Soluto y solvente

Una solución es una mezcla homogénea entre dos o más sustancias. La sustancia que se disuelve es el soluto, mientras que la sustancia que disuelve al soluto se llama disolvente. Existen numerosos productos en la vida cotidiana, como medicamentos, jabones y jugos de frutas, que resultan de la mezcla de un soluto con un solvente.

Soluto Disolvente/Solvente
Definición Sustancia que se disuelve en un disolvente para formar una solución. Sustancia que disuelve al soluto para formar una solución.
Estado físico Sólido, líquido y gaseoso. Sólido, líquido y gaseoso.
Solubilidad Depende de las propiedades del soluto. Depende las propiedades del disolvente.
Proporción en la solución Menor. Si hay varios solutos, siempre estarán en menor cantidad que el disolvente. Mayor. Determina el estado de la materia en el que existe la solución.
Solución líquida En estado sólido, líquido y gaseoso. En estado líquido.
Ejemplo de solución líquida (agua azucarada) Azúcar (sólido). Agua (líquido).
Ejemplo de solución líquida (vinagre) Ácido acético (líquido). Agua (líquido).
Ejemplo de solución líquida (bebida gaseosa) Dióxido de carbono (gaseoso). Agua (líquido).
Solución sólida En estado sólido, líquido y gaseoso. En estado sólido.
Ejemplo de solución sólida (acero) Carbono (sólido). Hierro (sólido).
Ejemplo de solución sólida (amalgama) Mercurio (líquido). Cobre, zinc, plata, estaño u otro metal (sólido).
Ejemplo de solución sólida (hidrógeno en paladio) Hidrógeno (gaseoso). Paladio (sólido).
Solución gaseosa En estado sólido, líquido y gaseoso. En estado gaseoso.
Ejemplo de solución gaseosa (humo) Polvo atmosférico (sólido). Aire (gaseoso).
Ejemplo de solución gaseosa (aire húmedo) Agua (líquido). Aire (gaseoso).
Ejemplo de solución gaseosa (aire) Oxígeno (O2), dióxido de carbono (CO2), vapor de agua, entre otros gases en pequeñas proporciones. Nitrógeno (gaseoso).

 

CAPÍTULO 3 / EJERCICIOS

Materia y energía: sonido | ejercicios

Propiedades del sonido: intensidad, tono y timbre

1. Indica verdadero o falso.

El sonido es una partícula que emite energía hacia el espacio. V F
Las cuatro cualidades del sonido son la voz, el talento, la clase y la entonación. V F
La frecuencia es el número de pulsaciones que tiene una onda sonora por unidad de tiempo. V F
Los decibelios se emplean a menudo para representar el espectro infrarrojo del ser humano. V F
El sonido se propaga por medio de ondas en las cuales sucede un transporte de energía y no de materia. V F
El sonido solo puede propagarse a través del aire. V F

2. Describe brevemente las cuatro cualidades del sonido y menciona un ejemplo comparativo en cada caso que permita entender mejor las características de cada una. Ejemplo: un golpe seco en una mesa posee menos duración que la vibración de la cuerda de una guitarra).

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Materiales y sonido

1. Explica brevemente el funcionamiento de tres tipos de instrumentos distintos y menciona un ejemplo en cada uno.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Ordena de menor a mayor los siguientes elementos según la velocidad a la que se propaga el sonido a través de ellos y realiza una breve explicación general del por qué.

  • Una pared de plomo
  • El océano
  • Una pared de hierro
  • El interior de un globo de helio
  • Una pared de corcho
  • El interior de un vaso con agua
  • La atmósfera de la Tierra

Producción y transmisión del sonido

1. Explica los tres tipos de fuentes sonoras que existen y menciona un ejemplo en cada uno.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Define qué es un diapasón y menciona sus características.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

3. Describe brevemente las tres partes del oído humano y el proceso a través del cual somos capaces de percibir los sonidos.

Reflexión del sonido

1. Explica qué es la reflexión del sonido.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Une los diferentes elementos relacionados a los fenómenos sonoros con la descripción que más se adecua a cada uno.

Ondas sonoras

1. Define qué es una onda y ubica en la columna correcta los diferentes tipos de onda que existen según sus diferentes criterios de clasificación.

Tipos de onda

 

 

·         Ondas mecánicas

·         Ondas transversales

·         Ondas esféricas

·         Ondas bidimensionales

·         Ondas unidimensionales

·         Ondas longitudinales

·         Ondas electromagnéticas

·         Ondas planas

Según la dirección de propagación Según el número de dimensiones Según el medio en el que se propaga Ondas sonoras

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Identifica los espacios en blanco que señalan las diferentes características de las ondas sonoras y define brevemente cada una de ellas.

Punto de encuentro: los ruidos

1. Selecciona la opción correcta

Se conoce como ruido a:

  1. Los sonidos molestos
  2. Los sonidos demasiado altos
  3. Los sonidos artificiales

La unidad de medida del ruido y su símbolo se conocen como:

  1. Decabel (dC)
  2. Grados Celcius (°C)
  3. Decibel (dB)

El nivel de intensidad de ruido que puede ser perjudicial para el ser humano es superior a:

  1. 10
  2. 30
  3. 50

Una de las características que diferencia a la contaminación sonora de otros tipos de contaminación es:

  1. Que puede ser perjudicial para el ser humano
  2. Que se percibe únicamente por el oído
  3. Que los vehículos son los únicos que pueden producirla

2. Indica en decibeles la intensidad de ruido que emiten las siguientes fuentes, y si los mismos contribuyen o no a la contaminación sonora.

