Tipos de sistemas

La termodinámica se refiere al estudio de la transferencia de energía. Dentro de esta rama, la materia es un elemento fundamental ya que es la que conforma, junto con el entorno, sistemas claves que permiten el entendimiento de muchos procesos que se dan en nuestro planeta.

¿Qué es un sistema?

Un sistema se define como un grupo de unidades interactivas o elementos que tienen un propósito común. Estas unidades o elementos pueden ser engranajes, cables, personas, animales y computadoras, entre otros. Los sistemas generalmente se clasifican como sistemas abiertos y sistemas cerrados, y pueden tomar la forma de sistemas mecánicos, biológicos o sociales.

Sistemas y subsistemas

Algunos grandes sistemas son divididos (para poder ser estudiados por el hombre) en subsistemas, como por ejemplo la Tierra, un gran sistema abierto que cuenta con 4 subsistemas que corresponden con sus capas: atmósfera, biosfera, hidrósfera y geósfera.

Como todo en el mundo físico, la energía está sujeta a las leyes de la física. Las leyes de la termodinámica rigen la transferencia de energía en y entre todos los sistemas.

Un sistema puede ser conceptual o real, por ejemplo, un sistema conceptual incluye definiciones, símbolos e instrumentos del pensamiento, como por ejemplo, sistemas matemáticos o sistemas lógicos. En cambio, los sistemas reales incluyen la transferencia de materia, energía o información con su entorno; las células y la biósfera son ejemplos perfectos de sistemas reales, ya que ellos están en constante intercambio de energía y materia con el entorno (abierto), por supuesto, existen sistemas reales en los que solo se intercambia energía (cerrados) o sistemas en los que no existe ningún tipo de intercambio (aislados).

En el campo de la informática es concepto de sistemas es muy aplicado. Un sistema informático incluye el hardware, el software y el soporte humano.

¿Qué es la teoría de los sistemas?

La teoría de sistemas es una teoría interdisciplinaria sobre la naturaleza de los sistemas complejos en la naturaleza, la sociedad y la ciencia, y es un marco por el cual uno puede investigar y/o describir cualquier grupo de objetos que trabajen juntos para producir algún resultado. Esto podría ser un solo organismo, cualquier organización o sociedad, o cualquier artefacto electromecánico o informativo. Fue propuesta por el biólogo austriaco Ludwig von Bertalanffy en 1950 y su objetivo final era estudiar la aplicabilidad de los sistemas en las distintas ramas de estudio.

¿Cuáles son los tipos de sistemas?

Un sistema abierto es aquel en el que una cantidad o serie de cantidades puede entrar o salir del sistema en un grado significativo. En los sistemas abiertos intervienen seres vivos que tienen una relación íntima con el ambiente que los rodea de la misma manera, el ambiente interacciona con dichos seres vivos. ambos se benefician y dependen el uno del otro.

Los organismos biológicos son sistemas abiertos, la energía se intercambia entre ellos y su entorno, ya que consumen moléculas que almacenan energía y liberan energía al medio ambiente al hacer el trabajo. El cuerpo humano es un ejemplo muy común de sistema abierto, ya que está en constante intercambio de materia y energía y siempre necesita insumos orgánicos que obtiene del ambiente. Por otro lado, el cuerpo también expulsa sustancias de desecho de vuelta al medio ambiente. Si alguna de estas dos interacciones falla, el sistema, es decir, el cuerpo, fallece.

Las plantas también son sistemas abiertos, ellas necesitan la materia (agua y nutrientes) y la energía del Sol para realizar sus funciones metabólicas.

¿Qué son los sistemas cerrados?

Un sistema cerrado es aquel donde una cantidad o serie de cantidades de materia no puede entrar o salir del sistema. Por ejemplo, un termo de vacío hace un buen trabajo para evitar que la materia salga del sistema y mantiene la bebida caliente, por lo tanto, podría tener sentido tratarlo como un sistema cerrado, pero ningún sistema en el mundo real está perfectamente cerrado, por lo que solo será una aproximación.

Las ollas de presión son otro ejemplo común, en ellas existe un intercambio de energía, pero la materia no es liberada, las ollas impiden que los gases que se generan en su interior para cocinar la comida escapen. Sin embargo, la energía en forma de calor sí escapa y la energía necesaria para iniciar la cocción también proviene del medio exterior.

Las ollas a pesar de dejar escapar la energía no dejan escapar la materia.

¿Qué son los sistemas aislados?

Son aquellos en los que no existe ningún cambio, ni de materia, ni de energía, esto no ocurre tan estrictamente, y en muchos de los sistemas considerados aislados hay pequeños intercambios con el entorno a lo largo del tiempo. Los ejemplos clásicos de sistemas aislados son los termos o los conservadores de hielo.

Los sistemas nunca permanecen completamente aislados ya que con el tiempo alguna perturbación puede provocar alguna liberación de materia o energía.

¿Sabías qué...?
La Tierra es considerada un sistema material ya que está en constante intercambio con el espacio, recibe micrometeoritos y otros tipos de materia e intercambia moléculas al exterior.

Dinámica

Existe una rama de la física que se encarga de estudiar y analizar el movimiento en relación con las causas que lo originan, la dinámica. Los conocimientos en este campo han permitido realizar diversos descubrimientos como la descripción del movimiento de los planetas.

