 1/8 de metros, ¿cuántos trozos obtuvo?
Análisis: Para saber el número de trozos que obtuvo la modista se deben dividir ambas fracciones.
Cálculos:
Respuesta: El número de trozos que obtuvo la modista fue de 40/7.
- Realiza los siguientes cálculos.
a)
b)
c)
d)
e)