CAPÍTULO 14 / TEMA 1

El universo y sus modelos  

Desde la Antigüedad, el hombre ha cuestionado el lugar en el que se encuentra, la inmensidad del cielo que puede ver y las estrellas que observa en él. Por esta razón, científicos de diversas áreas se esfuerzan en describir cómo es el universo por medio de algunas teorías y modelos.

¿QUÉ ES EL UNIVERSO?

Se entiende por universo a la totalidad del espacio y del tiempo en donde se concentran todas las formas de energía y de materia. Se encuentra gobernado por las leyes y las constantes físicas.

La disciplina que se encarga de estudiar el universo se denomina cosmología, la cual busca describir sus aspectos y sus fenómenos.

El universo está compuesto de nebulosas, galaxias, planetas, satélites naturales, cometas, asteroides y meteoritos.
¿Sabías qué?
Solo el 10 % de la materia es visible y está compuesta mayoritariamente por hidrógeno y helio. El otro 90 % de la materia es invisible: 20% de materia oscura y 70 % de energía oscura.

LA IDEA DEL UNIVERSO A LO LARGO DE LA HISTORIA

Las primeras civilizaciones encontraron un significado a lo que representaba el universo a través del ámbito religioso, otras de lo filosófico y, en los últimos tiempos, a partir de la ciencia. La concepción del universo también se mantuvo en función de un modelo cosmológico propio de cada cultura, lo que llevó a plantear las primeras teorías referentes a su origen.

Cosmología sumeria

Según la mitología mesopotámica, el universo apareció inicialmente cuando los elementos acuosos concibieron a los dioses Anshar y Kishar.

  • Los egipcios sostenían que el universo era una caja rectangular en la que Egipto estaba en el centro y el cielo se sostenía por montañas. El Sol navegaba por las noches detrás de las montañas del norte y por eso no se veía.
  • Los hindúes recurrían a la fortaleza de los animales para explicar cómo se sostenía la Tierra. Decían que era sustentada por cuatro pilares que descansaban sobre elefantes y estos, a la vez, sobre una tortuga que flotaba y nadaba en un océano gigantesco. 
  • Los babilonios de la antigua Mesopotamia suponían que la Tierra era una montaña y los astros eran dioses que se trasladaban en carros por el cielo.
  • Los antiguos griegos sostenían que el universo constaba de varias capas como la cebolla y que Grecia se encontraba en el centro. Detectaron durante la noche que en el cielo ciertos astros presentaban movimientos muy particulares a lo largo de los días y los llamaron planetas.

Modelo geocéntrico

Este modelo fue planteado por Aristóteles y Ptolomeo en la Edad Antigua y tuvo vigencia hasta el siglo XVI.

La teoría postulaba que la Luna, el Sol y las estrellas giraban alrededor de la Tierra en órbitas circulares. Para ese entonces ya se relacionaban los cambios de posición del Sol con las estaciones y, por lo tanto, se dio inicio a la creación de distintos calendarios.

Antiguos calendarios

Calendario
Babilónico
Egipcio y Mexica
Inca
Romano
Cantidad de días
354
365
360
365,25
¿Sabías qué?
Claudio Ptolomeo publicó el libro Almagesto, en el que planteaba que la Tierra estaba en reposo con astros que giraban en torno a él en el interior de esferas, razón por la que este modelo también es llamado “modelo Ptolemaico”.

Modelo heliocéntrico

Este modelo fue propuesto en 1543 por Nicolás Copérnico, y un siglo más tarde fue desarrollado por Galileo Galilei y Johannes Kepler.

Copérnico sugería que el Sol estaba inmóvil en el centro del universo y que alrededor de él giraban todos los cuerpos celestes y la Tierra.

¿Sabías qué?
El primera persona en plantear un modelo heliocéntrico del universo fue Aristarco de Samos. Sin embargo, su propuesta no se impuso.

Años después, con el apoyo de las nuevas tecnologías y de la astronomía, Kepler amplió la propuesta de Copérnico mediante las observaciones hechas con el telescopio revelado por Galileo. En su teoría, los astros giraban en orbitas elípticas.

