CAPÍTULO 7 / TEMA 1

SUCESIONES

Las sucesiones son series de números con un orden establecido llamado patrón. Algunas tienen un patrón en el que se suman o restan cantidades constantes, mientras que en otras el patrón se forma por medio de la multiplicación o división de cantidades constantes. Hoy aprenderemos cómo se llaman estos tipos de sucesiones y cómo calcular sus términos generales.

Las sucesiones forman parte de nuestra vida cotidiana. Incluso desde muy temprana edad ya están presentes de manera implícita en actividades que van desde aprender a contar hasta el cálculo de intereses compuestos de créditos bancarios. Las sucesiones se aplican cuando aprendemos a multiplicar o en programación para el diseño de videojuegos, por ejemplo.

¿QUÉ ES UNA SUCESIÓN?

Una sucesión es una secuencia ordenada de números o elementos que obedecen a un patrón o regla de formación particular. Por ejemplo, veamos la siguiente sucesión:

2, 4, 6, 8, 10, 12, 14, 16, 18, 20 …

En este caso, la sucesión está formada por números ordenados que reconocemos como cifras pares. Los puntos suspensivos al final nos indican que la sucesión es infinita.

Nota que cada número es 2 unidades superior al anterior, por lo tanto, el patrón de la sucesión consta de sumar 2.

¿Sabías qué?
Los elementos de una sucesión se llaman “terminos”.

Si denominamos a1 al primer término de la sucesión, a2 al segundo término, a3 al tercer término, y así sucesivamente, podemos determinar la regla de sucesión que sigue hasta el enésimo valor que llamaremos an. Los subíndices indican el lugar que ocupa cada elemento en la sucesión.

Observa que:

a1 = 2

a2 = 4

a3 = 6

a4 = 8

an = 2n

A partir de este análisis podemos obtener el término general de la sucesión:

an = 2n

Donde n es cualquier número entero. Por ejemplo, si n = 5, el quinto término de la sucesión es:

a5 = 2 × 5 = 10

Los término a20 y a25 de esta misma sucesión son los siguientes:

  • a20 = 2 × 20 = 40
  • a25 = 2 × 25 = 50

¿Qué es el término general de la sucesión?

Es el término que ocupa el enésimo lugar en la sucesión. Se escribe con la letra que denota la sucesión y el subíndice n. Por ejemplo, an.

Leonardo Pisa dio a conocer el uso de las sucesiones de Fibonacci en la solución de problemas (aunque ya se las usaban muchos años atrás). La espiral de Fibonacci, se construye trazando arcos circulares entre dos diagonales de cuadrados adosados, cuyos lados equivalen a los términos de la sucesión de Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21,…

VER INFOGRAFÍA

TIPOS DE SUCESIONES

Existen varias maneras de clasificar las sucesiones, por ejemplo, podemos decir que las sucesiones pueden ser finitas, o infinitas. Sin embargo, también podemos clasificarlas de acuerdo a la diferencia o a la razón entre sus términos. En estos casos hablamos de sucesiones aritméticas y geométricas.

Sucesiones aritméticas

Son aquellas en las que cada término, con excepción del primero, tiene una diferencia con el término anterior en una cantidad constante. Por ejemplo:

20.000, 22.000, 24.000, 26.000, ..

Esta es una sucesión aritmética porque la diferencia entre un término y el siguiente es la misma en cada caso, es decir, la diferencia es constante.

A esta diferencia, denominada diferencia común y representada como d, la podemos obtener por medio de una resta entre cualquier término y su término anterior. Para la sucesión antes señalada la diferencia común d es:

d = 22.000 − 20.000 = 2.000

d = 24.000 − 22.000 = 2.000

d = 26.000 − 24.000 = 2.000

Observa que sin importar el término que elijas la diferencia siempre será la misma.


– Otro ejemplo:

Para la siguiente sucesión:

5, 1, −3, −7, −11, −15, …

La diferencia común d = −4 porque:

d = 1 − 5 = −4

d = −3 − 1 = −4

d = −15 − (−11) = −4

¡Es tu turno!

Observa estas sucesiones aritméticas, ¿cuál es la diferencia común d?

  • −15, −12, −9, −6, −3, 0, 3, …
    Solución
    d = 3
  • 230, 345, 460, 575, 690, 805, …
    Solución
    d = 115

Término enésimo de una sucesión aritmética

El término enésimo de una sucesión aritmética con un primer término a1 y una diferencia común d es el siguiente:

an = a1 + d(n − 1)

– Ejemplo:

Para la siguiente sucesión:

−3, −1, 1, 3, 5, … 

La diferencia común d = 2 porque:

d = −1 − (−3)

d = 2

Por lo tanto, si a1 = −3 y d = 2, el término enésimo de la sucesión es:

an = a1 + d(n −1)

an−3 + 2(n − 1)

an = −3 + (2n − 2)

an = −3 + 2n − 2

an = 2n − 5

Entonces, si queremo determinar a10, a12 y a15 solo aplicamos:

  • a10 = 2n − 5 = 2 (10) − 5 = 20 − 5

a10 =15

 

  • a12 = 2n − 5 = 2 (12) − 5 = 24 − 5

a12 = 19

 

  • a15 = 2n − 5 = 2 (15) − 5 = 30 − 5

a15 = 25

Podemos considerar los ahorros como una sucesión aritmética. Por ejemplo, si tenemos $ 10 ahorrados y cada mes le sumamos $ 2, los primeros cuatro meses podríamos representarlos como: 10, 12, 14, 16, … Entonces, si a1 = 10 y la diferencia común d = 2, el término enésimo de esta sucesión sería: an = 8 + 2n. Calcula cuánto podemos ahorrar de esta manera en 6 meses.

Sucesiones geométricas

Son aquellas en las que cada término (excepto el primero) es múltiplo del término anterior de la sucesión. El cociente entre cualquier término y su precedente es constante. Por ejemplo:

20.000, 30.000, 45.000, 67.500, 101.250, …

Esta es una sucesión geométrica porque el cociente de la división entre cualquier término y su anterior es el mismo en cada caso.

Este cociente es igual al múltiplo común entre términos y se llama razón común (r). Se obtiene al dividir un término con el que le precede. Para esta sucesión la razón común se determina así:

r = 30.000 ÷ 20.000 = 1,5

r = 45.000 ÷ 30.000 = 1,5

r = 101.250 ÷ 67.500 = 1,5

Observa que sin importar el término que elijas la razón común es la misma: 1,5.


– Otro ejemplo:

Para la siguiente sucesión:

3, 12, 48, 192, 768, 3.072, …

La razón común es 4 porque:

r = 12 ÷ 3 = 4

r = 48 ÷ 12 = 4

r = 768 ÷ 192 = 4

¡Es tu turno!

Observa estas sucesiones geométricas, ¿cuál es la razón común?

  • 5, 10, 20, 40, 80, 160, 320, …
    Solución
    r = 2
  • −18, 54, −162, 486, −1.458, …
    Solución
    r = −3

Término enésimo de una sucesión geométrica

El término enésimo de una sucesión geométrica con un primer término a1 y una razón común r es el siguiente:

an = a1(rn − 1)

– Ejemplo:

Para la siguiente sucesión:

3, −6, 12, −24, 48, −96, …

La razón común r = −2 porque:

r = −6 ÷ 3 = −2

r = −24 ÷ 12 = −2

r = −96 ÷ 48 = −2

Por lo tanto, si a1 = 3 y r = −2, el término enésimo de la sucesión es:

an = a1(rn − 1)

an = 3(2n − 1)

Entonces, si queremos determinar a8, a10 y a12 solo aplicamos:

  • a8 = 3(−2n − 1) = 3(−28 − 1) = 3(−27) = 3(−128)

a8= −384

 

  • a10 = 3(−2n − 1) = 3(−210 − 1) = 3(−29) = 3(−512)

a10 = −1.536

 

  • a12 = 3(−2n − 1) = 3(−212 − 1) = 3(−211) = 3(−2.048)

a12 = −6.144

La división celular es un ejemplo de sucesión geométrica, ya que si por ejemplo, partimos de una célula (a1 = 1), durante el proceso de meiosis esta se divide y obtenemos dos células nuevas (a2 = 2). Luego, estas dos células a su vez se dividen y se tienen 4 células más (a3 = 4). La razón de progresión r = 2 y an = 2n − 1.

Resolvamos unos problemas

1. Marcos comenzó un trabajo y su pago inicial fue de $ 15.000. Se le prometió un aumento de $ 1.500 después de cada año. ¿Cuál será su salario en el séptimo año de trabajo? ¿y en el décimo año?

