CAPÍTULO 2 / TEMA 7 (REVISIÓN)

OPERACIONES | ¿Qué aprendimos?

operaciones básicas

Todos los días utilizamos operaciones básicas como la adición, la sustracción, la multiplicación y la división. Las adiciones con reagrupación de dos o más números se caracterizan por tener “llevadas” cuando sumamos sus unidades, decenas, centenas, etc. Las sustracciones con reagrupación son restas en las que existen cifras del minuendo que son menores a las del sustraendo. Por esta razón, hay que “pedirle” una unidad al dígito de al lado para así poder resolver el ejercicio. En el caso de la multiplicación, al igual que en la adición y en la sustracción, se observan dos tipos de operaciones: sin reagrupación y con reagrupación. Las multiplicaciones sin reagrupación son aquellas que no contienen llevadas cuando multiplicamos un dígito con otro. En cambio, las multiplicaciones con reagrupación sí poseen llevadas. En el caso de las divisiones, encontramos las exactas cuando el resto es igual a cero y las no exactas cuando el resto es diferente de cero.

Leibniz impuso el uso del punto como símbolo de la multiplicación e introdujo los dos puntos como símbolo de la división.

múltiplos y divisores

El múltiplo de un número es el resultado de multiplicar ese número por otro. Por otra parte, el divisor de un número es aquel que lo divide de manera exacta. Hay números cuyos únicos divisores son ellos mismos y el uno, a estos números se los conoce como números primos. Por otro lado, los números que poseen más de dos divisores se denominan números compuestos y pueden descomponerse en factores primos.

El número 1 no es ni primo ni compuesto porque solo tiene un divisor que es él mismo.

MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR

Todo número natural se puede descomponer como una multiplicación de sus factores primos. Este tipo de expresión permite calcular el mínimo común múltiplo (mcm) y el máximo común divisor (mcd) entre dos o más números. El mínimo común múltiplo (también llamado múltiplo común menor) de dos o más números es el menor múltiplo común de dos o más números distintos de cero. Para calcularlo, hay que descomponer los números en sus factores primos y luego elegir los números que tienen y no tienen en común a mayor potencia. El número que resulta del producto es el menor múltiplo en común. El máximo común divisor (también conocido como divisor común mayor) es el mayor divisor entre dos o más números distintos de cero. Para calcularlo también se descomponen los números en sus factores primos y luego se eligen solo los números que tienen en común a menor potencia. El producto de estos es el mayor divisor en común.

Si calculamos el mcd entre dos números de la secuencia de Fibonacci obtenemos otro número de Fibonacci. Por ejemplo, el mcd de (2, 8) = 2.

problemas con los números enteros

Una de las características de los números enteros es que permiten representar cantidades positivas y negativas, por esta razón se emplea la regla de los signos para saber qué signo tendrá un número al realizar una operación con enteros. En una adición, cuando todos los números son negativos, se suman y el resultado que se obtiene es un número negativo. Si se suman números positivos y negativos, los números de igual signo se suman y al final los dos números obtenidos se restan y se coloca el signo del número mayor. Para sustraer números enteros, hay que tener en cuenta que el símbolo de la resta cambia el signo al número que sigue según la regla. Para multiplicar y dividir números enteros primero se operan los signos mediante la regla de los signos y luego se multiplican o dividen los números según corresponda.

En Oriente se operaba con números positivos y negativos a través de ábacos, tablillas o bolas de colores. A los números negativos se los conocía como “números deudos” o “números absurdos”.

problemas con números decimales

Cuando vamos al supermercado la mayoría de los precios de los productos están marcados con números decimales. Con estos números también se pueden desarrollar las operaciones básicas de la aritmética. Para sumar números decimales tienen que coincidir la parte entera, la coma y la parte decimal de los números de acuerdo a sus valores posicionales. También podemos sumar números decimales con enteros siempre y cuando coincidan sus valores posicionales. Para sustraer también deben coincidir los valores posicionales y se pueden restar dos decimales o un decimal y un número entero. Para multiplicar dos números decimales se multiplican los números como si fuesen números naturales y el producto final será un número decimal que tendrá la cantidad de decimales igual a la suma de todos los decimales de ambos números. Si se multiplica un decimal con un natural el producto final tendrá tantos decimales como tenga el número decimal que se multiplicó inicialmente. Para dividir a estos números, ya sea por otro decimal o por un entero, hay que convertir a los números decimales en enteros. Para esto, se debe multiplicar al dividendo y al divisor por la unidad seguida de tantos ceros como decimales tenga el número con la parte decimal de más cifras. Luego se realiza la división de manera habitual.

A comienzos del siglo XV, un matemático árabe desarrolló el conjunto de los números decimales y sus usos.

operaciones combinadas

Las operaciones combinadas son aquellas que involucran dos o más operaciones aritméticas agrupadas por diferentes símbolos. Los símbolos de agrupamiento son: los paréntesis (), los corchetes [] y las llaves {}. En una operación con estos símbolos primero se eliminan los paréntesis, luego los corchetes y, por último, las llaves. En los ejercicios combinados se pueden encontrar agrupados números enteros, fracciones, números decimales, potencias y raíces. A la hora de resolverlos, se tiene que tener en cuenta el orden de eliminación de los símbolos de agrupamiento como también el de las operaciones: primero se resuelven las potencias y las raíces, luego las multiplicaciones y las divisiones, y por último, las sumas y las restas.

El símbolo de igual “=” fue creado por el matemático inglés Robert Recorde en 1557 para evitar la expresión textual “es igual a”.

CAPÍTULO 2 / TEMA 6

operaciones combinadas

Las operaciones combinadas son aquellas operaciones formadas por diferentes operaciones aritméticas que son agrupadas por paréntesis, corchetes y llaves. Para llegar al resultado hay que seguir algunas reglas de los símbolos de agrupamiento y tener en cuenta la prioridad entre las operaciones.

símbolos de agrupamiento

Muchas veces necesitamos agrupar dos o más operaciones aritméticas para indicar qué orden se debe seguir al momento de resolver un problema. Para agrupar las operaciones se utilizan algunos signos que son denominados símbolos de agrupamiento. Estos son: los paréntesis (), los corchetes [] y las llaves {}.

Cómo eliminar los símbolos de agrupamiento

Cada símbolo de agrupamiento tiene un orden de eliminación:

  • Primero se eliminan los paréntesis, luego los corchetes y finalmente las llaves. Para lograrlo, se resuelven paulatinamente las operaciones que se encuentran dentro de ellos. Hay que tener presente el signo que hay delante. Cuando los signos que están dentro y fuera del paréntesis, corchete o llave son positivos (+) y negativos (−) se consideran los siguientes pasos:

1. Si el signo que está fuera del símbolo de agrupamiento es positivo, los signos que se encuentran en su interior no cambian.

2. Si el signo que está fuera del símbolo de agrupamiento es negativo, los signos que se ubican dentro este cambia.

Por ejemplo:

-(80-44+15)=-80+44-15=-51

Otra forma sería:

+(80-44+15)=80-44+15=51

Como se puede observar, de acuerdo al signo que se encuentre delante del paréntesis pueden cambiar o no los signos de los términos que se encuentran dentro del mismo. Estos términos pueden ser factores o simples sumandos.

¿Sabías qué?
Para resolver operaciones combinadas se suelen aplicar las propiedades de las operaciones.

operaciones combinadas

Las operaciones combinadas son expresiones formadas por diferentes operaciones aritméticas como: sumas, restas, multiplicaciones, divisiones y algunas veces potencias y raíces que son agrupadas en paréntesis, corchetes y llaves.

Veremos el siguiente ejemplo:

Observa que primero se resuelven las operaciones que están dentro de los paréntesis y el resultado se coloca en el lugar donde se ubicaban las mismas. Luego se realiza la misma acción con los corchetes y finalmente con las llaves.

Cuando ya no quedan símbolos de agrupación hay que tener presente que también hay un orden en las operaciones: primero se resuelven potencias y raíces, luego multiplicaciones y divisiones, y por último, sumas y restas.

Observa este otro ejemplo:

Como te podrás dar cuenta, luego de eliminar los símbolos de agrupamiento se resuelven los términos que están fuera de estos con los resultados obtenidos.

Símbolo de igualdad

El símbolo del igual “=” fue creado por el matemático inglés Robert Recorde en 1557 para evitar la expresión textual “es igual a” que se usaba hasta ese momento. Para justificar la forma que obtuvo el símbolo expresó que “dos cosas no pueden ser más iguales que dos rectas paralelas” y, por eso, desde ese día sigue vigente para expresar igualdades en las operaciones.

VER INFOGRAFÍA

ejercicios combinados

Los ejercicios combinados, como se comentó anteriormente, además de incluir las operaciones básicas como la adición, la sustracción, la multiplicación y la resta pueden presentar potencias, raíces, decimales, fracciones y demás expresiones matemáticas.