A pesar de que gracias a Copérnico, Kepler y Galileo se tenía demostración matemática y empírica del modelo heliocéntrico, fue Isaac Newton el científico que explicó físicamente el movimiento de los planetas y acudió a una fuerza que nombró gravedad.

Algunas diferencias
Geocentrismo

Heliocentrismo

El centro del universo es la Tierra. El centro del universo es el Sol.
Alrededor giran el Sol, la Luna, los planetas y las estrellas. Alrededor giran la Tierra y la Luna, los planetas y las estrellas.
En órbitas de forma circular. En órbitas de forma elípticas.

¿CÓMO SE ORIGINÓ EL UNIVERSO?

¿Sabías qué?
El telescopio espacial Hubble orbita fuera de la atmósfera terrestre y ha logrado recolectar los datos suficientes como para replantear las ideas que se tenían sobre la antigüedad del universo.

Buscar respuestas a enigmas tan grandes conlleva mucho estudio, análisis y dedicación. En relación al universo, los astrónomos de diferentes épocas han intentado comprender su origen y funcionamiento. Para ello han ofrecido diversas teorías. Estas son un conjunto de hipótesis, conocimientos y leyes científicas lógicamente ordenadas y sustentadas en variadas evidencias empíricas que permiten deducir o concluir.

El modelo estándar del universo existe gracias a dos hipótesis elementales. Una es la del Big Bang o gran explosión, y la otra es la de la expansión continua.

¿Sabías qué?
El universo no tiene centro.

Teoría de expansión del universo

Después de que el físico Albert Einstein desarrollara su propia teoría de la gravedad dentro de la teoría de la relatividad general en el siglo XX, se probó que el universo no es estático, sino que se encuentra en expansión. Esta idea fue corroborada entre 1912 y 1922 por Vesto M. Slipher, quien observó los espectros de luz que provenían de las nebulosas; y Edwin Hubble, quien empleó un espectroscopio para analizar las ondas de luz.

Después de los aportes de Einstein y Hubble al estudio del universo, en 1927, George Lemaitre planteó que si el universo estaba en expansión debió haber sido más pequeño en un inicio, lo que llevó a formular la teoría de la gran explosión o Big Bang.

Expansión del universo.

El Big Bang

VER INFOGRAFÍA

El modelo expansivo del universo propuesto por Lemaitre se conoció como modelo del átomo primigenio o modelo del huevo cósmico. Años más tarde, en 1963, el astrofísico Robert Henry Dicke propuso que existe una radiación de fondo cósmica que emana el universo a causa de una gran explosión.

Así, la teoría de la gran explosión o Big Bang se convirtió en la más aceptada y difundida sobre el origen del universo. Esta explica que en un inicio, hace unos 14 billones de años, toda la materia y radiación observable estaba comprimida en una pequeña masa densa y caliente que en una trillonésima parte de segundo se expandió y pasó de ser muy pequeña a tener un tamaño astronómico. La expansión del universo aparentemente ha continuado a un ritmo mucho más lento y se sugiere que comenzó a partir de algún tipo de energía desconocida.

¿Qué son los agujeros negros?

Son regiones del universo con un campo gravitacional tan intenso que impide que la luz escape, de manera que la velocidad de escape en un agujero negro es superior a la velocidad de la luz.

 

VER INFOGRAFÍA

Los instrumentos con los que se cuenta en la actualidad no les permiten a los astrónomos visualizar el momento exacto en el que nació el universo, es por ello que mucho de lo que sabemos acerca de la teoría del Big Bang está basado en hipótesis, estudios y modelos matemáticos y físicos.

¿Sabías qué?
Se ha demostrado que, a medida que el universo se expande, también se enfría. Por lo tanto, también se piensa que el final del universo será al congelarse.

Otros modelos del universo

Modelo lineal

El universo es único, abarca todo lo que existe y tiene un principio y un final.

Modelo cíclico

El universo no es único. Este nace y muere infinitamente.

Universo de membranas

El universo no es único. Cada universo representa una membrana de infinitas membranas que vibran y chocan.

