Cálculo del ángulo a partir de sus razones trigonométricas

El problema inverso al de calcular las razones trigonométricas de un ángulo conocido, consiste en determinar el valor de dicho ángulo a partir de sus razones trigonométricas.

La resolución de este problema, que tradicionalmente se llevaba a cabo mediante el empleo de las tablas trigonométricas, se ve hoy facilitado por el hecho de que muchas de las modernas calculadoras electrónicas de bolsillo incorporan combinaciones de teclas que permiten obtener el valor del ángulo conocido el seno, el coseno o la tangente del mismo. La denominación tradicional con la que se hace referencia a la medida del ángulo correspondiente al valor de una determinada razón trigonométrica, que se supone conocida, utiliza el término “arco” en lugar de ángulo; es decir, que para cada una de las razones trigonométricas se habla, respectivamente, de arco seno (arc sen), arco coseno (arc cos), arco tangente (arc tg), arco cotangente (arc cotg), arco secante (arc sec) y arco cosecante (arc cosec).

Ejemplo:

a = senα

α = arc sen a

Es decir, si a es el valor numérico del seno de α, es el arco (o el ángulo) que corresponde al valor a del seno.

Observaciones

Arco seno. Como -1 senα 1, arc sen sólo está definido para valores comprendidos entre -1 y 1. Como senα = sen (180º – α), si a = senα , α = arc sen a, pero también 180º – α = arc sen a.
Arco coseno. El arco coseno sólo está definido para valores comprendidos entre -1 y 1. Como cosα = cos (-α) si a = cosα, se tiene α= arc cos a y -α = arc cos a.
Arco tangente. Como tgα = tg (180º + α), si a = tgα , α = arc tg a y 180º + α = arc tg a.

¿Cómo debe interpretarse el valor de la tangente de un ángulo recto?

La tangente de un ángulo resulta de dividir su seno entre su coseno. Si el ángulo mide 90º, la división anterior es 1/0=. Físicamente ninguna magnitud es igual a infinito, así que en cada caso deberá interpretarse el resultado de forma coherente. Por ejemplo, si la pendiente de una rampa fuera infinito debería entenderse que está dispuesta de forma vertical, de modo que todo movimiento sobre ella tiene una componente horizontal nula.

Inclinación

Si la pendiente de una recta es el ángulo que forma dicha recta con el plano horizontal, se define la inclinación como el ángulo entre ésta y el plano vertical de referencia. Si bien el plano horizontal es conocido, aquel que tiene todos sus puntos a la misma altura, los planos verticales pueden ser infinitos, ya que un plano es vertical cuando corta perpendicularmente al horizontal. Por eso es necesario referirse a uno determinado, que puede ser Norte-Sur, la dirección de una calle, etc.

Ángulos inscrito y semiinscrito en un arco de circunferencia

La circunferencia es un elemento sumamente importante dentro del estudio de la trigonometría. En ella se forman ciertos ángulos, por ejemplo, el inscrito, semiinscrito y el central.

Ángulo inscrito

Se llama ángulo inscrito en un arco de circunferencia al que tiene su vértice en un punto cualquiera de la circunferencia que contiene el arco y sus lados pasan por los extremos del arco.

Ejemplo

ángulo inscrito; el centro O de la circunferencia pertenece al lado del ángulo

que está inscrito en

y abarca

Ejemplo

ángulo inscrito; O es interior al ángulo

que está inscrito en el arco

que contiene al punto B, o sea

, y abarca

A todo ángulo inscrito le corresponde un ángulo central, cuyos lados son radios que pasan por los extremos del arco.

Ejemplo

 ángulo central correspondiente al ángulo inscrito

Ejemplo

 ángulo central correspondiente al ángulo inscrito

Propiedades del ángulo inscrito

1) Todo ángulo inscrito en un arco de circunferencia vale la mitad del ángulo central que le corresponde.

Ejemplo

 es un ángulo inscrito

es un ángulo central correspondiente

2) Todos los ángulos inscritos en una circunferencia que abarcan un mismo arco son iguales.
Ejemplo

 abarca el

abarca el

 abarca el

3) Los ángulos inscritos que abarcan una semicircunferencia son rectos.
Ejemplo

 es igual a 180° por ser llano

por ser ángulo inscrito que abarca el mismo arco.

Ángulo semiinscrito

Un ángulo semiinscrito en un arco de circunferencia es el que tiene su vértice en uno de los extremos del arco, uno de sus lados pasa por el otro extremo y el otro lado es tangente a la circunferencia, por el vértice.
Ejemplo
 ángulo semiinscrito
A todo ángulo semiinscrito en una circunferencia le corresponde un ángulo central que tiene su vértice en el centro de la circunferencia y cuyos lados pasan por los extremos del arco.
 es el ángulo central que corresponde a

Propiedades del ángulo semiinscrito

1) Todo ángulo semiinscrito en un arco de circunferencia es igual a la mitad del ángulo central correspondiente.
Ejemplo
 ángulo semiinscrito
ángulo central correspondiente
2) El ángulo inscrito y el ángulo semiinscrito en un mismo arco de circunferencia son iguales.
Ejemplo
ángulo inscrito en
ángulo semiinscrito
y luego

3) Los ángulos semiinscritos en un mismo arco de circunferencia son iguales entre sí.Ejemploángulo semiinscrito en
ángulo semiinscrito en

Como ambos tienen el mismo ángulo central, son iguales, es decir: