El problema inverso al de calcular las razones trigonométricas de un ángulo conocido, consiste en determinar el valor de dicho ángulo a partir de sus razones trigonométricas.
La resolución de este problema, que tradicionalmente se llevaba a cabo mediante el empleo de las tablas trigonométricas, se ve hoy facilitado por el hecho de que muchas de las modernas calculadoras electrónicas de bolsillo incorporan combinaciones de teclas que permiten obtener el valor del ángulo conocido el seno, el coseno o la tangente del mismo. La denominación tradicional con la que se hace referencia a la medida del ángulo correspondiente al valor de una determinada razón trigonométrica, que se supone conocida, utiliza el término “arco” en lugar de ángulo; es decir, que para cada una de las razones trigonométricas se habla, respectivamente, de arco seno (arc sen), arco coseno (arc cos), arco tangente (arc tg), arco cotangente (arc cotg), arco secante (arc sec) y arco cosecante (arc cosec).
Ejemplo:
a = senα
α = arc sen a
Es decir, si a es el valor numérico del seno de α, es el arco (o el ángulo) que corresponde al valor a del seno.
Observaciones
Arco seno. Como -1 senα 1, arc sen sólo está definido para valores comprendidos entre -1 y 1. Como senα = sen (180º – α), si a = senα , α = arc sen a, pero también 180º – α = arc sen a.
Arco coseno. El arco coseno sólo está definido para valores comprendidos entre -1 y 1. Como cosα = cos (-α) si a = cosα, se tiene α= arc cos a y -α = arc cos a.
Arco tangente. Como tgα = tg (180º + α), si a = tgα , α = arc tg a y 180º + α = arc tg a.
¿Cómo debe interpretarse el valor de la tangente de un ángulo recto?
La tangente de un ángulo resulta de dividir su seno entre su coseno. Si el ángulo mide 90º, la división anterior es 1/0=. Físicamente ninguna magnitud es igual a infinito, así que en cada caso deberá interpretarse el resultado de forma coherente. Por ejemplo, si la pendiente de una rampa fuera infinito debería entenderse que está dispuesta de forma vertical, de modo que todo movimiento sobre ella tiene una componente horizontal nula.
Inclinación
Si la pendiente de una recta es el ángulo que forma dicha recta con el plano horizontal, se define la inclinación como el ángulo entre ésta y el plano vertical de referencia. Si bien el plano horizontal es conocido, aquel que tiene todos sus puntos a la misma altura, los planos verticales pueden ser infinitos, ya que un plano es vertical cuando corta perpendicularmente al horizontal. Por eso es necesario referirse a uno determinado, que puede ser Norte-Sur, la dirección de una calle, etc.
Hallar el valor del medio de una proporción continua.
a /x = x /d
De acuerdo con la primera propiedad
En toda proporción continua el medio es igual a la raíz cuadrada del producto de los extremos.
Las matemáticas en la música
Los sonidos emitidos por los instrumentos de cuerda tales como violín, guitarra, piano, etc., resultan de la vibración de las cuerdas que dicho instrumento posee.
Ahora bien, la altura de la nota musical dada depende tanto de la longitud de la cuerda con que se emite, como de la tensión que esta última soporta.
El monocordio de Pitágoras
Ya Pitágoras había descubierto a través de la utilización de un monocordio, que: “Si una cuerda y su tensión permanecen inalteradas, pero se varía su longitud, el período de vibración es proporcional a su longitud”. Supongamos que un fabricante de pianos utilizara, siguiendo a Pitágoras, cuerdas de idéntica estructura pero de diferentes longitudes para lograr la gama de frecuencias de que goza dicho instrumento. En un piano, con notas de frecuencia comprendida entre 27 y 4.096, la cuerda de mayor longitud resultaría 150 veces más larga que la de menor longitud.
Las leyes de Mersenne
Obviamente, ello hubiera impedido la construcción del piano de nuestro ejemplo, de no mediar las dos leyes del matemático francés Mersenne. La primera dice que: “Para cuerdas distintas de la misma longitud e igual tensión, el período de vibración es proporcional a la raíz cuadrada del peso de la cuerda”. El mayor peso se consigue, generalmente, arrollándole en espiral un alambre más delgado. Así se evita la excesiva longitud de las cuerdas asignadas a los graves.
La segunda ley expresa: “Cuando una cuerda y su longitud permanecen inalteradas pero se varía la tensión, la frecuencia de la vibración es proporcional a la raíz cuadrada de la tensión”. Siguiendo esta ley se evita que las cuerdas resulten demasiado cortas en los agudos, aumentando su tensión. La incorporación de marcos de acero a los modernos pianos, ha posibilitado tensar los alambres hasta valores insospechados antiguamente y que rondan las 30 toneladas.
¿Hay proporciones geométricas en un piano?
Desde fines del siglo XVIII existe la escala temperada que divide la octava en 12 semitonos iguales de distancia. Los intervalos entre notas en dicha escala siguen una progresión geométrica de razón 12 2. Así están afinados, por ejemplo, todos los pianos modernos.