  • Aeropuerto

______________________________________________________________________________________________________

  • Atasco de automóviles

______________________________________________________________________________________________________

  • Habitación en silencio con una persona en su interior

______________________________________________________________________________________________________

  • Conversación entre dos personas

______________________________________________________________________________________________________

  • Concierto

______________________________________________________________________________________________________

  • Susurro

______________________________________________________________________________________________________

Proceso de la audición

1. Define brevemente qué es la audición y menciona sus características e importancia.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Indica cuáles son elementos del oído faltantes en la imagen y defínelos brevemente.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

Los ultrasonidos y los infrasonidos

1. Responde las siguientes preguntas.

  • ¿Cuál es el rango audible en hertz (Hz) de frecuencia en ser humano?

______________________________________________________________________________________________________

  • ¿Qué diferencia existe entre los ultrasonidos y los infrasonidos?

______________________________________________________________________________________________________

  • ¿Todos los animales son capaces de escuchar los mismos sonidos?

______________________________________________________________________________________________________

2. Menciona de qué manera puede un animal concreto utilizar los ultrasonidos, otro los infrasonidos y otro el ecolocalizador. Procura mencionar a un animal diferente en cada caso.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

CAPÍTULO 1 / TEMA 3

MOVIMIENTO

SI MIRAMOS A NUESTRO ALREDEDOR NOS DAMOS CUENTA DE QUE MUCHAS COSAS SE MUEVEN: LOS AUTOS EN LAS CALLES, LOS NIÑOS QUE CORREN EN EL PARQUE, LAS HOJAS DE LOS ÁRBOLES Y LAS AVES QUE VUELAN DE UN ÁRBOL A OTRO. CUANDO ALGO CAMBIA DE POSICIÓN SE DICE QUE ESTÁ EN MOVIMIENTO, Y ESE MOVIMIENTO LO VEMOS DESDE DONDE NOS ENCONTRAMOS, ESE PUNTO DESDE EL QUE VEMOS SE LLAMA “SISTEMA DE REFERENCIA”. 

¿CÓMO PERCIBIMOS EL MOVIMIENTO?

PARA PODER DECIR SI ALGO SE MUEVE O ESTÁ QUIETO NECESITAMOS TENER UN PUNTO O UN SISTEMA DE REFERENCIA. PARA EXPLICARLO MEJOR, VEAMOS EL SIGUIENTE EJEMPLO:

¡VIAJE EN TREN!

CUANDO UN TREN VA EN MOVIMIENTO, PODEMOS VER COMO SE MUEVE PORQUE LAS VÍAS, EL PAISAJE Y LO QUE LO RODEA ESTÁ QUIETO A SU LADO.

LOS PASAJEROS QUE ESTÁN DENTRO SE MUEVEN JUNTO CON ÉL.

PERO SI EN VEZ DE ESTAR ABAJO ESTAMOS DENTRO DEL TREN, NOTAREMOS QUE LOS PASAJEROS ESTÁN QUIETOS, ENTONCES NOS HACEMOS LA PREGUNTA ¿SE MUEVEN O NO SE MUEVEN LOS PASAJEROS? LA RESPUESTA ES SÍ O NO, DEPENDE DE DÓNDE ESTEMOS PARADOS.

AL LUGAR DESDE DONDE OBSERVAMOS LOS CUERPOS MOVERSE LO LLAMAMOS SISTEMA DE REFERENCIA.

EL MOVIMIENTO ES TODO CAMBIO DE POSICIÓN AL TENER EN CUENTA UN SISTEMA DE REFERENCIA.
REPOSO

CUANDO UN OBJETO ESTÁ QUIETO, ES DECIR, QUE NO TIENE UN MOVIMIENTO APARENTE SE DICE QUE ESTÁ EN REPOSO.

TIPOS DE MOVIMIENTO

NINGÚN MOVIMIENTO ES IGUAL A OTRO, Y PARA PODER ESTUDIAR CADA UNO DE ELLOS ES NECESARIO CONOCER SU TRAYECTORIA.

PERO ¿QUÉ ES LA TRAYECTORIA? LA TRAYECTORIA NO ES MÁS QUE EL RECORRIDO QUE HACE UN CUERPO DE UN PUNTO A OTRO.

TODOS LOS CUERPOS QUE SE MUEVEN SE LLAMAN MÓVILES.

