Conceptos fundamentales de la cinemática: velocidad

En cinemática se definen diversos conceptos de velocidad.

Velocidad media e instantánea

La velocidad media de un móvil es la razón de su vector desplazamiento entre el intervalo de tiempo durante el cual se produce ese desplazamiento. Siendo el cociente de un vector por un escalar, la velocidad media es un vector cuya dirección y sentido son los mismos que los del vector desplazamiento. Si en el instante t0 el móvil está en el punto P0 y su vector de posición es r(t0), y en el instante t el móvil está en el punto P y su vector de posición es r(t), la velocidad media del móvil entre P0 y P será:

Un concepto distinto es el de celeridad o velocidad media sobre la trayectoria, que es una magnitud escalar que se define como el cociente entre la distancia recorrida y el tiempo empleado en recorrerla.

La velocidad instantánea es una magnitud vectorial que representa la velocidad que tiene el móvil en cierto instante o, lo que es lo mismo, en un punto determinado de su trayectoria. La velocidad instantánea debe representarse por un vector porque se trata de una magnitud que, además de ser cuantificable, tiene una orientación determinada. Veamos cómo se define.

Si en un instante t0 un móvil está en el punto P0 cuyo vector de posición es r(t0), una fracción de segundo más tarde, es decir, en el instante t0 + ∆t, estará en otro punto P cuyo vector de posición será r(t0 +  ∆t). La velocidad media del móvil durante el intervalo de tiempo ∆t sería entonces:

Si consideramos cada vez fracciones de segundo más pequeñas, es decir, ∆t más pequeños, el punto P se va acercando al punto P0, y la dirección del vector desplazamiento r(t0 + ∆t) – r(t0) se va acercando a la recta tangente a la trayectoria en el punto P0.

Ejemplo

Como el vector velocidad media,, tiene la misma dirección que el vector desplazamiento, también la dirección dese irá acercando a la recta tangente a la trayectoria en P0.

Además de acercarse en dirección a la tangente, el vector desplazamiento, r(t 0 +  ∆t) – r(t 0), a medida que vamos considerando ∆t más reducidos, es cada vez más corto, es decir, que su módulo es cada vez más pequeño.

En el límite, esto es, cuando ∆t sea cero y el punto P se confunda con el punto P0, el vector desplazamiento se anulará.

Con el vector no ocurre lo mismo, ya que este vector es el cociente entre el vector desplazamiento y el incremento de tiempo considerado, o sea, el cociente entre r(t0 + ∆t) – r(t0) y ∆t. Al irse acercando P a P0, es decir, al irse haciendo cada vez más pequeño ∆t, el numerador y el denominador de ese cociente se van haciendo los dos cada vez más pequeños, pero el valor del propio cociente puede aumentar o disminuir, dependiendo de si el numerador decrece de forma más rápida o más lenta que el denominador.

Tenemos por lo tanto que al ir disminuyendo ∆t, la línea de acción del vectorse va acercando a la recta tangente a la trayectoria en P 0, mientras que el módulo dese va acercando a un determinado valor. Así el vector tiende a convertirse en un vector V(t0) aplicado en P0 y situado sobre la tangente a la trayectoria en ese punto. Ese vector V(t0) es la velocidad instantánea del móvil en el punto P0 o, lo que es lo mismo, en el instante t 0.

No particularizando un valor de t, notaremos este vector como V(t) o simplemente V.

Ejemplo

El proceso que hemos seguido para definir la velocidad instantánea se denomina paso al límite. Diríamos así que la velocidad instantánea es el límite de la velocidad media cuando el incremento de tiempo tiende a cero (∆t → 0).

Cuando ∆t → 0, la celeridad o velocidad media sobre la trayectoria se va aproximando al módulo del vector velocidad media (la cuerda se aproxima al arco), con lo que la velocidad instantánea también puede definirse como un vector tangente a la trayectoria en el punto considerado cuyo módulo es el límite a que tiende la celeridad cuando  ∆t→ 0

Dimensiones y unidades de la velocidad

La velocidad tiene las dimensiones de una longitud dividida por un tiempo [L]·[T]-1. En el Sistema Internacional y en el técnico se expresa en metros por segundo (m/s), y en el CGS en centímetros por segundo (cm/s). En la práctica también se utilizan unidades basadas en múltiplos del metro y del segundo (km/h). Los marinos emplean una unidad propia: el nudo, que equivale a una milla marina por hora (1,85 km/hora).

Cálculo del ángulo a partir de sus razones trigonométricas

El problema inverso al de calcular las razones trigonométricas de un ángulo conocido, consiste en determinar el valor de dicho ángulo a partir de sus razones trigonométricas.