Observa el siguiente ejercicio:

En el ejercicio anterior, la única diferencia es que observamos una potencia y una raíz. Para resolver el problema se realizan dichas operaciones a medida que se resuelven  las operaciones según su orden de prioridad.

¿Sabías qué?
El símbolo de la raíz cuadrada fue introducido en 1525 por el matemático Christoph Rudolff.

Observa el siguiente ejemplo:

-Resolver 1,5\, +\left \{ \frac{3}{2}+\left [ 2,5\cdot \left ( 5-1 \right ) \right ] \right \}=

Lo primero que debemos tener en cuenta es que se resuelven primero las multiplicaciones y divisiones, luego las sumas y restas. En este caso, observamos fracciones y números decimales:

1,5\, +\left \{ \frac{3}{2}+\left [ 2,5\cdot \left ( 4 \right ) \right ] \right \}=

1,5\, +\left \{ \frac{3}{2}+\left [ 10 \right ] \right \}=

1,5\, +\left \{ 11,5 \right \}=13

Importancia de las operaciones combinadas

A menudo nos enfrentamos a problemas en los que se deben realizar dos o más operaciones aritméticas. Es por ello que para poder resolver dichas situaciones debemos tener conocimiento sobre cómo abordar las operaciones combinadas. En el cálculo avanzado, las operaciones combinadas se resuelven de manera rutinaria porque permiten resolver problemas de manera más rápida y simple.

¡A resolver!

  1. Resuelve las siguientes operaciones combinadas.

a)4\cdot \left \{ 6-\left [ 3\cdot \left ( 5+1 \right ) \right ] \right \}+49

Solución
1

b) 3+\left \{ 10\cdot \left [ 2+\left ( 5-1 \right ) \right ]\right \}-50

Solución
13

c) 7-\left \{ 4+\left [ 5-\left ( 2-1 \right ) \right ] \right \}

Solución
−1

d) \left \{ 5^{2} -\left [ 2\cdot \sqrt{4}\, + (6-5)\right ]\right \}

Solución
20

e) 2,5\, +\left \{ \frac{1}{2}+\left [ 1,5\cdot \left ( 3-1 \right ) \right ] \right \}

Solución
6

RECURSOS PARA DOCENTES

Artículo “Cálculos combinados”

Este artículo destacado permite entender como resolver una operación combinada de acuerdo al orden de prioridades que se debe seguir. También muestra unas series de ejemplos que facilitan su comprensión.

VER

Artículo “Ejercicios combinados con sus desarrollos y soluciones”

El siguiente recurso muestra una serie de ejercicios con su respectiva resolución que permite corroborar los resultados.

VER

CAPÍTULO 2 / TEMA 5

problemas con números decimales

La presencia de los decimales en nuestras vidas ha permitido en ciertas ocasiones representar cantidades con mayor exactitud, por ejemplo, valores que se encuentran entre dos números enteros. Con este tipo de números podemos realizar operaciones básicas de la matemáticas a través de algoritmos similares a los usados en los números enteros.

Adición y sustracción de decimales

Los decimales se usan a diario. Un claro ejemplo son las cajas registradoras de los supermercados que suman y restan decimales todos los días, suman los productos que compramos y restan cuando obtenemos un descuento por alguna oferta. Como verás, los decimales son muy importantes para realizar operaciones en la vida cotidiana.

Adición

En el caso de la adición de números decimales, lo primero que se debe hacer es hacer coincidir los valores posicionales de los números, tanto de su parte entera (unidades, decenas, centenas, etc.) como de su parte decimal (décimos, centésimos, milésimos, etc.).

Una manera simple de ordenar los decimales es colocar uno debajo del otro de manera que la coma quede en una misma columna al igual que los valores de la izquierda. Si uno de los números tiene menos decimales que el otro, se completa con cero su parte decimal hasta que la cantidad de cifras decimales en ambos números sea la misma.

Finalmente, luego de ordenar los números, se suman con el mismo algoritmo de la suma usado en los números enteros. La única diferencia es que se debe colocar la coma del resultado en su columna correspondiente.

Por ejemplo:

-Resolver 10,357 + 7,23.

Al ordenar los números de acuerdo a sus valores posicionales y después de aplicar el algoritmo de la suma se obtuvo el siguiente resultado:

Observa que como 7,23 tiene dos decimales y 10,357 tiene tres, se agregó un cero en los decimales de 7,23 para poder sumarlos.

De esta manera, 10,357 + 7,23 es igual a 17,587.

Sumar números decimales y números enteros

Para sumar decimales y números enteros lo único que hay que hacer es transformar los enteros a decimales. Para ello, se deben agregar tantos ceros a estos como cifras decimales tenga el número decimal. Luego se ordenan los números de la manera explicada anteriormente.

Por ejemplo:

-Resolver 169 + 34,93.

En este caso, el número 34,93 tiene dos decimales, por lo tanto, al transformar el 169 a decimal quedaría expresado como 169,00. Luego se ordenan ambos números de acuerdo a sus valores posicionales. Observa que, en este caso, se trata de una suma “con llevada” y se realiza de la misma forma que una suma de este tipo con números enteros:

De esta manera, 169 + 34,93 es igual a 203,93.

A menudo se suelen convertir números decimales a fracciones para simplificar las operaciones. Los decimales que se pueden convertir de manera más fácil a fracción son los que tienen un cero antes de la coma. En estos casos, el denominador sería la unidad seguida de la cantidad de ceros consecutivos que tenga el decimal a la izquierda, y los números restantes serán iguales al denominador. De esta manera 0,037 es igual a 37/100.

Sustracción

La sustracción con decimales se realiza de manera similar a la sustracción de números enteros. En este caso, se deben hacer coincidir los valores posicionales del minuendo y del sustraendo. En caso de que alguno de los dos números tenga menor cantidad de decimales se completa con ceros.

Por ejemplo:

-Resolver 27,45 − 10,3

En este caso, completamos los decimales del 10,3 para que sean iguales, por lo tanto, se agrega un cero a la derecha. Luego posicionamos los números uno debajo del otro de manera que cada valor posicional se encuentre en una misma columna. Luego se resuelve la resta como lo hacemos con los números enteros. Al final, se debe anotar la coma en su columna correspondiente.

De esta forma, 27,45 − 10,3 es igual a 17,15.

Restar decimales y números enteros

La sustracción también se puede realizar entre números enteros y decimales. Para realizar los cálculos, el número entero se debe convertir a decimal y luego se resuelve la operación de la forma explicada anteriormente.

Por ejemplo:

-Resolver 973 − 632,38

En este caso, como el número decimal tiene dos decimales, debemos agregar dos ceros al número entero. De esta forma, el número 973 queda expresado como 973,00. Luego se posicionan ambos números uno debajo del otro, de manera que sus valores posicionales estén en una misma columna, y se resuelve la resta con decimal. De esta forma, el procedimiento es el siguiente:

El resultado de 973 − 632,38 es 340,62.

multiplicación y división de decimales

Otras de las operaciones básicas que podemos realizar con números decimales son la multiplicación y la división. La multiplicación permite realizar sumas reiteradas de manera rápida y la división permite repartir cantidades en partes iguales.

Multiplicación

Para multiplicar dos números decimales se pueden seguir los siguientes pasos:

  1. Multiplicar los números decimales de la misma manera que se multiplican los números enteros.
  2. El producto final será un número decimal que tendrá la cantidad de decimales igual a la suma de los decimales que tengan el multiplicando y el multiplicador. Por ejemplo, si el multiplicando tiene dos decimales y el multiplicador tiene un decimal, el resultado será un número con tres decimales porque 2 + 1 = 3.

Por ejemplo:

-Resolver 46,5 × 8,6.

Se resuelve la multiplicación de la misma forma en la que se resuelven multiplicaciones con números enteros. El resultado que se obtiene al sumar los dos productos parciales es 39990, como 46,5 tiene un decimal y 8,6 tiene un decimal también, el resultado debe tener dos decimales, es decir; dos números después de la coma, de esta forma el resultado será: 399,90. Observa el procedimiento:

Multiplicar decimales y números enteros

La multiplicación de decimales y números enteros se realiza de la misma forma que con los números enteros. Al final, el resultado tendrá la misma cantidad de decimales que el número decimal que se multiplica.

Por ejemplo:

-Resolver 7,809 × 4.

Al resolver la multiplicación se obtiene 31236, como 7,809 tiene tres decimales, el resultado de esta multiplicación tiene la misma cantidad de decimales, es decir, el resultado es 31,236. El procedimiento aplicado fue el siguiente:

Los decimales son tan usados que podemos encontrarlos en desde una factura de compra hasta una escala de medición. De acuerdo al país, se puede usar la coma o el punto para representarlos. Por ejemplo, en México y en varios países del Caribe se emplea al punto como símbolo para separar decimales, mientras que en España y en gran parte de los países del Cono Sur se usa la coma.