 

Universos paralelos

Existen muchos universos simultáneamente, todos independientes entre sí.

RECURSOS PARA DOCENTES

Infografía “La máquina de Dios”

Esta infografía describe el Gran Colisionador de Hadrones, también llamado Máquina de Dios, usado para comprender aspectos sobre el origen del universo.

VER

Artículo “Más allá de lo que podemos imaginar”

Este artículo permite comprender las unidades de medida astronómicas.

VER

Video “El universo y sus componentes 2”

Este recurso audiovisual muestra algunos de los elementos que forman parte del universo.

VER

CAPÍTULO 1 / TEMA 3

MOVIMIENTO

SI MIRAMOS A NUESTRO ALREDEDOR NOS DAMOS CUENTA DE QUE MUCHAS COSAS SE MUEVEN: LOS AUTOS EN LAS CALLES, LOS NIÑOS QUE CORREN EN EL PARQUE, LAS HOJAS DE LOS ÁRBOLES Y LAS AVES QUE VUELAN DE UN ÁRBOL A OTRO. CUANDO ALGO CAMBIA DE POSICIÓN SE DICE QUE ESTÁ EN MOVIMIENTO, Y ESE MOVIMIENTO LO VEMOS DESDE DONDE NOS ENCONTRAMOS, ESE PUNTO DESDE EL QUE VEMOS SE LLAMA “SISTEMA DE REFERENCIA”. 

¿CÓMO PERCIBIMOS EL MOVIMIENTO?

PARA PODER DECIR SI ALGO SE MUEVE O ESTÁ QUIETO NECESITAMOS TENER UN PUNTO O UN SISTEMA DE REFERENCIA. PARA EXPLICARLO MEJOR, VEAMOS EL SIGUIENTE EJEMPLO:

¡VIAJE EN TREN!

CUANDO UN TREN VA EN MOVIMIENTO, PODEMOS VER COMO SE MUEVE PORQUE LAS VÍAS, EL PAISAJE Y LO QUE LO RODEA ESTÁ QUIETO A SU LADO.

LOS PASAJEROS QUE ESTÁN DENTRO SE MUEVEN JUNTO CON ÉL.

PERO SI EN VEZ DE ESTAR ABAJO ESTAMOS DENTRO DEL TREN, NOTAREMOS QUE LOS PASAJEROS ESTÁN QUIETOS, ENTONCES NOS HACEMOS LA PREGUNTA ¿SE MUEVEN O NO SE MUEVEN LOS PASAJEROS? LA RESPUESTA ES SÍ O NO, DEPENDE DE DÓNDE ESTEMOS PARADOS.

AL LUGAR DESDE DONDE OBSERVAMOS LOS CUERPOS MOVERSE LO LLAMAMOS SISTEMA DE REFERENCIA.

EL MOVIMIENTO ES TODO CAMBIO DE POSICIÓN AL TENER EN CUENTA UN SISTEMA DE REFERENCIA.
REPOSO

CUANDO UN OBJETO ESTÁ QUIETO, ES DECIR, QUE NO TIENE UN MOVIMIENTO APARENTE SE DICE QUE ESTÁ EN REPOSO.

TIPOS DE MOVIMIENTO

NINGÚN MOVIMIENTO ES IGUAL A OTRO, Y PARA PODER ESTUDIAR CADA UNO DE ELLOS ES NECESARIO CONOCER SU TRAYECTORIA.

PERO ¿QUÉ ES LA TRAYECTORIA? LA TRAYECTORIA NO ES MÁS QUE EL RECORRIDO QUE HACE UN CUERPO DE UN PUNTO A OTRO.

TODOS LOS CUERPOS QUE SE MUEVEN SE LLAMAN MÓVILES.