  • Datos

Salario inicial = a1 = $ 15.000

Aumento anual = d = $ 1.500

  • Reflexiona

Su salario después de los primeros años es: 15.000, 16.500, 18.000, 19.500 … Ya que se suma una cantidad constante, esta es una sucesión aritmética. El término general enésimo de una sucesión aritmética es an = a1 + d(n − 1). Donde a1 = 15.000. Tenemos que calcular la diferencia común, luego el término enésimo y finalmente a7 y a10.

  • Calcula

– Diferencia común, d

d = 16.500 − 15.000 = 1.500

 

– Término enésimo

an = a1 + d(n − 1)

an = 15.000 + 1.500(n − 1)

an = 15.000 + 1.500n − 1.500

an = 13.500 + 1.500n

 

– Términos a7 y a10

a7 = 13.500 + 1.500(7)

a7 = 13.500 + 10.500

a7 = 24.000

 

a10 = 13.500 + 1.500(10)

a10 = 13.500 + 15.000

a10 = 28.500

  • Responde

En su séptimo año Marcos tendrá un salario de $ 24.000.

En su décimo año Marcos tendrá un salario de $ 28.500.


2. Un auditorio tiene 15 asientos en la primera fila. Cada fila sucesiva tiene tres asientos más que el anterior. ¿Cuántos asientos hay en las primeras diez filas?

  • Datos

Asientos en la primera fila = a1 = 15

Diferencia con las demás filas = d = 3 asientos

  • Reflexiona

Como cada fila tiene 3 asientos más que la anterior se trata de una sucesión aritmética. Primero calculamos el término enésimo y luego determinamos los primeros diez términos.

  • Calcula

– Término enésimo

an = a1 + d(n − 1)

an = 15 + 3(n − 1)

an = 15 + 3n − 3

an = 12 + 3n

 

– Primeros diez términos

a1 = 12 + 3(1) = 12 + 3 = 15

a2 = 12 + 3(2) = 12 + 6 = 18

a3 = 12 + 3(3) = 12 + 9 = 21

a4 = 12 + 3(4) = 12 + 12 = 24

a5 = 12 + 3(5) = 12 + 15 = 27

a6 = 12 + 3(6) = 12 + 18 = 30

a7 = 12 + 3(7) = 12 + 21 = 33

a8 = 12 + 3(8) = 12 + 24 = 36

a9 = 12 + 3(9) = 12 + 27 = 39

a10 = 12 + 3(10) = 12 + 30 = 32

  • Responde

La cantidad de asientos en cada fila sigue este orden: 15, 18, 21, 24, 27, 30, 33, 36, 39, 32.


3. José tiene una alcancía. Si el día 1 sacó $ 1, el día 2 sacó $ 2, el día 3 sacó $ 4, el día 4 sacó $ 8, y así sucesivamente, ¿cuánto dinero sacó después de 30 días?

  • Datos

Dinero sacado el día 1 = a1 = $ 1

Dinero sacado el día 2 = a2 = $ 2

Dinero sacado el día 3 = a3 = $ 4

Dinero sacado el día 4 = a4 = $ 8

  • Reflexiona

Como la cantidad de dinero sacado se multiplica cada día, se trata de una sucesión geométrica. Por lo tanto, a partir de la fórmula general del término enésimo (an = a1(rn − 1)) podremos saber el dinero sacado a los 30 días. Nota que a1 = 1 y r = 2.

  • Calcula

an = a1(rn − 1)

a30 = 1(230 − 1)

a30 = 1(229)

a30 = 536.870.912

  • Responde

José sacó $ 536.870.912.

Las sucesiones también pueden clasificarse como progresivas o ascendentes; o regresivas o descendentes. Las primeras son aquellas que van de menor a mayor, mientras que las segundas son las que van de mayor a menor. Un ejemplo de estas sucesiones podemos verlo en el orden en el que enumeran los asientos de un estadio.

¡A practicar!

Observa las siguientes sucesiones.

  1. Indica si la sucesión es aritmética o geométrica.
  2. Encuentra el término enésimo.
  3. Determina a12 en cada caso.
  • 20, 19,3, 18,6, 17,9, …
Solución

a.

Es una sucesión aritmética.

 

b.

Si d = −0,7 y a1 = 20 el término enésimo es:

an = a1 + d(n − 1)

an = 20 + 0,7(n − 1)

an = 20 + (0,7n − 0,7)

an = 20 − 0,7n + 0,7

an = 20,7 − 0,7n

 

c.

a12 = 20,7 − 0,7 (12) = 20,7 − 8,4

a12 = 12,3

  • 4, 2, 1, 0,5, 0,25, …
Solución

a.

Es una sucesión geométrica.

 

b.

Si a1 = 4 y r = 0,5 el término enésimo es:

an = a1(rn − 1)

an = 4(0,5n − 1)

 

c.

a12 = 4(0,512 − 1) = 4 (0,513)

a12 = 4,8 × 10−5

  • 13, 23, 33, 43, 53, 63, …
Solución

a.

Es una sucesión aritmética.

 

b.

Si a1 = 13 y d = 10 el término enésimo es:

an = a1 + d(n − 1)

an = 13 + 10(n − 1)

an = 13 + 10n − 10

an = 3 + 10n

 

c.

a12 = 3 + 10(12) = 3 + 120

a12 = 123

RECURSOS PARA DOCENTES

Artículo “Sucesiones”

En el siguiente artículo encontrarás ejemplos relacionados con sucesiones aritméticas. Adicionalmente, el artículo describe algunos tipos de sucesiones.

VER

CAPÍTULO 1 / TEMA 6 (REVISIÓN)

SISTEMAS NUMÉRICOS ¿QUÉ APRENDIMOS?

¿QUÉ SON LOS NÚMEROS?

LOS NÚMEROS SON EXPRESIONES GRÁFICAS DE UNA CANTIDAD. GRACIAS A ELLOS CONTAMOS JUGUETES, HORAS O EDADES. A LO LARGO DE LA HISTORIA LOS SERES HUMANOS HAN UTILIZADO DIFERENTES RECURSOS COMO PALOS Y PIEDRAS PARA CONTAR, HASTA LLEGAR A UTILIZAR LOS SÍMBOLOS DE LOS NÚMEROS TAL COMO LOS CONOCEMOS HOY: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9.

LOS NÚMEROS SON NECESARIOS PARA EL HOMBRE PORQUE NOS PERMITEN LLEVAR A CABO UNA TAREA DIARIA: CONTAR.

TIPOS DE NÚMEROS

POR LO GENERAL UTILIZAMOS DOS TIPOS DE NÚMEROS: LOS CARDINALES, QUE NOS SIRVEN PARA INDICAR UNA CANTIDAD DE ELEMENTOS, Y LOS ORDINALES, QUE USAMOS PARA EXPRESAR EL ORDEN O LA POSICIÓN DE UN ELEMENTO DENTRO DE UN GRUPO. LOS NÚMEROS ROMANOS FUERON INVENTADOS MUCHO ANTES DE LOS NÚMEROS QUE USAMOS HOY DÍA, SIN EMBARGO, SU USO HA PERDURADO EN LA HISTORIA Y ES POSIBLE VERLOS EN LOS NOMBRES DE PAPAS, LA NUMERACIÓN DE LAS OLIMPÍADAS DEPORTIVAS O ALGUNOS RELOJES ANTIGUOS.

LOS NÚMEROS ROMANOS SE REPRESENTAN CON SÍMBOLOS PARECIDOS A ALGUNAS DE NUESTRAS LETRAS MAYÚSCULAS.

SERIES Y RELACIONES

UNA SERIE ES UNA SUCESIÓN DE NÚMEROS QUE SIGUEN UN PATRÓN O REGLA. ESTAS SERIES PUEDEN SER DE OBJETOS, FIGURAS O NÚMEROS Y PUEDEN SER ASCENDENTES O DESCENDENTES. LAS SERIES ASCENDENTES SON LAS QUE VAN DE MENOR A MAYOR, POR EJEMPLO, CUANDO CONTAMOS LA CANTIDAD DE LÁPICES QUE TENEMOS: 1, 2, 3, …POR OTRO LADO, LAS SERIES DESCENDENTES SON LAS QUE VAN DE MAYOR A MENOR, COMO CUANDO CONTAMOS LOS SEGUNDOS PARA EL AÑOS NUEVO: 5, 4, 3, 2, 1.

CUANDO CONTAMOS DE 1 EN 1 CREAMOS UNA SERIE NUMÉRICA ASCENDENTE PORQUE CADA NÚMERO TIENE UNA UNIDAD MÁS QUE EL ANTERIOR.