LA TRAYECTORIA PUEDE SER:

  • CERRADA: CUANDO EL MÓVIL PASA SIEMPRE POR LOS MISMOS PUNTOS. POR EJEMPLO EN UNA CARRERA TODOS CORREN EN LA MISMA PISTA, Y DAN VUELTAS UNA Y OTRA VEZ.
UN BUEN EJEMPLO DE TRAYECTORIA CERRADA ES EL RECORRIDO QUE HACEN LOS ATLETAS EN LA PISTA DE CARRERAS.
  • ABIERTA: CUANDO EL MÓVIL RECORRE VARIAS PUNTOS Y NUNCA VUELVE AL MISMO SITIO. POR EJEMPLO, UN AVIÓN VUELA Y HACE UNA VEZ UN RECORRIDO, NO PASA POR EL MISMO LUGAR NI DA LA VUELTA.
EL RECORRIDO QUE HACEN LOS AVIONES PARA DESPEGAR O ATERRIZAR ES UN EJEMPLO DE TRAYECTORIA ABIERTA.
  • ALEATORIA:CUANDO LOS MOVIMIENTOS SE REALIZAN DE FORMA DESORDENADA. EN ESTE CASO NO SE PUEDE SABER HACIA DÓNDE VA EL CUERPO QUE SE MUEVE. ESTO PODEMOS VERLO CUANDO SE NOS ESCAPA UN GLOBO, POR MUCHO QUE QUERAMOS PERSEGUIRLO, EL VIENTO LO LLEVA DE MANERA DESORDENADA.
LA TRAYECTORIA DE LOS GLOBOS CUANDO LOS SOLTAMOS AL AIRE ES ALEATORIA.
¿Sabías qué?
AUNQUE NO LO VEAMOS, NUESTRO PLANETA SE ENCUENTRA EN CONSTANTE MOVIMIENTO.

MOVIMIENTO RECTILÍNEO

ES EL RECORRIDO DE UN MÓVIL EN LÍNEA RECTA. ESTE TIPO DE MOVIMIENTO PUEDE SER HORIZONTAL, COMO SUCEDE EN LAS VÍAS DE UN TREN, O VERTICAL COMO CUANDO CAE LA FRUTA DE UN ÁRBOL.

MOVIMIENTO CURVILÍNEO

ES EL RECORRIDO DE UN MÓVIL EN UNA LÍNEA CURVA. POR EJEMPLO CUANDO UN NIÑO VA EN SU BICICLETA Y DOBLA EN LA ESQUINA DEL PARQUE.

¡a PRACTICAR!

1. EL MOVIMIENTO QUE ESTÁ REALIZANDO ESTE COHETE ¿ES RECTO O CURVO?

2. ¡RELACIONA LOS ELEMENTOS! TRAZA UNA LÍNEA DESDE LA COLUMNA A HASTA LA RESPUESTA CORRECTA EN LA COLUMNA B.

 

A B
MOVIMIENTO RECTILÍNEO AUTOS EN UNA PISTA DE CARRERAS
TRAYECTORIA ALEATORIA UNA HORMIGA QUE CAMINA ALREDEDOR DE UNA BOTELLA
MOVIMIENTO CURVILÍNEO UN VASO QUE SE CAE DESDE ARRIBA DE LA MESA
TRAYECTORIA CERRADA HOJAS QUE CAEN DE LOS ÁRBOLES

 

 

3. ESCRIBE EN CADA CARTEL 1 PALABRA RELACIONADA CON ESTE TEMA.

RECURSOS PARA DOCENTES

Infografía “Movimientos y tipos de movimientos”

Explicación ilustrada sobre el movimiento y los diferentes tipos de movimientos que se realizan en la vida cotidiana.

VER

Video “Los movimientos de la Tierra”

Recurso audiovisual que explica que nuestro planeta se encuentra en constante movimiento, así como también los diferentes movimientos que realiza.

VER

 

Alcanos, alquenos y alquinos

Los hidrocarburos son el grupo más diverso y amplio de los compuestos orgánicos y se clasifican en alifáticos o aromáticos. Dentro de los hidrocarburos alifáticos encontramos a los alcanos, los alquenos y los alquinos, todos compuestos que constituyen mayormente cadenas abiertas de carbono e hidrógeno.

Alcanos Alquenos Alquinos
Tipo de compuesto orgánico Hidrocarburo. Hidrocarburo. Hidrocarburo.
Tipo de hidrocarburo Alifático. Alifático. Alifático.
Otros nombres Parafinas. Oleofinas. Acetilenos.
Fórmula general CnH2n+2

 

Donde n es igual a la cantidad de carbonos.

n= 1,2,3…

CnH2n

 

Donde n es igual a la cantidad de carbonos.

n= 2,3…

CnH2n-2

 

Donde n es igual a la cantidad de carbonos.

n= 2,3…

Saturaciones Saturado. No saturado. No saturado.
Tipo de enlace característico Covalente simple. Covalente doble. Covalente triple.
Hibridación sp3

(en todos sus carbonos)

sp2

(en los carbonos del doble enlace)

sp

(en los carbonos del triple enlace)

Molécula más simple Metano

Eteno

Etino

 Estado físico Hasta C4H10 son gases.

 

De C5H12 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Hasta C4H8 son gases.

 

De C5H10 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Hasta C4H6 son gases.

 

De C5H8 en adelante son líquidos y sólidos.

 

*En condiciones estándar.

Punto de ebullición
  • Aumenta con el número de carbonos.
  • Es mayor en alcanos no ramificados.
  • Aumenta con el número de carbonos.
  • Es mayor en alquenos no ramificados.
  • Muy similar al de su alcano correspondiente.
  • Aumenta con el número de carbonos.
  • Es mayor en alquinos no ramificados.
  • Ligeramente más elevados que su alcano o alqueno correspondiente.
Solubilidad Insoluble en agua, pero solubles en solventes orgánicos. Insoluble en agua, pero solubles en solventes orgánicos. Insoluble en agua, pero solubles en solventes orgánicos.
Densidad Menor a 1 g/mL. Mayor a la de los alcanos. Mayor a la de sus correspondientes alcanos y alquenos.
Fuente Petróleo y gas natural.

 

Procesos de craking del petróleo natural. Deshidrogenación y deshalonación de derivados de alquenos.
Ejemplo Propano

 

Propeno

Propino

 

Compuestos orgánicos e inorgánicos

Los compuestos químicos pueden clasificarse en dos grandes grupos: compuestos orgánicos y compuestos inorgánicos. Cada grupo presenta un conjunto de características muy particulares que hacen posible diferenciarlos fácilmente. A continuación se comparan estos dos tipos de compuestos.

Compuestos orgánicos Compuestos inorgánicos
Base de construcción Átomo de carbono. Mayoría de los elementos conocidos.
Tipo de enlace Enlace covalente. Predomina el enlace iónico.
Isómeros La mayoría presenta isómeros. Muy pocos presentan isómeros, son raros.
Formación estructural Átomos organizados en largas cadenas basadas en carbono, sobre las que se insertan otros elementos. No es común la formación de cadenas.
Tipo de estructura Complejas, de alto peso molecular. Simples, de bajo peso molecular.
Solubilidad La mayoría son insolubles en agua y solubles en solventes apolares. La mayoría son solubles en agua e insolubles en solventes apolares.
Punto de ebullición y fusión Bajos. Altos.
Densidad Baja. Alta.
Conductividad eléctrica No son conductores de la electricidad. Son conductores de la electricidad.
Velocidad de reacción Reacciones lentas. Reacciones muy rápidas.
Estabilidad Poco estables, se descomponen fácilmente. Muy estables.
Clasificación principal
  • Óxidos
  • Hidróxidos
  • Ácidos
  • Sales
  • Hidrocarburos
  • Oxigenados
  • Nitrogenados
Variedad Mayor a la de los compuestos inorgánicos. Menor a la de los compuestos orgánicos.
Ejemplos
  • Óxido de aluminio (Al2O3)
  • Hidróxido de sodio (NaOH)
  • Ácido fosfórico (H3PO4)
  • Bicarbonato de sodio (NaHCO3)
  • Ácido acético (CH3COOH)
  • Etanol (CH3OH)
  • Octano (C8H18)
  • Benceno (C6H6)

 

Punto de fusión y punto de ebullición

La materia tiene propiedades características y no características. Las primeras son particulares para cada sustancia ya que dependen de la naturaleza del átomo que la constituye, por lo que permiten identificar sustancias. Entre las propiedades características de la materia están el punto de fusión y el punto de ebullición.

Punto de fusión Punto de ebullición
¿Qué es? Temperatura a la cual una sustancia cambia de estado sólido a líquido. Temperatura a la cual una sustancia cambia de estado líquido a gaseoso.
Condición Presión = 1 atm. Presión = 1 atm.
Tipo de magnitud Constante física. Constante física.
Fases en equilibrio Sólida y líquida. Líquido y gaseoso.
¿Qué sucede durante el equilibrio? La temperatura permanece constante a pesar de que el tiempo de calentamiento aumenta. La temperatura permanece constante a pesar de que el tiempo de calentamiento aumenta.
¿De qué depende? Tipo de enlace químico, polaridad e intensidad de las fuerzas de atracción intermolecualres. Principalmente de la presión atmosférica. También influye el tipo de enlace, polaridad e intensidad de las fuerzas de atracción intermolecualres.
En sustancias covalentes Bajo. Bajo.
En sustancias iónicas Muy alto. Muy alto.
¿Cómo determinarlo? Los aparatos más usados son:

  • Tubo de Thiele.
  • Aparato Fisher-Jhons.
  • Aparato Melt-Temp.
Los métodos más usados son:

  • Método por destilación.
  • Método de Siwoloboff.

 

Representación gráfica temperatura/tiempo
Ejemplo del proceso
  • Derretimiento de un hielo.
  • Derretimiento de una vela.
  • Fundición del hierro.
  • Hervir agua para espagueti.
  • Cocinar una sopa.
  • Hacer café.
En algunas sustancias Agua: 0 °C

Mercurio: -38,87 °C

Etanol: – 117,3 °C

Cobre: 1.083 °C

Hierro: 1.535 °C

Agua: 100 °C

Mercurio: 356,58 °C

Etanol: 64,96 °C

Cobre: 2.595 °C

Hierro: 3.000 °C

La puntuación

¡Vamos a escribir! Si queremos redactar un mensaje y que la gente nos entienda debemos saber articular los signos de puntuación. Éstos son una de las herramientas esenciales para poder realizar todo tipo de escritos correctamente.