La resolución de este problema, que tradicionalmente se llevaba a cabo mediante el empleo de las tablas trigonométricas, se ve hoy facilitado por el hecho de que muchas de las modernas calculadoras electrónicas de bolsillo incorporan combinaciones de teclas que permiten obtener el valor del ángulo conocido el seno, el coseno o la tangente del mismo. La denominación tradicional con la que se hace referencia a la medida del ángulo correspondiente al valor de una determinada razón trigonométrica, que se supone conocida, utiliza el término “arco” en lugar de ángulo; es decir, que para cada una de las razones trigonométricas se habla, respectivamente, de arco seno (arc sen), arco coseno (arc cos), arco tangente (arc tg), arco cotangente (arc cotg), arco secante (arc sec) y arco cosecante (arc cosec).

Ejemplo:

a = senα

α = arc sen a

Es decir, si a es el valor numérico del seno de α, es el arco (o el ángulo) que corresponde al valor a del seno.

Observaciones

Arco seno. Como -1 senα 1, arc sen sólo está definido para valores comprendidos entre -1 y 1. Como senα = sen (180º – α), si a = senα , α = arc sen a, pero también 180º – α = arc sen a.
Arco coseno. El arco coseno sólo está definido para valores comprendidos entre -1 y 1. Como cosα = cos (-α) si a = cosα, se tiene α= arc cos a y -α = arc cos a.
Arco tangente. Como tgα = tg (180º + α), si a = tgα , α = arc tg a y 180º + α = arc tg a.

¿Cómo debe interpretarse el valor de la tangente de un ángulo recto?

La tangente de un ángulo resulta de dividir su seno entre su coseno. Si el ángulo mide 90º, la división anterior es 1/0=. Físicamente ninguna magnitud es igual a infinito, así que en cada caso deberá interpretarse el resultado de forma coherente. Por ejemplo, si la pendiente de una rampa fuera infinito debería entenderse que está dispuesta de forma vertical, de modo que todo movimiento sobre ella tiene una componente horizontal nula.

Inclinación

Si la pendiente de una recta es el ángulo que forma dicha recta con el plano horizontal, se define la inclinación como el ángulo entre ésta y el plano vertical de referencia. Si bien el plano horizontal es conocido, aquel que tiene todos sus puntos a la misma altura, los planos verticales pueden ser infinitos, ya que un plano es vertical cuando corta perpendicularmente al horizontal. Por eso es necesario referirse a uno determinado, que puede ser Norte-Sur, la dirección de una calle, etc.

Ángulos inscrito y semiinscrito en un arco de circunferencia

La circunferencia es un elemento sumamente importante dentro del estudio de la trigonometría. En ella se forman ciertos ángulos, por ejemplo, el inscrito, semiinscrito y el central.

Ángulo inscrito

Se llama ángulo inscrito en un arco de circunferencia al que tiene su vértice en un punto cualquiera de la circunferencia que contiene el arco y sus lados pasan por los extremos del arco.

Ejemplo

ángulo inscrito; el centro O de la circunferencia pertenece al lado del ángulo

que está inscrito en

y abarca

Ejemplo

ángulo inscrito; O es interior al ángulo

que está inscrito en el arco

que contiene al punto B, o sea

, y abarca

A todo ángulo inscrito le corresponde un ángulo central, cuyos lados son radios que pasan por los extremos del arco.

Ejemplo

 ángulo central correspondiente al ángulo inscrito

Ejemplo

 ángulo central correspondiente al ángulo inscrito

Propiedades del ángulo inscrito

1) Todo ángulo inscrito en un arco de circunferencia vale la mitad del ángulo central que le corresponde.

Ejemplo

 es un ángulo inscrito

es un ángulo central correspondiente

2) Todos los ángulos inscritos en una circunferencia que abarcan un mismo arco son iguales.
Ejemplo

 abarca el

abarca el

 abarca el

3) Los ángulos inscritos que abarcan una semicircunferencia son rectos.
Ejemplo

 es igual a 180° por ser llano

por ser ángulo inscrito que abarca el mismo arco.

Ángulo semiinscrito

Un ángulo semiinscrito en un arco de circunferencia es el que tiene su vértice en uno de los extremos del arco, uno de sus lados pasa por el otro extremo y el otro lado es tangente a la circunferencia, por el vértice.
Ejemplo
 ángulo semiinscrito
A todo ángulo semiinscrito en una circunferencia le corresponde un ángulo central que tiene su vértice en el centro de la circunferencia y cuyos lados pasan por los extremos del arco.
 es el ángulo central que corresponde a

Propiedades del ángulo semiinscrito

1) Todo ángulo semiinscrito en un arco de circunferencia es igual a la mitad del ángulo central correspondiente.
Ejemplo
 ángulo semiinscrito
ángulo central correspondiente
2) El ángulo inscrito y el ángulo semiinscrito en un mismo arco de circunferencia son iguales.
Ejemplo
ángulo inscrito en
ángulo semiinscrito
y luego

3) Los ángulos semiinscritos en un mismo arco de circunferencia son iguales entre sí.Ejemploángulo semiinscrito en
ángulo semiinscrito en

Como ambos tienen el mismo ángulo central, son iguales, es decir: