CAPÍTULO 1 / TEMA 4

SERIES

Contamos desde hace miles de años y lo hacemos por diferentes razones, por ejemplo, para saber cuántos juguetes tenemos, cuánto tiempo falta para una película o cuántos deberes nos faltan por hacer. Las series numéricas son una forma de conteo y están creadas por varios números ordenados que siguen un patrón. Sin duda alguna, el conteo está presente en nuestro día a día.

conteo

Contar significa enumerar distintos elementos de manera ordenada y en orden creciente o decreciente.

El uso de los números y aprender a contar ha sido algo tan importante como lo fue aprender a cazar en la Antigüedad. Desde pequeños aprendemos cuáles son los números y cómo ordenarlos, lo que nos permite saber la cantidad de objetos que tenemos a nuestro alrededor. Para contar más rápido solemos contar de tanto en tanto, por ejemplo, de 2 en 2; de 5 en 5, etc.

– Ejemplo:

  • Cuando contamos las estrellas, contamos de manera creciente, es decir, de menor a mayor:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … 

  • Cuando contamos los segundos que faltan para que sea año nuevo, contamos de manera decreciente, es decir, de mayor a menor:

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.

 

También podemos contar de 3 en 3, de 4 en 4, de 5 en 5, etc.

  • Cuando contamos de 3 en 3 solo sumamos 3 a un número, luego volvemos a sumar 3 al siguiente, y así sucesivamente. Por ejemplo:

En cada recuadro hay 3 mariposas, entonces hay 3 grupos de 3 mariposas. Otra forma de verlo es que hay un recuadro dentro de otro y la cantidad total de mariposas la podemos contar así: 3, 6 y 9 mariposas. El conteo va de 3 en 3.

¿Sabías qué?
Los diez dígitos de nuestro sistema de numeración decimal fueron inventados en la India.

series numéricas y sus tipos

Las series numéricas son un conjunto de números ordenados que siguen un patrón o regla determinada. Pueden ser ascendentes y descendentes.

Series ascendentes

Son las que se forman por sumas sucesivas y que van de menor a mayor. Por ejemplo, si al número 1 le sumamos 1 obtenemos 2 (1 + 1 = 2), luego a ese resultado le sumamos 1 y resulta en 3 (2 + 1 = 3). Seguimos el mismo proceso en cada resultado.

Series descendentes

Son las que se forman por restas sucesivas y van de mayor a menor. Por ejemplo, en esta serie cada número es tres unidades menor que el siguiente.

 

Miles de años de conteo

Desde hace miles de años los humanos contamos números. Las culturas primitivas utilizaban el conteo para registrar el número de personas en una comunidad o grupo; para contar animales o presas cazadas; para saber la cantidad de propiedades que poseían o las deudas contraídas. Con el paso del tiempo se desarrollaron sistemas numéricos de escritura y el uso de símbolos matemáticos.

¿cómo identificar el patrón numérico?

El patrón numérico es la regla que sigue toda la serie. En la siguiente serie el patrón es “sumar 5”, por que cada número es 5 unidades mayor al siguiente.

5, 10, 15, 20, 25, 30

Para identificar el patrón numérico de una serie restamos cada par de números consecutivos, si cada operación da como resultado el mismo número el patrón será la suma o resta de ese número. Por lo tanto:

  • Si la serie es ascendente, el patrón es sumar el resultado obtenido.
  • Si la serie es descendente, el patrón es restar el resultado obtenido.

A modo de ejemplo observemos la siguiente serie:

3,  7,  11,  15,  ___,  23

Restamos los primeros pares consecutivo:

7 − 3 = 4

11 − 7 = 4

Como los resultados son iguales y la serie es ascendente el patrón es “sumar 4”. Ahora podemos completar la serie. Como 15 + 4 = 19, colocamos el 19 en el espacio en blanco:

3,  7,  11,  15,  19,  23

¡Es tu turno!

Identifica el patrón de estas series.

  • 8, 14, 20, 26, 32, 38, 44
Solución
Patrón: + 6
  • 22, 20, 18, 16, 14, 12, 10
Solución
Patrón: − 2
  • 39, 30, 21, 12, 3
Solución
Patrón: − 9

patrones numéricos en tablas de 100

Podemos ver patrones numéricos en las tablas que van del 1 al 100. Observa esta tabla:

Puedes ver en la tabla que los números marcados en azul van de 9 en 9. Si comienzas en el 9 la serie tiene una patrón + 9, pero si comienzas en el 81, la serie tiene una patrón − 9.

¡A practicar!

1. Observa la imagen y luego responde:

  • ¿Cuántos grupos de caracoles hay? 
    Solución
    Hay 5 grupos de caracoles.
  • ¿Cuántos caracoles hay en total? 
    Solución
    Hay 20 caracoles en total.
  • ¿De cuánto en cuánto se agruparon los caracoles? 
    Solución
    Los caracoles se agruparon de 4 en 4.

 

2. Escribe de cuánto en cuánto van las siguientes series:

  • 586, 686, 786, 886, 986
    Solución
    La serie va de 100 en 100.
  • 3.443, 3.453, 3.463, 3.473, 3.483
    Solución
    La serie va de 10 en 10.
  • 675, 680, 685, 690, 695
    Solución
    La serie va de 5 en 5.
  • 7.702, 7.722, 7.742, 7.762, 7.782
    Solución
    La serie va de 20 en 20.

 

3. Completa la siguiente serie y escribe el patrón numérico:

  • 101, 104, 107, 110, ___, ___, ___, ___.
Solución

101, 104, 107, 110, 113, 116, 119, 122.

Patrón: + 3

  • 1.500, 2.500, 3.500, ___, ___, ___.
Solución

1.500, 2.500, 3.500, 4.500, 5.500, 6.500.

Patrón: + 1.000

  • 3.650, 3.640, 3.630, ___, ___, ___, ___.
Solución

3.650, 3.640, 3.630, 3.620, 3.610, 3.600, 3.590.

Patrón: − 10

 

4. Observa la tabla del 1 al 100 y luego resuelve los siguientes puntos:

  • Colorea en rojo una fila, columna o diagonal en la que los números vayan de 1 en 1.
  • Colorea en morado una fila, columna o diagonal en la que los números vayan de 11 en 11.
  • Colorea en verde una fila, columna o diagonal en la que los números vayan de 10 en 10.

Solución
Hay otras posibilidades, ¡descúbrelas!
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

Con este artículo podrás complementar la información relacionada a las series y las sucesiones.

VER