División

Dividir un número entero entre un número decimal

Para dividir un número entero entre un decimal se pueden seguir los siguientes pasos:

  1. Convertir el número decimal en un número entero. Para esto, se va a multiplicar el divisor por la unidad seguida de tantos ceros como decimales tenga el número. Por ejemplo, imagina que tenemos la división 278 : 3,6. En este caso, al convertir el decimal a entero se obtiene: 3,6 x 10 = 36.
  2. Multiplicar al dividendo por el mismo número que se haya multiplicado al divisor. En el ejemplo anterior sería: 278 x 10 = 2.780
  3. Dividir los números obtenidos. En este caso serían 2.780 : 36.

El resultado de la división sería el siguiente:

Cuando se restó 260 − 252 se obtuvo 8. Agregamos una coma en el cociente que era 77 y luego colocamos un 0 al lado del 8 para luego continuar con la división. En este caso, observa que el resto seguirá siempre con el mismo valor, esto se debe a que el resultado de esta división particular es un número infinito periódico (77,22222222222…), es decir, es un número en el que se repite de manera infinita un patrón en su parte decimal.

¿Sabías qué?
Los números decimales pueden ser finitos o infinitos. Dentro de estos últimos están los periódicos y los irracionales.

Dividir un número decimal entre un número entero

Para dividir un número decimal por un número entero se divide de la misma manera, como si fuesen enteros. Al bajar el primer número decimal, se agrega una coma en el cociente y se continúa la división.

El ejemplo a continuación indica el procedimiento para resolver la división 77,5 : 25. Observa que después de resolver la parte entera (77) se agrega la coma en el cociente y se continúa con la operación.

Dividir dos números decimales

Para dividir un decimal con otro decimal se pueden seguir los siguientes pasos (278,1 : 2,52):

  1. Convertir el dividendo y el divisor en números enteros. Para esto, se multiplican ambos números por la unidad seguida de tantos ceros como sea la mayor cantidad de decimales que tengan los números. Por ejemplo, imagina que tenemos 278,1 : 2,52. El número con mayor cantidad de decimales es 2,52 que tiene dos decimales, por lo tanto tenemos que multiplicar ambos números por 100:
    278,1 × 100 = 27.810
    2,52 × 100 = 252
  2. Luego se dividen los dos números obtenidos. En este caso es 27.810 : 252 y el resultado es 110,3. El procedimiento se observa a continuación:

¿Sabías qué?
Los números decimales se pueden escribir como fracciones y viceversa.

Los números decimales en la historia

A comienzos del siglo XV, un matemático árabe organizó el conjunto de los números decimales y sus usos. Un siglo más tarde, Stevin desarrolló números decimales que expresaban las décimas, centésimas, milésimas, etc., pero utilizaba una forma complicada de escritura. Por ejemplo, al número 456,765 lo escribía como 456 (0) 7 (1) 6 (2) 5 (3).

En el siglo XVII, los números decimales se empezaron a escribir con punto o coma para separar la parte entera de la parte decimal del número. En 1792, los decimales se empezaron a utilizar en todos los países al extenderse el Sistema Métrico Decimal.

¡A resolver!

  1. Resuelve las siguientes operaciones:

a) 32,98 + 16,2 = 

RESPUESTAS
49,18

b) 1.589 + 6,98 = 

RESPUESTAS
1.595,98

c) 2.549,8 – 1.563,89 = 

RESPUESTAS
985,91

d) 450,64 – 315,5 =

RESPUESTAS
135,14

e) 1.330,6 + 906,8 = 

RESPUESTAS
2.237,4

f) 23,369 – 3,963 = 

RESPUESTAS
19,406

g) 190,3 x 15 = 

RESPUESTAS
2.854,5

h) 987 x 3,118 = 

RESPUESTAS
3.077,466

i) 73,24 x 5,1 = 

RESPUESTAS
373,524

j) 14,57 x 8,29 = 

RESPUESTAS
120,7853

k) 73,8 : 6 = 

RESPUESTAS
12,3

l) 885,6 : 12 = 

RESPUESTAS
73,8

m) 5.462,5 : 23 = 

RESPUESTAS
237,5

n) 29,095 : 5,29 = 

RESPUESTAS
5,5

o) 799,46 : 1,29 = 

RESPUESTAS
619,73

RECURSOS PARA DOCENTES

Artículo “Números decimales”

El siguiente artículo destacado explica que es un número decimal y describe sus diferentes tipos.

VER

Artículo “Operaciones con números decimales”

Este recurso le permite entender cómo están formados los números decimales y cómo resolver las principales operaciones que los involucran.

VER

CAPÍTULO 2 / TEMA 4

problemas con números enteros

A menudo usamos los números naturales para contar, pero hay ocasiones en las que presentan limitaciones y no nos permiten representar ciertos valores como las cantidades negativas. Los números naturales, sus opuestos y el cero conforman un conjunto de números que siguen sus propias reglas aritméticas: los enteros.

regla de los signos

La regla de los signos es una herramienta útil para determinar el signo del resultado de una operación. Es muy importante que tengas presente que para cada tipo de operación existen reglas particulares. Las veremos a continuación:

Operación Regla de los signos Ejemplo
Multiplicación

El resultado de multiplicar dos números enteros positivos es igual a un número entero positivo.

\mathbf{(+)\cdot (+)=+}

(2)\cdot (3)=6

El resultado de multiplicar dos números enteros negativos es igual a un número entero positivo.

\mathbf{(-)\cdot (-)=+}

(-4)\cdot (-2)=8
El resultado de multiplicar un número entero positivo por otro negativo es igual a un número entero negativo.
\mathbf{(+)\cdot (-)=-}
(4)\cdot (-3)=-12

El resultado de multiplicar un número entero negativo por otro positivo es igual a un número entero negativo.

\mathbf{(-)\cdot (+)=-}

(-5)\cdot (2)=-10
División

El resultado de dividir dos números enteros positivos es igual a un número entero positivo.

\mathbf{(+): (+)=+}

(6): (3)=2

El resultado de dividir dos números enteros negativos es igual a un número entero positivo.

\mathbf{(-): (-)=+}

(-8): (-2)=4

El resultado de dividir un número entero positivo entre otro negativo es igual a un número entero negativo.

\mathbf{(+): (-)=-}

(12): (-2)=-6

El resultado de dividir un número entero negativo entre otro positivo es igual a un número entero negativo.

\mathbf{(-): (+)=-}

(-10): (2)=-5
Adición y sustracción

Si los dos números enteros son positivos, se suman y el resultado es un número entero positivo.

3+1= 4
Si los dos números enteros son negativos, se suman y el resultado es un número entero negativo. -5-3= -8
Si los dos números enteros tienen signos diferentes diferentes, se restan y el resultado tendrá el signo del número mayor. -5+3= -2

 

-5+10= 5

En este tipo de números, cuando no se indique el signo, se asume que es un número positivo.

Los números enteros contienen al conjunto de los números naturales y sus opuestos, es decir, contienen los números positivos y los negativos. Son muy importantes al momento de representar situaciones que los números naturales no podrían. Por ejemplo, algunas escalas representan temperaturas negativas y algunos sistemas de referencia también emplean números enteros.

¿Sabías qué?
El cero es el único número entero que no es ni positivo ni negativo, así que no sigue la regla de los signos.

adición y sustracción de números enteros

El conjunto de los números enteros están conformados por los números negativos, el cero y los números positivos. Con ellos se pueden resolver operaciones matemáticas, como la adición y la sustracción.

Adición

Para sumar números enteros existen tres casos distintos:

  • Si todos los números son positivos, el resultado de la suma será un número positivo:

  • Si todos los números son negativos, estos se suman y el resultado es un número negativo:

  • Si se suman números positivos y negativos, los positivos se suman con los positivos y los negativos con los negativos. Al final se restan ambos números resultantes y el resultado tendrá el signo del número mayor.

El número 3 quedó negativo porque el 11 era el número mayor y su signo era negativo.

¿Sabías qué?
Hace 2.400 años los chinos utilizaban varillas negras para representar a los números negativos y varillas rojas para los números positivos.