La dinámica se enfoca en estudiar y describir la evolución a través del tiempo de un sistema físico (un conjunto de objetos ordenados que obedecen ciertas leyes y que en cuyas partes se evidencia una conexión de tipo causal). Para estudiar las alteraciones que se producen en este tipo de sistemas, la dinámica emplea ecuaciones de movimiento.

Las leyes de Newton

El primer estudioso en formular leyes fundamentales en el campo de la dinámica fue Isaac Newton. Su aporte fue tan importante que hasta la fecha sus leyes representan las bases para la mayoría de problemas que involucran cuerpos en movimiento.

Isaac Newton fue un físico británico que nació el 4 de enero de 1643 en el condado de Lincolnshire en Inglaterra.

Primera ley: Ley de la inercia

Establece que un cuerpo permanecerá en estado de reposo o en movimiento rectilíneo uniforme a no ser que se vea sujeto a cambiar su condición por una o varias fuerzas externas.

Segunda ley: Principio fundamental de la dinámica

Plantea que el cambio de movimiento es directamente proporcional a la fuerza que actúa sobre el cuerpo y en su misma dirección. Es decir, la aceleración a la cual se encuentra sometido un cuerpo es directamente proporcional a la fuerza neta aplicada e inversamente proporcional a su masa.

Las leyes de Newton revolucionaron los conceptos básicos de la física y ampliaron los conocimientos relacionados con los movimientos de los cuerpos en el universo.

Tercera ley: Principio de acción-reacción

Esta ley propone que con toda acción siempre se produce una reacción igual y en sentido opuesto, es decir, cuando un cuerpo ejerce una fuerza sobre otro, éste último imprime sobre el primero una fuerza de igual magnitud pero de sentido contrario.

Diferencia entre cinemática y dinámica

Tanto la cinemática como la dinámica son ramas de la mecánica clásica que se dedican al estudio del movimiento de los cuerpos, sin embargo; son muy diferentes. La cinemática se enfoca a estudiar los cuerpos en movimiento sin considerar las causas que originan el movimiento y se limita únicamente a la trayectoria que se describen respecto al tiempo. Por otra parte, la dinámica se concentra en las causas que originan el movimiento de los cuerpos y los cambios que se producen en el estado de movimiento de dichos cuerpos.

En resumen, la cinemática responde a la incógnita: ¿cómo se mueven los cuerpos?, mientras que la dinámica se enfoca en responder ¿por qué se mueven los cuerpos?

Problemas de dinámica

Los problemas de dinámica son diversos al igual que las aplicaciones de las leyes de Newton. En este artículo nos enfocaremos en problemas en los cuales se aplica la segunda ley de Newton. Dicha ley puede expresarse en términos de ecuación de la siguiente forma:

Dónde:

F: fuerza

m: masa

a: aceleración

La expresión anteriormente planteada es válida únicamente para cuerpos en los que su masa es constante.

En los casos en los que la masa no es constante como sucede con los cohetes que queman combustible a lo largo del trayecto, la ecuación F = m.a no es válida.
El Newton

La unidad de fuerza empleada en el sistema internacional de unidades es el Newton y se representa con el símbolo N. De esta manera 1 N se define como la fuerza que hay que ejercer sobre un cuerpo que tenga una masa de 1 kg para desplazarlo a una aceleración de 1 m/s².

Lo anteriormente expuesto quiere decir que 1 N puede expresarse en unidades fundamentales como:

Es importante que al resolver problemas de este tipo las unidades sean equivalentes para que el sistema sea homogéneo, de lo contrario, se deberán transformar las unidades para que así lo sean.
  1. Calcular la masa de un cuerpo que al recibir una fuerza de 80 N adquiere una aceleración de 10 m/s².

Datos:

F = 80 N

a= 10 m/s².

Solución:

Debido a que en el problema piden determinar la masa, se despeja esta variable de la ecuación de fuerza:

Se sustituyen los datos en la ecuación despejada:

La masa del cuerpo es de 8 kilogramos.

  1. Se aplica una fuerza de 82 N a un cuerpo de 15.000 g. Calcular la aceleración que adquiere el cuerpo:

Datos:

F = 82 N

m = 15.000 g

Solución:

Lo primero es transformar la masa a kilogramo (recordemos que el kilogramo forma parte de las unidades que conforman a la unidad de fuerza Newton).

Para la transformación se sabe que 1 kg contiene 1.000 g:

Debido a que en el problema nos solicitan la aceleración despejamos dicha variable de la ecuación:

Se reemplazan los datos en la ecuación despejada:

De manera que la aceleración que adquiere el cuerpo es de 5,46 m/s².

  1. Calcular la fuerza que debe ser ejercida en un cuerpo de 14,2 kg para que adquiera una aceleración de 12 m/s².

Datos:

m = 14,2 kg

a = 12 m/s²

Solución:

Se sustituyen los valores en la ecuación de fuerza:

Para que un cuerpo de 14,2 kg de masa pueda adquirir una aceleración de 12 m/s² se debe aplicar una fuerza de 170,4 N.

Los cuerpos no pueden ejercer una fuerza sobre sí mismos, siempre hay otros agentes que los mueven.