La estructura de los textos que se escriben cotidianamente obedecen a una numerosa cantidad de reglas ortográficas que permiten su comprensión, facilitan su lectura y ordenan sus ideas de forma tal que puedan ser accesibles a todo aquel que las conozca. La puntuación forma parte de este conjunto de normas y es una herramienta indispensable para reproducir la entonación, los silencios y las pausas que producimos cuando hablamos. La utilización incorrecta de estos signos puede generar ambigüedad o cambiar toda la interpretación de una frase, por lo que aprender a utilizarlos bien es una tarea de suma importancia.

El punto (.)

Al tratarse de un signo de puntuación que se encuentra necesariamente en toda oración, el punto es uno de los primeros que se aprende a utilizar y con el que menos errores se presentan. Se utiliza para indicar una pausa que se produce al final de un enunciado o la terminación de una composición. Siempre que una palabra le siga deberá ser escrita con mayúscula, marcando de esta manera el inicio de una nueva oración.
Existen tres tipos de puntos diferentes que es necesario diferenciar:

1) Punto y seguido: se usa para separar oraciones que integran un párrafo y que pertenecen al mismo grupo de argumentación. Luego se debe seguir escribiendo en el mismo renglón o, si el espacio lo impide, continuar en el que se encuentra inmediatamente por debajo sin dejar sangría.

2) Punto y aparte: se utiliza para separar dos párrafos que suelen desarrollar contenidos diferentes. Siempre que se utilice se debe continuar escribiendo en una línea inferior dejando sangría al comienzo.

3) Punto final: se usa para cerrar un texto.

A modo de ejemplo, puede observarse en el siguiente fragmento del cuento de Horacio Quiroga, “Las medias de los flamencos”, cómo los signos cumplen diferentes funciones en relación con el lugar del texto en el que es utilizado:

“A veces se apartan de la orilla, y dan unos pasos por la tierra, para ver cómo se hallan. Pero los dolores del veneno vuelven en seguida, y corren a meterse en el agua. A veces el ardor que sienten es tan grande, que encogen una pata y quedan así horas enteras, porque no pueden estirarla.
Esta es la historia de los flamencos, que antes tenían las patas blancas y ahora las tienen coloradas. Todos los peces saben por qué es, y se burlan de ellos. Pero los flamencos, mientras se curan en el agua, no pierden ocasión de vengarse, comiéndose a cuanto pececito se acerca demasiado a burlarse de ellos.”

En el primer párrafo se puede evidenciar la presencia de dos diferentes usos del punto. En las primeras dos oportunidades se trata de un punto y seguido, pero hacia el final de la última oración aparece un punto y aparte. Nótese que es éste último el que finaliza el párrafo y el que se utiliza para cerrar una idea, mientras que los primeros simplemente separan oraciones y contenidos más concretos.

El punto final, en cambio, se presenta al final del extracto, junto a las comillas de cierre, para indicar el término del texto. En el mismo párrafo (el segundo) pueden observarse en dos oportunidades más cómo se utiliza el punto y seguido.

Existe un cuarto uso que puede hacerse del punto para indicar la presencia de una abreviación. Para ello se coloca a continuación de una de ellas y se sigue escribiendo en minúscula sobre la misma línea como se observa en los siguientes ejemplos:

Sr. en lugar de señor.
Etc. en lugar de etcétera.
Prof. en lugar de profesor.

La coma (,)

Otro signo de puntuación que se utiliza con mucha frecuencia es la coma. Sirve para indicar una pausa breve que se produce dentro de un enunciado, aunque la misma puede tener varios usos:

1) Separar varias palabras en una enumeración:
“No te olvides de comprar manteca, harina, pan, azúcar y queso”.

2) Separar el nombre de la persona a la que nos dirigimos del resto de la oración:
“Lucia, tráeme los libros que están sobre la mesa”.

3) Separar el apellido del nombre cuando se escribe invertido:
“Pérez García, Lucas”.

4) Indicar una aposición que aclara información del sujeto:
“Jorge Luis Borges, el escritor argentino, escribió muchísimos textos”.

5) Introducir aclaraciones:
“Marianela, que está estudiando periodismo, será la nueva directora del periódico”.

6) Cuando hay una elipsis:
“Mi hermano compró un cancionero para la guitarra y mi hermana, la última novela de García Márquez”.
La elipsis es la supresión de un término de la oración. Se quita ese término para evitar ser reiterativo y porque sin ese término la oración se comprende igual. En el ejemplo, observamos que en vez de escribir nuevamente el verbo “compró”, se coloca una coma.

7) Cuando ha sido invertido el orden normal de la oración:
“Cuando se despertó, ya todos habían desayunado”.

El punto y coma (;)

A diferencia de los signos de puntuación ya vistos, el punto y coma representa una pausa mayor a la coma pero inferior al punto. A pesar de no ser utilizado tan frecuentemente, su uso bien específico es necesario en las siguientes ocasiones:

1) Al separar los elementos de una enumeración cuando ya existen algunas comas:
“Mónica, mi prima, traerá el postre; Oscar, las bebidas y Lucrecia preparará la cena”.