Sustracción

Para algunas sustracciones, como también para la suma, puede ser útil el siguiente recordatorio:

Hay que tener presente que el símbolo de resta cambia el signo al número que sigue. Entonces, si el número que sucede al signo menos es positivo, se convierte en negativo. Si el número que se resta es negativo, se convierte en positivo. Observemos los siguientes casos:

  • A un número positivo se le resta otro número positivo:

  • A un número positivo se le resta un número negativo:

  • A un número negativo se le resta otro número negativo:

  • A un número negativo se le resta un número positivo:

Los números negativos

Anteriormente a los números negativos se los conocía como “números deudos” o “números absurdos”. Se los empezó a utilizar en Asia durante el siglo V y en Europa en el siglo XVI. En Asia se operaban los números positivos y negativos a través del uso de ábacos, tablillas o bolas de colores. Los indios fueron los primeros en diferenciar los números positivos de los negativos ya que los interpretaban como créditos y débitos. Los símbolos de suma (+) y resta (-) como los conocemos en la actualidad fueron creados por el matemático alemán Michael Stifel.

En la vida cotidiana se nos presentan situaciones que no se pueden representar con números naturales, como por ejemplo, las temperaturas bajo cero, los pisos subterráneos de los edificios, las deudas y los gastos, entre otros.

multiplicación y división de números enteros

A los números enteros también se los puede operar a través de la multiplicación y de la división.

Multiplicación

Para multiplicar números enteros se pueden seguir los siguientes pasos:

  1. Se multiplican los números para obtener el resultado.
  2. Se determina el signo del resultado a través de la regla de los signos.

Veamos un ejemplo:

En este caso, el problema se resolvió a través de los pasos anteriores. Como se trata de enteros con diferente signo el resultado es negativo.

Observemos otro caso:

(-5)\cdot (-3)=15

En esta operación, al tratarse de una multiplicación de dos números negativos, el resultado es positivo.

División

Para dividir los números enteros se pueden seguir los siguientes pasos:

  1. Se dividen los números para obtener el resultado.
  2. Se determina el signo del resultado a través de la regla de los signos.

Veamos un ejemplo:

Al ser una división entre dos números con signo diferente el resultado es un número negativo.

Observemos otro ejemplo:

En este caso, al ser una división de números negativos el resultado es positivo.

Conjunto de los números enteros

Está formado por los números positivos, negativos y el cero. Este conjunto de números no considera a los números decimales y se denota con la letra Z. Las operaciones con los números enteros obedecen reglas aritméticas particulares como la regla de los signos.

¿Sabías qué?
Los números que utilizamos se denominan arábigos porque fueron introducidos a Europa por los árabes.

¡A practicar!

  1. Resuelve las siguientes operaciones:

RESPUESTAS

a) 1

b) −5

c) 14

d) −1

e) −36

f) 18

g) 7

h) −10

i) −80

j) −10

RECURSOS PARA DOCENTES

Artículo “Regla de los signos”

El siguiente recurso permite profundizar en la regla de los signos a través de ejercicios basados en situaciones en las que puede aplicarse.

VER

Artículo “Suma algebraica”

Este artículo explica qué es una suma algebraica, sus principales características y su influencia en el desarrollo de operaciones con números enteros.

VER

CAPÍTULO 2 / TEMA 3

Mínimo común múltiplo Y Máximo común divisor

Todo número natural se puede descomponer con la multiplicación de sus factores o números primos. La utilidad para descomponerlos de esta manera es que nos permitirá calcular el mínimo común múltiplo y el máximo común divisor de dos o más números. Y con ellos resolver diversos problemas.

mínimo común múltiplo Y Máximo común divisor

El mínimo común múltiplo (mcm), también conocido como múltiplo común menor de dos o más números naturales, es el menor múltiplo común de ambos números que sea distinto de cero.

El máximo común divisor (mcd), también conocido como divisor común mayor entre dos o más números naturales, es el mayor divisor entre ambos, es decir, el mayor número por el que son divisibles dos o más números.

CÁLCULO DEL Mínimo común múltiplo

Para calcular el mcm entre dos o más números podemos seguir los siguientes pasos:

  1. Descomponer los números en sus factores primos.
  2. Escribir los números como la multiplicación de sus factores primos.
  3. Escribir en en la parte inferior el mcm que será igual al producto de todos los factores comunes y no comunes de los números a la mayor potencia. Es decir, si entre los números a los que se le realizó la descomposición se observa un factor que se repite pero con exponente diferente, se considera el que tiene el mayor exponente.
  4. Resolver el producto del mcm.

Por ejemplo:

-Hallar el mcm entre 40 y 60.

Lo primero es descomponer los dos números en factores primos y expresar dicha descomposición en forma de multiplicación:

Luego se eligen los factores comunes y no comunes. En el caso del 2, está en ambas expresiones con diferente exponente, en este caso se considera el 23 porque es mayor. De esta forma, el mcm de ambos números es:

mcm (40, 60) = 2· 3 · 5

Al resolver el producto obtenido el resultado es:

mcm (40, 60) = 2· 3 · 5 = 2 · 2 · 2 ·3 · 5 = 120

De esta forma, el mínimo común múltiplo entre 40 y 60 es 120.

CÁLCULO DEL Máximo común divisor

Para calcular el mcd entre dos o más números se pueden seguir los siguientes pasos:

  1. Descomponer los números en sus factores primos.
  2. Escribir los números como la multiplicación de sus factores primos.
  3. Escribir en la parte inferior el mcd que será igual al producto de los factores que tienen en común a la menor potencia. Es decir, si se repite un factor se considera el que tiene la menor potencia.
  4. Resolver el producto del mcd.

Por ejemplo:

-Hallar el mcd entre 56 y 48.

Primero se descomponen ambos números en sus factores primos:

Luego se seleccionan únicamente los factores que tienen en común. En este caso, el factor en común entre ambos números es el 2 que se encuentra expresado en diferente potencia: 23 y 24. Para calcular el mcd se toma únicamente la menor potencia, en este caso sería 23. De esta manera, el mcd queda expresado de la siguiente manera:

mcd (56, 48) = 23

Al resolver la potencia se obtiene el resultado:

mcd (56, 48) = 8

De esta manera, el mcd entre 56 y 48 es el número 8.

¿Sabías qué?
Calculamos el máximo común divisor porque si calculamos el mínimo común divisor entre dos números siempre sería 1, porque el 1 es divisor de todos los números.

El mcd de los números de Fibonacci

Los números de la secuencia de Fibonacci son: 1, 1, 2, 3, 5, 8, 13, 21, 34, 89 y siguen hasta el infinito. Esta secuencia consiste en sumar los dos números anteriores para hallar el siguiente número. Por ejemplo, 1 + 1 = 2, 2 + 1 = 3, 2 + 3 = 5, y así sucesivamente hasta el infinito.

Lo curioso de estos números es que si calculamos el máximo común divisor de dos números de Fibonacci obtenemos otro número de la secuencia de Fibonacci. Por ejemplo, el mcd (3, 21) = 3.

VER INFOGRAFÍA

problemas de aplicación

Para resolver problemas de mcm y mcd hay que tener en cuenta los datos del problema y la pregunta que nos hace, en ella estará la clave para saber si el problema se resuelve con mcm y mcd. Veremos unos ejemplos donde se tenga que aplicar alguno de los dos cálculos:

1. En una ciudad, el reloj de la catedral indica la hora a través de campanadas que suenan cada 3 horas, y el reloj de la torre de la plaza lo hace cada 8 horas. ¿Cada cuántas horas ambos relojes sonarán al mismo tiempo?

Los datos del problema indican que el reloj de la catedral suena cada 3 horas y el de la municipalidad cada 8 horas. Al descomponer ambos números se obtiene:

En este caso, se trata de un problema de mínimo común múltiplo, y se debe calcular el mismo entre ambos números para determinar cada cuántas horas sonarán al mismo tiempo los relojes.

mcm (3, 8) = 3 · 23

mcm (3, 8) = 24

De esta manera, se determinó que los relojes suenan al mismo tiempo cada 24 horas.

2. En la tienda de Jorge hay una caja con 12 naranjas y otra con 18 peras. Jorge quiere distribuir las frutas en cajas más pequeñas de forma que todas las cajas tengan la misma cantidad de fruta. Cada caja solo puede tener peras o naranjas y las cajas deben ser lo más grande posible. ¿Cuántas frutas debe haber en cada caja?

Los datos del problema son cajas de 12 naranjas y 18 peras. Al descomponer dichos números en factores primos se obtiene:

En este problema debemos separar o dividir las frutas en diferentes cajas, por lo tanto se resuelve a través del mcd.

mcd (12, 18) = 2 · 3

mcd (12, 18) = 6

De esta manera, se determinó que en cada caja debe haber 6 frutas.

¡A practicar!

  1. Calcula el mínimo común múltiplo entre los siguientes números.

a) 30, 60 y 90 

SOLUCIÓN

mcm (30,60,90) = 23 . 32 . 5 = 180 

b) 15, 30, 20 y 40 

SOLUCIÓN

mcm (15,30,20,40) = 23 . 3 . 5 = 120

2. Calcula el máximo común divisor entre los siguientes números.

a) 18, 26 y 40 

SOLUCIÓN

mcd (18,26,40) = 2

b) 54, 60, 80 y 100 

SOLUCIÓN

mcd (54,60,80,100) = 2

3. Marcos tiene una cuerda de 120 metros y otra de 96 metros. Desea cortarlas de modo que todos los trozos sean iguales pero lo más largos posible. ¿Cuánto medirá cada trozo de cuerda? 

SOLUCIÓN

mcd (120,96) = 23 . 3 = 24

Cada trozo medirá 24 metros.

4. Un jardinero riega el césped de un parque cada 5 días y lo corta cada 8 días. ¿Cada cuántos días coincidirán sus funciones de riego y de corte del césped? 

SOLUCIÓN

mcm (5,8) = 23 . 5 = 40

Las funciones de riego y corte de césped coincidirán cada 40 días.

5. Una tienda compra memorias USB de diferentes colores. Para Navidad hizo un pedido de 84 memorias rojas, 196 azules y 252 verdes. Para guardar la mercancía de forma organizada, exigió que le enviaran las memorias en cajas iguales, sin mezclar los colores y con el mayor número posible de memorias. ¿Cuántas memorias habrá en cada caja? 

SOLUCIÓN

mcd (84,196,252) = 22 . 7 = 4 . 7 = 28

En cada caja habrá 28 memorias.

6. Adrián es un deportista de alto rendimiento que practica después del colegio. Cada 3 días recorre un trayecto en bicicleta por la ciudad, cada 4 días juega fútbol y cada 12 días juega al hockey. ¿Cuántos días pasarán para que realice las tres actividades en el mismo día? 

SOLUCIÓN

mcm (3,4,12) = 22 . 3 = 4 . 3 = 12

Pasarán 12 días para que haga las tres actividades el mismo día.

RECURSOS PARA DOCENTES

Artículo “Factorización de números”

Este recurso permite profundizar el tema de la factorización de números y el cálculo del mcm y el mcd.

VER

Artículo “Mínimo común múltiplo y Máximo común divisor”

Este recurso proporciona situaciones problemáticas en las que se aplica el cálculo del mcm y el mcd.

VER

CAPÍTULO 2 / TEMA 2

MÚLTIPLOS Y DIVISORES

Un múltiplo de un número es el resultado de multiplicar ese número por otro. Debido a esto, los múltiplos de un número son infinitos. Por otra parte, los divisores son los valores que dividen a un números en partes iguales y permiten saber si se trata de un número primo o compuesto.

nÚMEROS PRIMOS

Los números primos son aquellos números naturales que son divisibles por uno y por sí mismos, es decir, sus únicos divisores son ellos mismos y la unidad. Por ejemplo: 2, 3, 5, 7 y 11 son números primos.

Número Divisores
2 2 y 1
3 3 y 1
5 5 y 1
7 7 y 1
11 11 y 1

¿Sabías qué?
El matemático griego Euclides demostró que los números primos son infinitos.

La maravilla de los números primos

Los números primos son como los arquitectos de otros números, ya que la multiplicación de varios números primos da lugar a un número compuesto. Los números primos son equivalentes en las matemáticas a lo que los átomos son en la materia. Esta naturaleza los hace tan peculiares que muchos matemáticos los han estudiado a través de los años.

¿Sabías qué?
El número 2 es el único número primo que es par.

nÚMEROS COMPUESTOS

Los números compuestos son aquellos números naturales que tienen más de dos divisores, además del uno y de sí mismo. Estos números pueden ser expresados como un producto de números primos que es único para cada número.

Esta cuadrícula es conocida como “la criba de Eratóstenes” y muestra en celeste los números primos y en naranja los números compuestos. Recuerda que los números son infinitos. Aquí mostramos los números primos y compuestos mayores que 1 hasta el 100, pero los números siguen hasta el infinito. El número 1, está en verde porque no es primo ni compuesto, ya que tiene un solo divisor que es él mismo.

Algunos números compuestos

Número Divisores
4 4, 2 y 1
6 6, 3, 2 y 1
8 8, 4, 2 y 1
9 9, 3 y 1
10 10, 5, 2 y 1

DIVISORES

Un divisor es el número que divide a otro en una cantidad entera. Un número es divisible por otro si su división es exacta, es decir, el resto de la división es cero. Si un número “a” se divide por otro “b” y el resto de la división es cero quiere decir que “b” es divisor de “a” o que “a es divisible por b”. Por ejemplo, 4 es divisor de 8 porque 8 : 4 = 2 y el resto es cero. Por lo tanto, 8 es divisible por 4.

Para encontrar los divisores de un número se pueden usar las tablas de multiplicar o los criterios de divisibilidad. Por ejemplo, para buscar los divisores de 16 sabemos que se trata de un número par. Por lo tanto, va a ser divisible por 2. Por otra parte, el 16 se encuentra dentro de las tablas de multiplicar del 4 y del 8. Entonces, esos números forman parte de sus divisores. También sabemos que todos los números (primos o compuestos) son divisibles entre ellos mismos y entre 1, por lo tanto, los divisores de 16 son: 1, 2, 4, 8 y 16.

Números perfectos

El matemático griego Euclides estudiaba los números naturales y denominaba números perfectos a un tipo de números compuestos. Él describía a un número perfecto como aquel número natural que es igual a la suma de sus divisores excepto él mismo. Un ejemplo de número perfecto es el 6 ya que sus divisores son: 1, 2, 3 y 6. Si los sumamos a todos, menos al seis tenemos, el resultado es igual al mismo número: 1 + 2 + 3 = 6. El siguiente número con estas características es el 28. Sus divisores son 1, 2, 4, 7, 14 y 28. La cuenta sería: 1 + 2 + 4 + 7 + 14 = 28.

DESCOMPOSICIÓN DE NÚMEROS EN SUS FACTORES PRIMOS

Todos los números compuestos pueden descomponerse en un producto de sus factores primos. Para descomponer un número en sus factores primos, se divide por el menor de sus divisores primos. El cociente de esa división se vuelve a dividir por el menor divisor primo de este y así sucesivamente hasta conseguir como cociente el 1. La manera de representar la descomposición es a través de una raya vertical que separa la división del número y sus factores primos.

Por ejemplo, procedimiento para descomponer el número 84 en sus factores primos es el siguiente:

El menor divisor primo de 84 es 2, por lo tanto, se divide 84 : 2 = 42. El cociente se escribe en la parte inferior y se vuelve a repetir el procedimiento. El menor divisor primo de 42 es 2, se escribe el divisor y el resultado que es 21 se escribe debajo de 42. Luego, el menor divisor primo de 21 es 3, se escribe dicho divisor y el resultado, que es 7, se escribe en la parte inferior. Como 7 es un número primo, el mínimo divisor primo es sí mismo, por lo tanto, se escribe el divisor 7 y el resultado de la división es 1. Como el número 1 no es un número primo se da por concluida la descomposición.

De esta manera, el 84 se puede escribir como la multiplicación de todos sus factores primos:

84 = 2 · 2 · 3 · 7

En estos casos, las descomposiciones de factores primos suelen representarte en forma de potencia en aquellos factores que se repiten. Para este ejemplo, observamos que el número 2 se repite dos veces por lo tanto se puede expresar como 22. De esta forma, la descomposición quedaría expresada de la siguiente forma:

84 = 22 · 3 · 7

Códigos secretos

Los números se pueden descomponer en sus factores primos, pero cuando hablamos de números realmente grandes resulta casi imposible a menos que utilicemos herramientas informáticas o programas de computadora. Es por esto que los números primos son perfectos para crear códigos secretos indescifrables. Por ejemplo, cuando se hacen compras por internet, los datos de las personas que compran quedan ocultos por un código creado por números enormes que funcionan como una cerradura cuya llave son los factores primos de este número.

¡A ejercitar!

  1. Encierra en color azul los números primos y en rojo los números compuestos.

RESPUESTAS

2. Encuentra los divisores de los siguientes números.

a) 24 

RESPUESTAS
Divisores de 24: 1, 2, 3, 4, 6, 8, 12 y 24.

b) 60 

RESPUESTAS
Divisores de 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 y 60.

c) 73 

RESPUESTAS
Divisores de 73: 1 y 73

d) 48 

RESPUESTAS
Divisores de 48: 1, 2, 3, 4, 6, 8, 12, 16, 24 y 48.

3. Señala cuál de los siguientes números es un número compuesto.

a) 53

b) 63

c) 73

d) 83

RESPUESTAS
b) 63 

4. Descompone en factores primos los siguientes números:

a) 54 

RESPUESTAS

b) 150 

RESPUESTAS

c) 72 

RESPUESTAS

d) 100 

RESPUESTAS

e) 63 

RESPUESTAS

f) 132 

RESPUESTAS

RECURSOS PARA DOCENTES

Artículo “Criterios de divisibilidad”

El artículo propone una serie de reglas que permiten identificar los divisores de un número.