LA TRAYECTORIA PUEDE SER:

  • CERRADA: CUANDO EL MÓVIL PASA SIEMPRE POR LOS MISMOS PUNTOS. POR EJEMPLO EN UNA CARRERA TODOS CORREN EN LA MISMA PISTA, Y DAN VUELTAS UNA Y OTRA VEZ.
UN BUEN EJEMPLO DE TRAYECTORIA CERRADA ES EL RECORRIDO QUE HACEN LOS ATLETAS EN LA PISTA DE CARRERAS.
  • ABIERTA: CUANDO EL MÓVIL RECORRE VARIAS PUNTOS Y NUNCA VUELVE AL MISMO SITIO. POR EJEMPLO, UN AVIÓN VUELA Y HACE UNA VEZ UN RECORRIDO, NO PASA POR EL MISMO LUGAR NI DA LA VUELTA.
EL RECORRIDO QUE HACEN LOS AVIONES PARA DESPEGAR O ATERRIZAR ES UN EJEMPLO DE TRAYECTORIA ABIERTA.
  • ALEATORIA:CUANDO LOS MOVIMIENTOS SE REALIZAN DE FORMA DESORDENADA. EN ESTE CASO NO SE PUEDE SABER HACIA DÓNDE VA EL CUERPO QUE SE MUEVE. ESTO PODEMOS VERLO CUANDO SE NOS ESCAPA UN GLOBO, POR MUCHO QUE QUERAMOS PERSEGUIRLO, EL VIENTO LO LLEVA DE MANERA DESORDENADA.
LA TRAYECTORIA DE LOS GLOBOS CUANDO LOS SOLTAMOS AL AIRE ES ALEATORIA.
¿Sabías qué?
AUNQUE NO LO VEAMOS, NUESTRO PLANETA SE ENCUENTRA EN CONSTANTE MOVIMIENTO.

MOVIMIENTO RECTILÍNEO

ES EL RECORRIDO DE UN MÓVIL EN LÍNEA RECTA. ESTE TIPO DE MOVIMIENTO PUEDE SER HORIZONTAL, COMO SUCEDE EN LAS VÍAS DE UN TREN, O VERTICAL COMO CUANDO CAE LA FRUTA DE UN ÁRBOL.

MOVIMIENTO CURVILÍNEO

ES EL RECORRIDO DE UN MÓVIL EN UNA LÍNEA CURVA. POR EJEMPLO CUANDO UN NIÑO VA EN SU BICICLETA Y DOBLA EN LA ESQUINA DEL PARQUE.

¡a PRACTICAR!

1. EL MOVIMIENTO QUE ESTÁ REALIZANDO ESTE COHETE ¿ES RECTO O CURVO?

2. ¡RELACIONA LOS ELEMENTOS! TRAZA UNA LÍNEA DESDE LA COLUMNA A HASTA LA RESPUESTA CORRECTA EN LA COLUMNA B.

 

A B
MOVIMIENTO RECTILÍNEO AUTOS EN UNA PISTA DE CARRERAS
TRAYECTORIA ALEATORIA UNA HORMIGA QUE CAMINA ALREDEDOR DE UNA BOTELLA
MOVIMIENTO CURVILÍNEO UN VASO QUE SE CAE DESDE ARRIBA DE LA MESA
TRAYECTORIA CERRADA HOJAS QUE CAEN DE LOS ÁRBOLES

 

 

3. ESCRIBE EN CADA CARTEL 1 PALABRA RELACIONADA CON ESTE TEMA.

RECURSOS PARA DOCENTES

Infografía “Movimientos y tipos de movimientos”

Explicación ilustrada sobre el movimiento y los diferentes tipos de movimientos que se realizan en la vida cotidiana.

VER

Video “Los movimientos de la Tierra”

Recurso audiovisual que explica que nuestro planeta se encuentra en constante movimiento, así como también los diferentes movimientos que realiza.

VER

 

Matrices

Las matrices son arreglos de números que entre otras cosas se emplean para resolver sistemas de ecuaciones lineales y programas informáticos. Son fundamentales en matemática y en otras disciplinas como el álgebra.

¿Qué es una matriz?

Una matriz es una tabla bidimensional en la que se disponen valores numéricos o variables. Los datos que conforman a una matriz se denominan elementos y están dispuestos de acuerdo a un patrón de filas y columnas que le confieren una forma cuadrada o rectangular a la matriz según sea el caso.