NÚMEROS NATURALES

LOS NÚMEROS NATURALES SON AQUELLOS QUE NOS PERMITEN CONTAR LOS ELEMENTOS DE UN CONJUNTO. CUANDO TIENEN MÁS DE UN DÍGITO, EL VALOR DE CADA UNO DEPENDE DE LA UBICACIÓN DENTRO DEL NÚMERO: SEGÚN SU POSICIÓN PODRÁ OCUPAR EL LUGAR DE LAS UNIDADES, LAS DECENAS O LAS CENTENAS. LOS NÚMEROS NATURALES SE PUEDEN EXPRESAR SIEMPRE COMO EL RESULTADO DE UNA SUMA POR MEDIO DE SU DESCOMPOSICIÓN ADITIVA.

LOS NÚMEROS NATURALES FUERON LOS PRIMEROS NÚMEROS QUE USÓ EL HOMBRE PARA CONTAR.

CONJUNTOS

UN CONJUNTO ES UNA COLECCIÓN DE OBJETOS A LOS QUE LLAMAMOS ELEMENTOS. PARA PODER SER ELEMENTOS DE UN MISMO CONJUNTO, TODOS DEBEN TENER ALGUNA CARACTERÍSTICA EN COMÚN QUE NOS PERMITA AGRUPARLOS, POR EJEMPLO, EL CONJUNTO DE LAS FIGURAS GEOMÉTRICAS ESTARÍA CONFORMADO POR CÍRCULOS, TRIÁNGULOS, CUADRADOS Y RECTÁNGULOS. SI UN ELEMENTO POSEE ESA CARACTERÍSTICA COMÚN CON LOS OTROS OBJETOS SE DICE QUE PERTENECE AL CONJUNTO, SI NO POSEE ESA CARACTERÍSTICA EN COMÚN SE DICE QUE NO PERTENECE AL CONJUNTO.

AUNQUE EN LA IMAGEN VEMOS ELEMENTOS DISTINTOS, COMO ANIMALES, ALIMENTOS Y FIGURAS, TODOS TIENEN ALGO EN COMÚN: SON DE COLOR VERDE, POR LO TANTO, FORMAN UN CONJUNTO.

CAPÍTULO 1 / TEMA 4

SERIES

Contamos desde hace miles de años y lo hacemos por diferentes razones, por ejemplo, para saber cuántos juguetes tenemos, cuánto tiempo falta para una película o cuántos deberes nos faltan por hacer. Las series numéricas son una forma de conteo y están creadas por varios números ordenados que siguen un patrón. Sin duda alguna, el conteo está presente en nuestro día a día.

conteo

Contar significa enumerar distintos elementos de manera ordenada y en orden creciente o decreciente.

El uso de los números y aprender a contar ha sido algo tan importante como lo fue aprender a cazar en la Antigüedad. Desde pequeños aprendemos cuáles son los números y cómo ordenarlos, lo que nos permite saber la cantidad de objetos que tenemos a nuestro alrededor. Para contar más rápido solemos contar de tanto en tanto, por ejemplo, de 2 en 2; de 5 en 5, etc.

– Ejemplo:

  • Cuando contamos las estrellas, contamos de manera creciente, es decir, de menor a mayor:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … 

  • Cuando contamos los segundos que faltan para que sea año nuevo, contamos de manera decreciente, es decir, de mayor a menor:

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.

 

También podemos contar de 3 en 3, de 4 en 4, de 5 en 5, etc.

  • Cuando contamos de 3 en 3 solo sumamos 3 a un número, luego volvemos a sumar 3 al siguiente, y así sucesivamente. Por ejemplo:

En cada recuadro hay 3 mariposas, entonces hay 3 grupos de 3 mariposas. Otra forma de verlo es que hay un recuadro dentro de otro y la cantidad total de mariposas la podemos contar así: 3, 6 y 9 mariposas. El conteo va de 3 en 3.

¿Sabías qué?
Los diez dígitos de nuestro sistema de numeración decimal fueron inventados en la India.

series numéricas y sus tipos

Las series numéricas son un conjunto de números ordenados que siguen un patrón o regla determinada. Pueden ser ascendentes y descendentes.

Series ascendentes

Son las que se forman por sumas sucesivas y que van de menor a mayor. Por ejemplo, si al número 1 le sumamos 1 obtenemos 2 (1 + 1 = 2), luego a ese resultado le sumamos 1 y resulta en 3 (2 + 1 = 3). Seguimos el mismo proceso en cada resultado.