VER

CAPÍTULO 2 / TEMA 1

OPERACIONES BÁSICAS

Los seres humanos tenemos la capacidad de contar cosas. Para este proceso de conteo necesitamos un conjunto de operaciones que facilitan los cálculos. La adición, la sustracción, la multiplicación y la resta son conocidas como operaciones básicas y su uso va desde lo cotidiano hasta lo científico. 

Adición y sustracción por reagrupación

Las adiciones y las sustracciones las utilizamos todos los días para contar cantidades como los puntos que obtenemos en un juego o cuando necesitamos saber lo que nos tienen que dar de vuelto al hacer una compra. Existen diversos métodos para realizar estas operaciones pero el resultado siempre es el mismo.

Adición por reagrupación

A menudo hacemos uso de las adiciones para resolver distintas situaciones. Cuando los números son pequeños usamos cálculos mentales, pero cuando los números son grandes generalmente hacemos la cuenta en un papel.

Los siguientes pasos te ayudarán a resolver adiciones por reagrupación:

1. Se escriben los números a sumar uno debajo del otro, de manera que coincidan las unidades, decenas, centenas, unidades de mil, etc.

2. Se inicia la suma de derecha a izquierda, a partir de las unidades. Si el resultado de la suma de las unidades es mayor a 9, se anota el resultado de la unidad de dicha suma y el valor de la otra cifra se anota sobre la columna de la izquierda. De esta manera, al resultado de la columna siguiente se le suma la cifra que se anotó con antelación.

Luego se procede a sumar las siguientes columnas junto con los números de las llevadas que se hayan podido generar en sumas de columnas anteriores.

Sustracción por reagrupación

Para resolver las sustracciones por reagrupación se pueden seguir los siguientes pasos:

1. Se escriben los números a restar uno debajo del otro, de manera que coincidan las unidades, decenas, centenas, etc.

2. Igual que en la adición, la sustracción se resuelve de derecha a izquierda. Si el número de la cifra superior es menor que el de la cifra inferior, no se puede restar de forma directa. En este caso, se coloca un 1 delante del número de arriba y se resuelve la resta. A este tipo de operación se la conoce como “resta con llevada” porque al resolver la siguiente columna se le debe restar el 1 que se tomó prestado anteriormente.

3. Se repite el procedimiento hasta abarcar todas las columnas.

Multiplicación

Las multiplicaciones nos sirven para simplificar situaciones en las que tendríamos que sumar reiteradamente un mismo número. De hecho, la multiplicación consiste en calcular el resultado de sumar un número por sí mismo tantas veces como indique otro número o multiplicador. Existen dos tipos de multiplicación: sin reagrupación y con reagrupación.

Multiplicación sin reagrupación

Las multiplicaciones sin reagrupación son aquellas que no tienen llevada, es decir, que cuando multiplicamos cada una de las cifras del multiplicador por el multiplicando da como resultado un número de una cifra.

Para resolver estas multiplicaciones se siguen estos pasos:

1. Primero se calculan los productos intermedios. Se comienza con la multiplicación de las unidades del multiplicador por todas las cifras del multiplicando de derecha a izquierda y se anotan las cifras correspondientes en cada columna. En este caso se multiplica 3 × 62.312 = 186.936.

2. Luego se multiplica la decena del multiplicador por las cifras del multiplicando, se deja un espacio y se anota el número obtenido debajo del resultado anterior. Aquí se multiplica 1 × 62.312 = 62.312.

3. Luego de obtener los productos intermedios, estos se suman para obtener el resultado de la multiplicación.

 

Observemos ahora un ejemplo en donde el multiplicador posee tres cifras:

1. Igual que en el ejemplo anterior, lo primero que hacemos es multiplicar las unidades del multiplicador (2) por cada una de las cifras.

2. Luego dejamos un espacio en la fila de abajo y anotamos el resultado de la multiplicación de las decenas del multiplicador y el multiplicando.

3. Después dejamos dos espacios y anotamos el resultado de multiplicar las centenas del multiplicador y el multiplicando.

4. Finalmente sumamos los tres productos obtenidos y obtenemos el resultado 45.245.252.

¿Sabías qué?
La multiplicación es una suma abreviada de sumandos iguales. El resultado de la multiplicación se llama producto.
La multiplicación presenta varias propiedades, como la del elemento neutro, en la que todo número multiplicado por 1 es igual al mismo número. Otra propiedad es la conmutativa que explica que el orden de los factores no altera el resultado. También presenta la propiedad distributiva la cual indica que no importan cómo se reagrupen los factores, el resultado siempre será el mismo.

Multiplicación con reagrupación

A diferencia de los ejemplos anteriores, las multiplicaciones por reagrupación tienen llevadas. Se resuelven con los mismos pasos anteriores, pero esta vez las llevadas se suman al resultado de cada multiplicación al momento de anotar los productos intermedios.

Para resolver este tipo de multiplicación se siguen estos pasos:

1. Primero se calculan los productos intermedios. Se comienza con la multiplicación de las unidades del multiplicador por todas las cifras del multiplicando de derecha a izquierda y se anotan las cifras correspondientes en cada columna. Cuando el producto de una cifra del multiplicador por una cifra del multiplicando tiene dos cifras, se anota la unidad de dicho número y la cifra correspondiente a las decenas se suma al producto siguiente.

Nota que 5 × 5 = 25. Así que colocamos la unidad (5) en la columna de los resultados y la decena (2) sobre la columna de la izquierda. Por lo tanto, al multiplicar 5 × 0 = 0 y 0 + 2 = 2.

2. Luego se multiplica la decena del multiplicador por las cifras del multiplicando, se deja un espacio y se anota el número obtenido debajo del resultado anterior.

3. Repetimos el paso anterior con las centenas del multiplicador.

4. Finalmente sumamos los productos parciales y obtenemos el resultado de la multiplicación.

división

Muchas veces tenemos la necesidad de hacer repartos de manera equitativa. La operación que nos permite hacerlo es la división. Esta puede ser exacta o inexacta.

Si la resta es la operación opuesta a la suma, la división es la opuesta a la multiplicación. Para expresar una división se pueden emplear los símbolos de “÷”, “:” y “/”. Esta operación nos sirve para repartir cantidades en partes iguales y pueden ser de dos tipos: divisiones exactas cuando el resto es igual a cero y divisiones inexactas cuando no lo es.

Divisiones exactas

Las divisiones exactas son aquellas cuyo resto es igual a cero. Esto lo determinamos al resolver la división por medio de los siguientes pasos:

Para dividir 323 ÷ 17 lo primero que debemos hacer es escribir los datos en su respectiva ubicación para poder comenzar a realizar cálculos:

2. Como tenemos dos cifras de divisor, tomamos dos de dividendo para comenzar la división y comprobamos que la cantidad sea menor a la del divisor.

3. Pensamos un número que multiplicado por 17 se acerque lo máximo posible a 32. Sabemos que 1 × 17 = 17 y 2 × 17 = 34 y es mayor que 32. Así que colocamos el 1 en el cociente, escribimos el producto debajo del 32 y restamos 32 − 17 = 15.

4. Bajamos el siguiente dígito del dividendo, en este caso el 3:

5. Buscamos un número que multiplicado por 17 sea igual o se acerque lo máximo posible a 153. En este caso sería 9, porque 17 × 9 = 153. Luego restamos el producto. Como 153 − 153 = 0 no seguimos la división y el resto de esta es cero, lo que significa que es exacta.

Podemos escribir que 323 ÷ 17 = 19.

Divisiones no exactas

Las divisiones no exactas son aquellas que tienen un resto distinto de cero. El procedimiento para resolverlas es igual al anterior lo único que cambia es que la división termina cuando el resto obtenido es menor al divisor. Observemos el siguiente ejemplo:

Podemos escribir esta división de la siguiente forma:

5.584 ÷ 24 = 232 y resto = 16.

Historia de los símbolos matemáticos

Muchos países en la Antigüedad utilizaban abreviaturas para indicar algunas operaciones matemáticas. Los italianos, por ejemplo, utilizaban una “p” y una “m” para indicar la suma y la resta (plus y minus, en latín). Luego se impuso el uso de la abreviatura alemana ­”+” y “−”. Estos símbolos se usaron por primera vez en un libro alemán de Widman en 1489.

El primer símbolo que se utilizó para la multiplicación fue “×”, utilizado por Oughtred en 1631. Varios años después Leibniz impuso el punto “·” como símbolo de la multiplicación porque decía que el símbolo que se usaba era fácil de confundir con la letra equis “x”.

Fibonacci, en el siglo XIII, creó la barra horizontal para las fracciones. Esta separaba el numerador del denominador. En 1845, De Morgan ideó la barra oblicua (/) para denotar a la división. Antes de la barra oblicua, Rahn inventó para la división el signo ÷. Los dos puntos (:) los introdujo Leibniz en el caso de que se quisiese escribir una división en una sola línea.

¡A practicar!

1. Resuelve las siguientes adiciones y sustracciones.

a) 3.005.078 + 5.119.839 = 

Solución
8.124.917

b) 4.313.528 − 499.999 = 

Solución
3.813.529

c) 27.521.666 − 14.124.917 = 

Solución
13.396.739

d) 187.324.949 + 153.286.084 = 

Solución
340.611.033

2. Resuelve las siguientes multiplicaciones.

a) 2.321.231 × 231 = 

Solución
536.204.361

b) 1.639.121 × 452 = 

Solución
740.882.692

c) 3.141.243 × 221 = 

Solución
694.214.703

d) 796.467 × 734 = 

Solución
584.606.778

3. Resuelve las siguientes divisiones.

a) 48.321.564 : 12 = 

Solución
4.026.797

b) 240.526 : 18 = 

Solución
13.362 y su resto es 10.

c) 451.542 : 42 = 

Solución
10.751

d) 2.795.615 : 26 = 

Solución
107.523 y su resto es 17.

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los números naturales y sus propiedades”

El siguiente artículo destacado explica cuáles son las principales propiedades de las operaciones básicas en números naturales.

VER

Artículo “Suma y resta utilizando el algoritmo de descomposición”

Este artículo explica uno de los métodos para resolver sumas y restas que se fundamenta en la descomposición de un número de acuerdo a los valores posicionales de sus cifras.

VER

Artículo “Divisiones por dos o más cifras”

Este artículo explica uno de los métodos usados para realizar divisiones de dos o más cifras.

VER

CAPÍTULO 6 / TEMA 4 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿qué aprendimos?

REPRESENTACIÓN DE DATOS

Podemos representar datos en gráficos y tablas. Los gráfico de barras se utilizan para representar información numérica en un sistema de ejes coordenados: en el eje horizontal ubicamos las categorías y en el eje vertical los datos numéricos. Otro tipo de gráfico es el lineal, el cual sirve para comparar datos, representar la frecuencia de ciertas variables y mostrar la evolución o cambios que le ocurren a un fenómeno. También están los gráficos circulares que representan variables cualitativas por medio de porcentajes y porciones. Por otro lado están los pictogramas que se construyen igual que el diagrama de barras pero se sustituyen los rectángulos por dibujos.

Múltiples gráficos estadísticos muestran el crecimiento de la población mundial gracias a los avances en la ciencia, la higiene y la medicina.

cOMBINACIONES

Las combinaciones son una forma de agrupar elementos de un conjunto sin importar el orden. Por ejemplo, cada vez que nos vestimos hacemos combinaciones de camisas, pantalones y zapatos. Las tablas de doble entrada permiten analizar los datos y combinarlos de todas las maneras posibles. Para resolver algunos problemas combinatorios también es posible utilizar los diagramas de árbol que permiten visualizar todas las formas posibles de combinar todos los elementos.

El cubo de Rubik posee millones de combinaciones posibles.

probabilidad

La probabilidad sirve para predecir de la mejor manera si un suceso puede ocurrir o no. A los fenómenos predecibles se los llama determinísticos; a los que no se pueden predecir, se los denomina aleatorios. Algunos fenómenos aleatorios pueden ser mas probables que otros, y esta probabilidad puede ser calculada matemáticamente. Por otra parte, si deseamos saber el valor característico de un conjunto, podemos calcular su media aritmética o promedio, que se obtiene al sumar los elementos de una muestra y dividir el resultado por el total de elementos.

El juego de ruleta posee 38 números para jugar: la probabilidad que salga el número al que se jugó es de 1/38.

CAPÍTULO 6 / TEMA 3

pROBABILIDAD

Al lanzar una moneda al aire, ¿sabemos si saldrá cara o sello? Es seguro que la moneda caerá de un lado o del otro, pero no sabemos con exactitud cuál de esas dos opciones tendrá lugar. Por eso recurrimos a la probabilidad, la cual sirve para predecir de la mejor manera si un evento es posible o no.

fENÓMENOS aleatorios y deterministas

La probabilidad surgió de la necesidad de medir o determinar cuantitativamente la certeza o duda de que un fenómeno ocurra o no. A los fenómenos predecibles se los llama determinísticos; en cambio, a los fenómenos que están relacionados con el azar se los llama aleatorios.

Fenómenos aleatorios

Son los que suceden al azar y no es posible predecir su resultado. Ejemplos:

  • Al lanzar una moneda al aire se desconoce si al caer la cara superior será sello o cara.
  • Al lanzar un dado no es posible saber cuál de todas las caras quedará en la parte superior.

Fenómenos determinísticos

Son los que suceden con seguridad; es decir, son los fenómenos que al repetirse en las mismas condiciones producen los mismos resultados. Ejemplos:

  • Al arrojar un dado, el color que se observe en la cara superior siempre será el mismo.
  • La hora de apertura de un banco es siempre la misma.

Los juegos de azar y sus probabilidades

Los juegos de azar son eventos aleatorios de los cuales no se conocen sus resultados. Pierre Fermat y Blaise Pascal estudiaron estos juegos para darles una explicación matemática. Estudiaron lo que pasaba al realizar una misma acción al azar, como lanzar una moneda al aire, y observaron los resultados. Así apareció la teoría de la probabilidad, que trata de prever cuál será el resultado de un fenómeno determinado.

FENÓMENOS ALEATORIOS

Entre los fenómenos aleatorios hay suceso que son más o menos probables. Por ejemplo:

Marta hace girar esta ruleta y no sabe qué color saldrá cuando pare.

 

  • Como hay más zonas verdes que amarillas, es más probable que salga el color verde que el color amarillo.
  • Como hay menos zonas moradas que rojas, es menos probable que salga el color morado que el color rojo.
  • Como hay igual cantidad de zonas verdes y moradas, es igual de probable que salgan ambos colores.
  • El color rojo es el más probable que salga porque hay más zonas con ese color en toda la ruleta.
  • El color amarillo es el menos probable que salga porque hay menos zonas con ese color en toda la ruleta.

 

– Otro ejemplo:

José debe sacar una bola de esta caja con los ojos cerrados.

 

  • Como hay más bolas azules que verdes, sacar una bola azul es más probable que sacar una bola verde.
  • Como hay menos bolas amarillas que azules, sacar una bola amarilla es menos probable que sacar una bola azul.
  • Como hay la misma cantidad de bolas rojas y amarillas, sacar una bola roja es igual de probable que sacar una bola amarilla.

 

pROBABILIDAD DE OCURRENCIA DE UN FENÓMENO

Podemos determinar la probabilidad de ocurrencia de un acontecimiento si dividimos el número de casos favorables entre el número de casos igualmente posibles.

\boldsymbol{probabilidad = \frac{casos\: \: favorables}{casos \: \: posibles}}

– Ejemplo:

Observa esta ruleta.

 

Tiene 10 zonas con diferentes colores:

 

  • 5 son rojas.
  • 2 son amarillas.
  • 2 son verdes.
  • 1 es morada.

 

 

Cada color tiene una probabilidad distinta de salir tras hacer girar la ruleta:

La probabilidad de que salga una el color rojo es: \boldsymbol{\frac{5}{10}}

La probabilidad de que salga el color amarillo es: \boldsymbol{\frac{2}{10}}

La probabilidad de que salga el color verde es: \boldsymbol{\frac{2}{10}}

La probabilidad de que salga el color morado es: \boldsymbol{\frac{1}{10}}

 

El color con mayor probabilidad de salir es el rojo porque \boldsymbol{\frac{5}{10}} > \boldsymbol{\frac{2}{10}} > \boldsymbol{\frac{1}{10}}

¿Sabías qué?
La probabilidad de que caiga un rayo encima de una persona es de 1 entre 3 millones.

¡Es tu turno!

  • ¿Cuál es la probabilidad de que al lanzar un dado salga un número mayor a 4?
Solución

Posibles resultados: 1, 2, 3, 4, 5 y 6 → Hay 6.

Resultados mayores a 4: 5 y 6 → Hay 2.

La probabilidad de que salga un número mayor a 4 es \boldsymbol{\frac{2}{6}}.

  • ¿Cuál es la probabilidad de que al lanzar un dado salga un número par?
Solución

Posibles resultados: 1, 2, 3, 4, 5 y 6 → Hay 6.

Resultados pares: 2, 4 y 6 → Hay 3.

La probabilidad de que salga un número par es \boldsymbol{\frac{3}{6}}.