El cálculo matemático ha sido una de las disciplinas ante las cuales el hombre ha sentido la necesidad de abastecerse de tecnologías que facilitasen su resolución y, ya desde la antigüedad, instrumentos como el ábaco han ido restando complejidad al acto de “hacer cuentas”, elemento crucial en la conformación de las sociedades modernas. A partir del siglo XXI, un software que ha ayudado mucho al hombre y sus cálculos matemáticos es Microsoft Excel, del cual hablaremos en este artículo.
Hojas de cálculo
Las hojas de cálculo, al permitir una serie de relaciones lógicas entre cifras según las cuales la disminución o aumento de un valor provoca la variación automática de otros valores a él subordinados, es el paso decisivo en favor de la simplificación de la matemática contable. A través de un lenguaje simple que permite la fácil introducción de fórmulas y funciones, programas como Microsoft Excel convierten la tarea de llevar al día la contabilidad de un negocio o bien el recuento de un stock en un verdadero juego de niños.
La interfaz de Excel
Una hoja de cálculo de Microsoft Excel está formada por una o más cuadrículas de extensión agrupadas en un libro, de modo que puedan englobarse distintas tablas referentes a un mismo asunto en un solo archivo.
Cada hoja de nuestro libro es accesible a través de las pestañas situadas en la parte inferior izquierda de la pantalla, justo encima de la barra de estado. Podemos nombrar las distintas hojas o bien añadir hojas nuevas mediante la pulsación del botón derecho del ratón sobre una de las pestañas existentes, que despliega un sencillo menú contextual.
Determinada la estructura de hojas de nuestro libro, podemos proceder al rellenado de la cuadrícula de cada una de las mismas. Pulsando sobre una casilla cualquiera podemos teclear un valor numérico o bien una cadena de texto. A continuación, y al igual que ocurría con Word, con la barra de formato podemos moldear esta información.
Introducción de funciones en una hoja de cálculo
La verdadera utilidad de una hoja de cálculo no radica en la posibilidad de plasmar en formato tabla una serie de datos y cifras, sino en la capacidad del programa de hacer cálculos que relacionen estas cifras y de que estas fórmulas se muestren sensibles a la modificación de los valores de los que parten. Esto se consigue gracias a la introducción de funciones, accesible a través de la opción “Función…” del menú Insertar o bien por medio del icono de función de la barra estándar. Estos parámetros dan paso a un cuadro de diálogo en el que se pide al usuario que escoja qué tipo de cálculo desea realizar entre un extenso inventario de operaciones matemáticas. Una vez decidido, un segundo cuadro nos permite introducir que tipo de intervalo de celdas van a estar envueltas en la operación matemática, dándonos también la posibilidad de marcar por medio del ratón de qué celdas de la cuadrícula se trata.
Las fórmulas pueden introducirse asimismo de forma manual en los campos en los que deben figurar sus resultados, tecleando en los mismos la fórmula a realizar precedida por el símbolo igual (por ejemplo, para sumar los valores de las celdas A4 y A5 y que el resultado figure en la celda A6, deberíamos teclear en esta última celda = A4 + A5).
Las bases de datos
A lo largo de nuestra vida, por motivos diferentes y casi sin darnos cuenta trabajamos con montones de bases de datos, desde colecciones de discos o listines telefónicos a inventarios de calificaciones académicas o listas de elementos relacionadas con casi cualquier ámbito laboral; es común la necesidad de tener ordenados, según distintos criterios, e interconectados entre sí una serie de datos. Los programas de gestión de bases de datos, con Microsoft Access como claro estándar, permiten precisamente la correcta gestión de los datos de esta naturaleza.
Estructura de una base de datos
La fuente principal a partir de la cual se vertebra una base de datos, como se extrae de lo que acabamos de decir, es una o varias relaciones entre elementos, o lo que es lo mismo, uno o varios listados que vinculen dos o más datos.
Una tabla en la que se encuentren los nombres de nuestros amigos, la dirección y el teléfono de cada uno de ellos constituye el esqueleto de una base de datos, por ejemplo.
Por todo ello, el requisito principal para la constitución de una base de datos, y por tanto su elemento indispensable, es la tabla.
Una vez introducidas en el programa una o más tablas (de forma manual o bien importando una tabla desde otro programa de la suite de Office), podemos modificar los criterios de ordenación de sus campos y la cantidad de los mismos que deseamos que aparezcan en pantalla creando una consulta. Esta función es también útil para conectar entre sí dos o más tablas con algún dato en común.
Establecidas estas relaciones y determinados los órdenes por los que se regirá la información, podemos conseguir vistosas presentaciones para impresora, o bien crear páginas intuitivas para la introducción de nuevos registros o modificación de los registros existentes por medio de los denominados formularios.
Estas cuatro categorías, junto con las macros y los módulos (que sirven, respectivamente, para englobar una serie de procedimientos avanzados en una única acción y para la incorporación a la base de instrucciones en lenguaje Visual Basic) constituyen los medios que permitirán obtener el mayor rendimiento de una base de datos.