Series descendentes

Son las que se forman por restas sucesivas y van de mayor a menor. Por ejemplo, en esta serie cada número es tres unidades menor que el siguiente.

 

Miles de años de conteo

Desde hace miles de años los humanos contamos números. Las culturas primitivas utilizaban el conteo para registrar el número de personas en una comunidad o grupo; para contar animales o presas cazadas; para saber la cantidad de propiedades que poseían o las deudas contraídas. Con el paso del tiempo se desarrollaron sistemas numéricos de escritura y el uso de símbolos matemáticos.

¿cómo identificar el patrón numérico?

El patrón numérico es la regla que sigue toda la serie. En la siguiente serie el patrón es “sumar 5”, por que cada número es 5 unidades mayor al siguiente.

5, 10, 15, 20, 25, 30

Para identificar el patrón numérico de una serie restamos cada par de números consecutivos, si cada operación da como resultado el mismo número el patrón será la suma o resta de ese número. Por lo tanto:

  • Si la serie es ascendente, el patrón es sumar el resultado obtenido.
  • Si la serie es descendente, el patrón es restar el resultado obtenido.

A modo de ejemplo observemos la siguiente serie:

3,  7,  11,  15,  ___,  23

Restamos los primeros pares consecutivo:

7 − 3 = 4

11 − 7 = 4

Como los resultados son iguales y la serie es ascendente el patrón es “sumar 4”. Ahora podemos completar la serie. Como 15 + 4 = 19, colocamos el 19 en el espacio en blanco:

3,  7,  11,  15,  19,  23

¡Es tu turno!

Identifica el patrón de estas series.

  • 8, 14, 20, 26, 32, 38, 44
Solución
Patrón: + 6
  • 22, 20, 18, 16, 14, 12, 10
Solución
Patrón: − 2
  • 39, 30, 21, 12, 3
Solución
Patrón: − 9

patrones numéricos en tablas de 100

Podemos ver patrones numéricos en las tablas que van del 1 al 100. Observa esta tabla:

Puedes ver en la tabla que los números marcados en azul van de 9 en 9. Si comienzas en el 9 la serie tiene una patrón + 9, pero si comienzas en el 81, la serie tiene una patrón − 9.

¡A practicar!

1. Observa la imagen y luego responde:

  • ¿Cuántos grupos de caracoles hay? 
    Solución
    Hay 5 grupos de caracoles.
  • ¿Cuántos caracoles hay en total? 
    Solución
    Hay 20 caracoles en total.
  • ¿De cuánto en cuánto se agruparon los caracoles? 
    Solución
    Los caracoles se agruparon de 4 en 4.

 

2. Escribe de cuánto en cuánto van las siguientes series:

  • 586, 686, 786, 886, 986
    Solución
    La serie va de 100 en 100.
  • 3.443, 3.453, 3.463, 3.473, 3.483
    Solución
    La serie va de 10 en 10.
  • 675, 680, 685, 690, 695
    Solución
    La serie va de 5 en 5.
  • 7.702, 7.722, 7.742, 7.762, 7.782
    Solución
    La serie va de 20 en 20.

 

3. Completa la siguiente serie y escribe el patrón numérico:

  • 101, 104, 107, 110, ___, ___, ___, ___.
Solución

101, 104, 107, 110, 113, 116, 119, 122.

Patrón: + 3

  • 1.500, 2.500, 3.500, ___, ___, ___.
Solución

1.500, 2.500, 3.500, 4.500, 5.500, 6.500.

Patrón: + 1.000

  • 3.650, 3.640, 3.630, ___, ___, ___, ___.
Solución

3.650, 3.640, 3.630, 3.620, 3.610, 3.600, 3.590.

Patrón: − 10

 

4. Observa la tabla del 1 al 100 y luego resuelve los siguientes puntos:

  • Colorea en rojo una fila, columna o diagonal en la que los números vayan de 1 en 1.
  • Colorea en morado una fila, columna o diagonal en la que los números vayan de 11 en 11.
  • Colorea en verde una fila, columna o diagonal en la que los números vayan de 10 en 10.

Solución
Hay otras posibilidades, ¡descúbrelas!
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

Con este artículo podrás complementar la información relacionada a las series y las sucesiones.

VER