La paradoja del cumpleaños

Esta paradoja hace la siguiente pregunta: ¿cuántas personas se necesitan como mínimo para que sea más probable que al menos 2 de ellas cumplan años el mismo día? A pesar de lo que nos indica la intuición, si mantenemos el supuesto de que los años tienen 365 días, la paradoja establece que hacen falta 23 personas para que haya una probabilidad del 50 % de que al menos 2 de ellas cumplan años el mismo día. Y resulta que si en una fiesta hay más de 57 invitados, la probabilidad de que dos personas cumplan años el mismo día es del 99 % .

media o promedio

El la media aritméticapromedio se calcula al sumar todos los datos de un conjunto para luego dividirlo entre el número total de datos. Este resultado sirve como referencia, pues se considera el valor característico de un conjunto.

– Ejemplo:

En el equipo de fútbol del colegio, las estaturas (en centímetros) de 11 jugadores son las siguientes: 150, 160, 155, 153, 156, 158, 160, 157, 162, 165 y 154. ¿Cuál es la altura promedio de lo jugadores?

La media o promedio será igual a la suma de todas las estaturas divididas entre la cantidad de jugadores.

\boldsymbol{\overline{x}= \frac{164+160+165+163+156+161+160+161+162+165+165}{11}}

\boldsymbol{\overline{x}=\frac{1.782}{11}}

\boldsymbol{\overline{x}=162}

 

Los jugadores de fútbol tienen una estatura promedio de 162 centímetros.

 

– Otro ejemplo:

José registró las temperaturas máximas durante una semana en su ciudad. Los resultados fueron estos:

Lunes Martes Miércoles Jueves Viernes Sábado Domingo
21 °C 24 °C 21 °C 18 °C 18 °C 21 °C 24 °C

¿Cuál es la temperatura promedio?

\boldsymbol{\overline{x}=\frac{21+24+21+18+18+21+24}{7}}

\boldsymbol{\overline{x}= \frac{147}{7}}

\boldsymbol{\overline{x}=21}

 

La temperatura promedio registrada fue de 21 °C.

¡A practicar!

1. Clasifica los resultados de los siguientes eventos como determinísticos o aleatorios.

a) Sacar al azar una moneda de un monedero.

Solución
Aleatorio.

b) Introducir una bolsa de té a una taza con agua hirviendo.

Solución
Determinístico.

c) Elegir un número de lotería.

Solución
Aleatorio.

d) Lanzar un dado a un tablero de juego.

Solución
Aleatorio.

 

2. Observa la ruleta.

a) Completa con “más probable”, “menos probable” o “igual de probable”.

  • Es ____ que salga la letra A que la letra C.

Solución
Es más probable que salga la letra A que la letra C.
  • Es ____ que salga la letra I que la letra A.

Solución
Es menos probable que salga la letra I que la letra A.
  • Es ____ que salga la letra U que la letra C.

Solución
Es igual de probable que salga la letra U que la letra C.
  • Es ____ que salga la letra O que la letra J.

Solución
Es más probable que salga la letra O que la letra J.
  • Es ____ que salga la letra F que la letra A.

Solución
Es menos probable que salga la letra F que la letra A.
  • Es ____ que salga la letra J que la letra F.

Solución
Es igual de probable que salga la letra J que la letra F.

 

b) Responde.

  • ¿Es probable que salga una letra?
Solución
Sí.
  • ¿Es probable que salga un número?
Solución
No.
  • ¿Cuál es la probabilidad de que salga la letra A?
Solución
\boldsymbol{\frac{3}{10}}
  • ¿Cuál es la probabilidad de que salga la letra U?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra C?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra O?
Solución
\boldsymbol{\frac{2}{10}}
  • ¿Cuál es la probabilidad de que salga la letra F?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra I?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra J?
Solución
\boldsymbol{\frac{1}{10}}

 

3. Los pesos en kilogramos de 15 amigos son: 32, 30, 27, 32, 27, 30, 27, 26, 25, 22, 25, 32, 29, 25 y 31. ¿Cuál es el peso medio de estos amigos?

Solución

\boldsymbol{\overline{x}=\frac{32+ 30+ 27+ 32+ 27+ 30+ 27+ 26+ 25+ 22+ 25+ 32+ 29+ 25+31}{15}}

\boldsymbol{\overline{x}=\frac{420}{15}}

\boldsymbol{\overline{x}=28}

El peso medio de los amigos es 28 kilogramos.

RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Este recurso te permitirá complementar la información sobre probabilidad, fenómenos determinísticos y aleatorios y tipos de sucesos, entre otros temas.

VER

CAPÍTULO 6 / TEMA 2

combinaciones

Las combinaciones forman parte de nuestra vida: combinamos el café con la leche en el desayuno, las frutas para una ensalada, o la ropa cuando nos vestimos. En ninguno de estos casos el orden de los elementos importa, por lo que pueden agruparse de distintas maneras, dos de ellas son las tablas de doble entrada y los diagramas de árbol.

¿Qué son las combinaciones?

Las combinaciones son una forma de agrupar elementos de un conjunto sin importar el orden. Por ejemplo, una ensalada es una combinación de verduras como cebolla, lechuga y tomate. No importa el orden en el que coloques las verduras, la ensalada será la misma.

Lo mismo sucede si vamos a una heladería. Si hay vasos y conos; y además, solo tienen tres sabores para escoger: fresa, chocolate y vainilla, podemos hacer varias combinaciones, como un cono con helado de fresa o una vaso con helado de vainilla.

Podemos representar estos arreglos por medio de tablas de doble entrada o diagramas de árbol.

¿Sabías qué?
El cubo de Rubik tiene más de 40 trillones de combinaciones.

Tablas de doble entrada

Las tablas de doble entrada son una forma gráfica de analizar los datos y combinarlos de todas las maneras posibles. Estas tablas ordenan los elementos para poder ilustrar todas las combinaciones.

– Ejemplo:

Esta tabla muestra las posibles combinaciones entre los conos, los vasos y los tres sabores de helados de la heladería.

En total hay 6 posibles combinaciones porque:

2 recipientes × 3 sabores = 6 combinaciones posibles

 

– Otro ejemplo:

Un grupo de niños quieren comprar artículos de playa: cubo, pala y rastrillo; y a estos elementos los venden de tres diferentes colores. Para saber cuántos artículos de colores distintos pueden comprar, deben comparar los artículos y los colores.

Hay 9 combinaciones posibles porque:

3 colores × 3 artículos = 9 combinaciones posibles

El sistema Braille

El sistema Braille les permite a las personas no videntes poder leer artículos, libros y cuentos, entre otros textos. Este sistema está compuesto por la combinación de seis puntos en relieve que permiten obtener 64 combinaciones diferentes, incluida la que no tiene ningún punto en relieve que se utiliza para separar palabras y números.

diagrama de árbol

Los diagramas de árbol son formas gráficas de contar las posibles combinaciones que pueden surgir entre varios elementos. En ellos podemos usar dibujos, letras o palabras.

– Ejemplo:

Este diagrama de árbol muestra las posibles combinaciones entre los conos, los vasos y los tres sabores de helados posibles en la heladería.

           

Hay 6 combinaciones posibles porque:

2 recipientes × 3 sabores = 6 combinaciones posibles

 

 

– Otro ejemplo:

Tomás tiene 2 pantalones, 2 camisas y 2 corbatas para vestirse, ¿cuales son las posibles opciones?

                       

Tomás tiene 8 combinaciones posibles porque:

2 pantalones × 2 camisas × 2 corbatas = 8 combinaciones posibles

 

Cuadro de Punnett

Las combinaciones de genes otorgan a un organismo rasgos particulares. Estas se representan en el cuadro de Punnett, el cual determina todos los posibles arreglos de genes que se pueden producir en el cruce entre dos organismos. Los rasgos distintos que tenemos se deben a la unión entre dos copias de un gen, que provienen de nuestros progenitores.

¡A practicar!

1. En la siguiente tabla se encuentran los útiles que compró María para el comienzo de clases. ¿Cuántas combinaciones de útiles y colores compró?

Solución
Puede armar 12 combinaciones.

2. Todas las mañanas, la mamá de Camila le prepara el desayuno y ella puede elegir algunas opciones: puede combinar una bebida con algo dulce para acompañar. Observa las opciones de Camila y elabora diagramas de árbol para saber cuántas combinaciones tiene para armar su desayuno:

Solución
Camila tiene 9 combinaciones para desayunar.

RECURSOS PARA DOCENTES

Artículo “Formas de agrupar”

Este recurso te permitirá profundizar la información sobre el diagrama de árbol.

VER

Artículo “Combinatoria”

El siguiente recurso complementará la información sobre combinaciones y otros temas relacionados.

VER