2) Delante de las palabras “pero”, “sin embargo”, “no obstante”, etc., es decir, en oraciones coordinadas adversativas cuando en el enunciado existen otras comas.
“Hoy hay sol; no obstante, debes abrigarte porque hace frío”.

3) Para separar dos oraciones con significados relacionados:
“Enrique, eufórico, corría hacia el cine; sus amigos no sabían dónde estaba”.

4) Cuando a una oración le sigue otra antecedida de conjunción:
“Jugaron por horas con sus primos, saltaron, bailaron, jugaron a las escondidas, se disfrazaron; y cuando llegó el momento de volver a casa estaban todos dormidos”.

Los dos puntos (:)

Este signo sirve para detener el discurso y llamar la atención sobre la información que le continuará. Puede utilizarse en los siguientes casos:

1) Después del saludo de las cartas:
“Queridos tíos: ”

2) Después de anunciar una enumeración:
“Estas son mis comidas preferidas: pizza, papas fritas, arroz y pollo al horno”.

3) Para introducir el discurso directo:
“María me dijo: “¡Cuidado! ¡Ese perro te va a morder!”

4) Para introducir una aclaración al discurso anterior:
“Se ha quedado sin fichas: no podrá seguir jugando”.

Los puntos suspensivos (…)

Los tres puntos, o puntos suspensivos, se utilizan para indicar que una enumeración no está completa (puede sustituirse por “etc.”) o para indicar que un enunciado está incompleto:
“Ayer visitamos el jardín, el palacio, las fuentes…”
También sirve para generar suspenso, misterio o intriga:
“Oímos unos ruidos extraños en la calle. Entonces miramos… y era el camión de un circo”.

El guión

Existen dos tipos diferente de guión, cada uno con su forma y uso particular:

– Guión largo (_): poseen una función parecida a la del paréntesis pero se usan con frecuencia en oraciones explicativas. Además pueden utilizarse para abrir y cerrar un inciso dentro de un paréntesis.

– Guión corto (-): se utiliza para unir en vez de separar. Cada una de las palabras unidas por el guión seguirá conservando su significado individual. Por ejemplo: Ese muchacho es de origen ítalo-argentino.

Interpretando según la puntuación

Leyendo las siguientes oraciones nos damos cuenta de la real importancia que tienen los signos de puntuación. Se observa cómo cambia el significado si ponemos la coma en un lado o en otro.

1. Quien escribe, sus malos recuerdos espanta.
2. Quien escribe sus malos recuerdos, espanta.

La primera oración tiene la pausa luego de “Quien escribe”, entonces nos da entender que los malos recuerdos los logra espantar la persona que escribe. En cambio, en la segunda oración la coma está puesta luego de “Quien escribe sus malos recuerdos”, por lo que nos hace entender que aquella persona que se dedica a escribir sobre sus malos recuerdos, genera espanto en los lectores.

Conceptos fundamentales de la cinemática: velocidad

En cinemática se definen diversos conceptos de velocidad.

Velocidad media e instantánea

La velocidad media de un móvil es la razón de su vector desplazamiento entre el intervalo de tiempo durante el cual se produce ese desplazamiento. Siendo el cociente de un vector por un escalar, la velocidad media es un vector cuya dirección y sentido son los mismos que los del vector desplazamiento. Si en el instante t0 el móvil está en el punto P0 y su vector de posición es r(t0), y en el instante t el móvil está en el punto P y su vector de posición es r(t), la velocidad media del móvil entre P0 y P será:

Un concepto distinto es el de celeridad o velocidad media sobre la trayectoria, que es una magnitud escalar que se define como el cociente entre la distancia recorrida y el tiempo empleado en recorrerla.

La velocidad instantánea es una magnitud vectorial que representa la velocidad que tiene el móvil en cierto instante o, lo que es lo mismo, en un punto determinado de su trayectoria. La velocidad instantánea debe representarse por un vector porque se trata de una magnitud que, además de ser cuantificable, tiene una orientación determinada. Veamos cómo se define.

Si en un instante t0 un móvil está en el punto P0 cuyo vector de posición es r(t0), una fracción de segundo más tarde, es decir, en el instante t0 + ∆t, estará en otro punto P cuyo vector de posición será r(t0 +  ∆t). La velocidad media del móvil durante el intervalo de tiempo ∆t sería entonces:

Si consideramos cada vez fracciones de segundo más pequeñas, es decir, ∆t más pequeños, el punto P se va acercando al punto P0, y la dirección del vector desplazamiento r(t0 + ∆t) – r(t0) se va acercando a la recta tangente a la trayectoria en el punto P0.

Ejemplo

Como el vector velocidad media,, tiene la misma dirección que el vector desplazamiento, también la dirección dese irá acercando a la recta tangente a la trayectoria en P0.

Además de acercarse en dirección a la tangente, el vector desplazamiento, r(t 0 +  ∆t) – r(t 0), a medida que vamos considerando ∆t más reducidos, es cada vez más corto, es decir, que su módulo es cada vez más pequeño.

En el límite, esto es, cuando ∆t sea cero y el punto P se confunda con el punto P0, el vector desplazamiento se anulará.

Con el vector no ocurre lo mismo, ya que este vector es el cociente entre el vector desplazamiento y el incremento de tiempo considerado, o sea, el cociente entre r(t0 + ∆t) – r(t0) y ∆t. Al irse acercando P a P0, es decir, al irse haciendo cada vez más pequeño ∆t, el numerador y el denominador de ese cociente se van haciendo los dos cada vez más pequeños, pero el valor del propio cociente puede aumentar o disminuir, dependiendo de si el numerador decrece de forma más rápida o más lenta que el denominador.

Tenemos por lo tanto que al ir disminuyendo ∆t, la línea de acción del vectorse va acercando a la recta tangente a la trayectoria en P 0, mientras que el módulo dese va acercando a un determinado valor. Así el vector tiende a convertirse en un vector V(t0) aplicado en P0 y situado sobre la tangente a la trayectoria en ese punto. Ese vector V(t0) es la velocidad instantánea del móvil en el punto P0 o, lo que es lo mismo, en el instante t 0.

No particularizando un valor de t, notaremos este vector como V(t) o simplemente V.

Ejemplo

El proceso que hemos seguido para definir la velocidad instantánea se denomina paso al límite. Diríamos así que la velocidad instantánea es el límite de la velocidad media cuando el incremento de tiempo tiende a cero (∆t → 0).

Cuando ∆t → 0, la celeridad o velocidad media sobre la trayectoria se va aproximando al módulo del vector velocidad media (la cuerda se aproxima al arco), con lo que la velocidad instantánea también puede definirse como un vector tangente a la trayectoria en el punto considerado cuyo módulo es el límite a que tiende la celeridad cuando  ∆t→ 0

Dimensiones y unidades de la velocidad

La velocidad tiene las dimensiones de una longitud dividida por un tiempo [L]·[T]-1. En el Sistema Internacional y en el técnico se expresa en metros por segundo (m/s), y en el CGS en centímetros por segundo (cm/s). En la práctica también se utilizan unidades basadas en múltiplos del metro y del segundo (km/h). Los marinos emplean una unidad propia: el nudo, que equivale a una milla marina por hora (1,85 km/hora).

Propiedades y nomenclatura de aminas

Las aminas son compuestos orgánicos nitrogenados conocidos por su importancia a nivel biológico y medicinal. Ejemplo de ello es la serotonina, un neurotransmisor involucrado en diversos procesos de tipo afectivo a nivel del sistema nervioso central.

Las aminas son compuestos orgánicos derivados del amoniaco, conformados por uno o más grupos alquilo o arilo enlazados al átomo de hidrógeno mediante un enlace simple.


En función del número de grupos alquilo o arilo unido al nitrógeno las aminas se clasifican en:

Amina primaria: están constituidas por un grupo amino unido a un sustituyente alquilo o arilo (R- NH2).

Amina secundaria: están formadas por dos grupos alquilo o arilo (R-NH-R´) unidos al átomo de hidrógeno.


Amina terciaria: tienen tres grupos alquilo o arilo unidos al nitrógeno (NR3).


IMPORTANCIA BIOLÓGICA DE LAS AMINAS

En el cuerpo humano hay diferentes aminas que cumplen funciones vitales en el organismo, entre las cuales se encuentran:

Histamina: es la sustancia responsable de las reacciones típicas de la alergia como la dilatación de los vasos sanguíneos, también es un importante neurotransmisor.

Niacina: es una vitamina que ayuda al buen funcionamiento de órganos como la piel, además interviene en procesos del sistema digestivo y nervioso.

Dopamina: es un neurotransmisor del sistema nervioso central y periférico.

PROPIEDADES DE LAS AMINAS

Las propiedades de las aminas están asociadas a su estructura química y la forma en que ésta determina las interacciones moleculares. En general, las aminas son polares y presentan interacciones del tipo dipolo-dipolo, además, aquellas que contienen enlaces de N-H pueden interactuar mediante enlaces de hidrógeno. Debido a que el nitrógeno es menos electronegativo que el oxígeno presente en los alcoholes (R-OH), los puentes de hidrógeno en las aminas son más débiles y por tanto sus puntos de ebullición suelen ser menores a los de los alcoholes de igual masa molecular.

¿Sabías que incluso las aminas terciarias pueden interaccionar con otras moléculas que formen enlaces de hidrógeno? Esto debido al par de electrones libre del nitrógeno.

En cuanto a la solubilidad, las aminas con menos de siete átomos de carbono son solubles en agua, propiedad que disminuye al aumentar el número de carbonos.

Las aminas se comportan como bases débiles en presencia de un ácido, tal como muestra el siguiente ejemplo:


AMINAS MEDICINALES

En la medicina hay drogas o fármacos que pertenecen al grupo de las aminas, como son los antihistamínicos recetados en los casos de alergias y gripes, también la morfina administrada en dosis pequeñas a pacientes que sufren dolor crónico y agudo.

Sin embargo, algunas aminas como la cocaína, la nicotina y la metanfetamina generan adicción y demás efectos negativos sobre el sistema nervioso central y la salud en general.

¿Sabías que el nombre de vitaminas se debe a que inicialmente se creía dichas biomoléculas eran todas aminas?