Las filas o renglones de una matriz son todos los elementos que se encuentran dispuestos linealmente de forma horizontal, las columnas se encuentran compuestas por los elementos localizados linealmente de forma vertical. Si una matriz tiene m filas y n columnas, su dimensión será de m x n, esto se debe a que primero se coloca el número de filas y luego el de columnas.

Forma general de una matriz A de dimensiones m x n:

Generalmente se emplean letras mayúsculas del alfabeto para expresar el nombre de las matrices.

Elementos de la matriz

Para ubicar un elemento de una matriz se usa el sistema de doble subíndice en el que se indica primero el número de la fila donde encuentra seguido de su respectiva columna. De manera que el elemento a12 es aquel ubicado en la primera fila y en la segunda columna. Como notación general se emplea una fórmula denominada entrada aij , donde i es el número de fila del elemento y j es el número de columna.

Matrices cuadradas y rectangulares

De acuerdo a la dimensión de una matriz, se puede clasificar en matriz cuadrada y en matriz rectangular. Una matriz m x n es cuadra si m = n, es decir, si el número de filas es igual al número de columnas. Por otra parte, las matrices en donde se cumple que m ≠ n, su forma es rectangular, debido a que el número de filas es diferente al número de columnas.

Para ilustrar mejor se muestran los siguientes ejemplos:

La matriz A es una matriz cuadrada porque posee tres filas y tres columnas, es decir, su dimensión es de 3 x 3. Por otra parte, la matriz B tiene tres filas y dos columnas, es decir, su dimensión es de 3 x 2, por lo tanto, B es una matriz rectangular.

James Joseph Sylvester fue el primero en emplear el término “matriz” en el ámbito matemático a mediados del siglo XIX.

La diagonal principal

En las matrices cuadradas se observa una diagonal principal formada por todos los elementos cuyas entradas cumplen la condición . Por ejemplo:

Los elementos 2, 9 y 5 constituyen la diagonal principal de la matriz M, debido a que en sus entradas cumplen con la condición de :

a11 = 2

a22 = 9

a33 = 5

De manera directa se puede observar que la diagonal principal de una matriz cuadrada está formada por los elementos que describen una diagonal desde el elemento hasta el último elemento de la última fila.

Otros tipos de matrices

  • Matriz fila

Es aquella conformada por una fila.

  • Matriz columna

Es aquella que posee una sola columna.

  • Matriz nula

Es aquella en la que todos los elementos que la componen son ceros.

  • Matriz triangular superior

Es la matriz en la que todos los elementos ubicados por debajo de la diagonal principal son iguales a cero.

  • Matriz triangular inferior

Es la matriz cuyos elementos situados por encima de su diagonal principal son iguales a cero.

  • Matriz diagonal

Es aquella matriz en la que todos los elementos situados por encima y por debajo de su diagonal principal son iguales a cero.

  • Matriz escalar

Es una matriz diagonal en la que los elementos que forman su diagonal principal son iguales.

  • Matriz identidad o matriz unidad

Es aquella matriz diagonal en la que los elementos de la diagonal principal son iguales a uno.

  • Matriz transpuesta

Matriz que se obtiene al cambiar de forma ordenada las filas por las columnas. Se denota con la letra t como subíndice del nombre de la matriz original.

 

Las matrices pueden incluir números, fracciones, radicales y otros números del conjunto de los reales.
Propiedades de la matriz transpuesta

(At)t = A

(A + B)t = At + Bt

(α.A)t = α.At

(A.B)t = Bt.At

Las matrices transpuestas se emplean para realizar otros cálculos con matrices como por ejemplo, los determinantes.

Matrices en la computación

Sorprendentemente las operaciones matriciales no se limitan al álgebra lineal, sino que es usado en muchas otras áreas como la computación. Esto se debe a que las matrices proporcionan una forma sencilla de representar datos y realizar cálculos numéricos que de otra forma sería complicado resolverlos.

Existen programas informáticos como Matlab que permiten crear sistemas de matrices complejos para ser usados en el campos tan diversos como el de la robótica o el de la computación gráfica.

 

La teoría de matrices se dedica a estudiar las matrices y a los sistemas matriciales.