NOMENCLATURA DE AMINAS

Las aminas se nombran como alcanoaminas o alquilaminas, es decir, se nombran utilizando el nombre del alcano o sustituyente alquilo, respectivamente. En ambos casos se utiliza la terminación –amina.


En aquellos casos donde hay más de un sustituyente se deben nombrar en orden alfabético, así mismo, si alguno de estos se repite varias veces se utilizan los prefijos de cantidad: di, tri y tetra, entre otros.


También es posible nombrar los sustituyentes empleando la letra N como localizador, siempre que los sustituyentes estén unidos al átomo de nitrógeno.


En compuestos donde la prioridad corresponde a otra función química, las aminas se nombran empleando el término amino- precedido por el localizador.


SALES CUATERNARIAS

Las sales cuaternarias se forman cuando una amina reacciona con un ácido. Se utilizan como producto de limpieza y en medicamentos, ya que son más estables y resistentes que las aminas de las cuales provienen.



¡Aplica lo aprendido!

Indica el nombre del siguiente compuesto.


  1. Enumera la cadena carbonada más larga.

  1. Identificar los sustituyentes.

  1. Nombrar el compuesto.

Propiedades y nomenclatura de ésteres

Los ésteres son compuestos orgánicos oxigenados que contienen un carbonilo unido a un grupo alcoxido y un grupo alquilo o arilo. Éstos se obtienen a partir de ácidos carboxílicos, por lo cual se conocen como derivados de los mismos.

Los ésteres (R-COOR) son compuestos estructuralmente relacionados a los ácidos carboxílicos (R-COOH), ya que la formación del éster requiere la sustitución del grupo –OH del ácido por un grupo –OR´.

Esterificación

La esterificación es una reacción a partir de la cual se pueden obtener ésteres. Para ellos se hace reaccionar un acido carboxílico con un alcohol para formar el éster más agua, generalmente se emplea un acido fuerte como catalizador.

PROPIEDADES DE LOS ÉSTERES

Los ésteres de baja masa molecular se caracterizan por ser líquidos con aromas agradables, conforme la masa molecular aumenta, lo esteres tienden a ser sólidos a temperatura ambiente e inodoros.

La solubilidad de los esteres en agua disminuye conforme aumenta la cadena carbonada.

Por otro lado, sus puntos de ebullición suelen ser más bajos que el del ácido del cual deriva cada uno debido a que la presencia de un grupo alquilo o arilo en lugar del hidrógeno dificulta la formación de enlaces de hidrógeno.

Aroma a ésteres

Una de las características de los esteres está relacionado a su aroma, el cual es responsable del olor de algunas frutas y flores. Por ello se utilizan en la industria de las fragancias y perfumes.

El plátano debe su aroma al etanoato de pentilo.
El pentoanato de pentilo es el responsable del olor a manzana.
El albaricoque es un aroma asociado al butanoato de pentilo.
El olor a frambuesa se debe al octanoato de heptilo.

NOMENCLATURA DE ÉSTERES

Además de las regla generales de nomenclatura, la IUPAC determinó una serie de reglas específicas para los ésteres, las cuales se detallan a continuación.

¡Recuerda!

Las normas generales de nomenclatura orgánica son:

  1. Seleccionar la cadena principal, ésta siempre es la más larga y la que contiene el grupo funcional de mayor prioridad.
  2. Enumerar la cadena principal, para lo cual se asigna la numeración más baja posible al grupo funcional principal y a los sustituyentes e insaturaciones presentes en la estructura.
  3. Identificar y nombrar los sustituyentes presentes.
  4. Los sustituyentes se nombran en orden alfabético, en casos donde los sustituyentes se encuentran repetidos se utilizan prefijos de cantidad que no son considerados al momento de ordenar, por ejemplo: di = 2, tri = 3, tetra = 4, penta = 5, hexa = 6 y así sucesivamente.

 

  1. Los ésteres se nombran como sales del ácido carboxílico del cual provienen. Para ello se sustituye la terminación –oico por el sufijo –oato, luego se coloca el nombre del sustituyente alquilo o arilo unido al átomo de oxígeno, dichos nombres deben estar separados por la palabra “de”.

– Ejemplo:

  1. En compuestos donde el grupo éster se encuentra como sustituyente, por ejemplo en ácidos carboxílicos y anhídridos ácidos, se emplea el nombre del alcoxido correspondiente seguido de la palabra carbonil.
  • Ejemplo:

 

Algunos medicamentos son ésteres, por ejemplo la aspirina.
  1. En aquellos compuestos donde el grupo éster está unido a un ciclo se considera como cadena principal al ciclo, cuyo nombre va seguido de la terminación –carboxilato de alquilo, donde el nombre del alquilo dependerá del número de carbonos.
  • Ejemplo:

 

¿Sabías qué...?
Los ésteres cíclicos reciben el nombre de lactonas

 

Valerolactona

Ejemplo:

Nombre el siguiente compuesto:

Paso 1: reconocer el ácido del cual proviene el éster, luego se elimina la palabra ácido y se sustituye el sufijo –ico por -ato.

Paso 2: reconocer y nombrar el grupo alquilo unido al oxigeno.

Paso 3: escribir el nombre completo del compuesto.