CAPÍTULO 5 / REVISIÓN

MOVIMIENTOS| ¿qué aprendimos?

Características del movimiento

Para describir un movimiento, es preciso tener un sistema de referencia, es decir, unos ejes coordenados respecto a los cuales se pueda fijar la posición del móvil en cada instante. Este sistema puede ser fijo o móvil, y mide posición y otras magnitudes físicas de un sistema físico y de mecánica. Se denomina trayectoria al camino recorrido por un móvil a lo largo del tiempo, mientras que el desplazamiento de un móvil desde un punto P0 a un punto P1 es un vector que tiene su origen en el punto P0 y su extremo en el punto P1. Los movimientos se clasifican según su trayectoria, rapidez y orientación.

Todo ser vivo está en constante movimiento.

Rapidez, velocidad y aceleración

La rapidez, la velocidad y la aceleración son magnitudes cinemáticas con propiedades diferentes. La rapidez indica la cantidad de distancia que logra recorrer un móvil en un intervalo de tiempo. La velocidad proporciona la rapidez y agrega también la dirección y el sentido en el cual se desplaza el móvil. El análisis de la velocidad se divide en dos partes importantes: la velocidad media y velocidad instantánea. La velocidad constante es aquella donde el modulo y la dirección no cambian a través del tiempo y sólo aplica para el Movimiento Rectilíneo Uniforme (MRU).  La aceleración se define como el aumento de velocidad durante un intervalo de tiempo.

La rapidez es una magnitud escalar, la velocidad es una magnitud vectorial.

Tipos de movimientos

Se dice que un cuerpo está en movimiento cuando cambia de posición, pero depende de su trayectoria el tipo de movimiento que realice. El movimiento rectilíneo debe su nombre a que su trayectoria es una línea recta, y son constantes la trayectoria y la dirección. El movimiento rectilíneo uniforme (o simplemente movimiento uniforme) es el que tiene un móvil que se mueve en línea recta con velocidad constante. En el movimiento variado la velocidad no es constante, mientras que en el uniforme sí lo es, por ello la trayectoria en éste último siempre será rectilínea mientras que en el variado será rectilínea y curvilínea. En la caída libre el móvil cae de forma vertical desde cierta altura sin ningún obstáculo. El movimiento curvilíneo se llama de esta manera ya que su trayectoria es una línea curva, que puede ser circular, parabólica, elíptica y ondulatoria.

Los movimientos se diferencian de acuerdo a la trayectoria que el cuerpo haya tomado.

CAPÍTULO 5 / TEMA 3

Tipos de movimiento

Se dice que un cuerpo está en movimiento cuando cambia de posición, pero depende de su trayectoria el tipo de movimiento que realice. En la física hay varios tipos de movimientos que a continuación estudiaremos.

Ver infografía

Descripción del movimiento

A diario somos parte de un entorno que se encuentra en movimiento, lo que se evidencia en nuestras horas de luz y oscuridad por los movimientos del planeta Tierra en su eje de rotación, así como los movimientos de traslación en torno al Sol durante el año y las diferentes estaciones; por lo que todo lo que está en el planeta se mueve y de allí la formación de diferentes fenómenos, como las mareas, las corrientes marinas, el viento, los terremotos y la deriva continental.

¿Sabías qué?
El movimiento de una bala es parabólico, es el ojo del observador quien le da el nombre de Movimiento Rectilíneo Uniformemente Variado (MRUV).

Este proceso físico también se demuestra a niveles microscópicos, en el movimiento de los cromosomas durante la división celular y en el movimiento de los electrones que orbitan los núcleos de los átomos. Sin embargo, a pesar de saber que ningún objeto, factor abiótico o ser vivo está inmóvil, se debe partir de un punto o posición para poder facilitar el estudio del movimiento, este punto se conoce como sistema de referencia, por lo que se dice que el movimiento de un cuerpo se da al cambiar su posición con respecto a un sistema de referencia.

El punto medio del sistema de coordenadas es cero.

Imaginemos que se deja caer un balón desde una altura de 1 metro y que se necesita estudiar el recorrido del movimiento. Para ello se hace una representación gráfica del movimiento a través del sistema de ejes de coordenadas, el cual consta de dos rectas perpendiculares que convergen en un punto denominado origen. La recta vertical corresponde al eje de las ordenadas descrito con la letra Y; y la recta horizontal corresponde al eje de las abscisas descrito con la letra X. Al representar gráficamente el ejemplo anterior podemos conocer la naturaleza del movimiento, es decir, que la dirección del movimiento es vertical, de arriba hacia abajo, por lo que el movimiento es rectilíneo.

El balón está en movimiento.

MOVIMIENTOS RECTILÍNEOS

El movimiento rectilíneo debe su nombre a que su trayectoria es una línea recta, es decir, cuando el móvil se desplaza en un solo sentido, con constante trayectoria y dirección, y no pasa por los mismos puntos del recorrido. Todos los cuerpos en caída libre tienen un movimiento rectilíneo.

Una carrera de 100 metros planos es un movimiento rectilíneo.

Movimiento rectilíneo uniforme (MRU)

Existe un movimiento en el que el vector velocidad es invariable en módulo, dirección y sentido: el movimiento rectilíneo uniforme (o simplemente movimiento uniforme), que es el que tiene un móvil que se mueve en línea recta con velocidad constante.

Si tenemos los puntos P0 y P de la trayectoria que recorre un móvil con movimiento uniforme y tomamos esa recta como eje x, esos puntos quedarán fijados con una única coordenada: su abscisa. Los vectores:

 

Serán:

Y la velocidad media entre P0 y P será:

Como la velocidad instantánea es constante, podemos escribir:

De donde X= X0  + v. (t – t 0)                                                                                                                                                                                                                                                                   

Si empezáramos a medir los tiempos cuando el móvil se halla en el punto P0, sería t0 = 0, y por lo tanto, x = x0 + v·t. Y si además tomásemos el origen de abscisas en el punto P0, se reduciría a x = v·t.

Movimiento rectilíneo uniformemente variado (MRUV)

Según la naturaleza de los movimientos pueden ser regulares o irregulares. El movimiento uniforme se refiere a cuando el móvil recorre distancias iguales en tiempos iguales, mientras que el movimiento variado es el caso contrario. Esto puede demostrarse al comparar el recorrido constante de las manecillas de un reloj al dar la vuelta completa siempre a los 60 minutos, y el recorrido irregular de los atletas de 100 metros planos en las Olimpíadas, en donde todos tienen récords de tiempo diferente a una misma distancia.

La rapidez en el movimiento es una magnitud escalar que permite determinar mediante una comparación si un movimiento es rápido o lento con respecto a otro, por lo que dependerá de la distancia y del tiempo que tarda en realizar el recorrido. Si se repitiese el ejemplo del balón de básquet, el móvil, es decir el balón, realiza desplazamientos iguales en diferentes tiempos con cambios constantes en la rapidez, por lo que el movimiento es variado. En el movimiento variado la velocidad no es constante, mientras que el uniforme sí lo es, por ello la trayectoria en éste último siempre será rectilínea mientras que en el variado será rectilínea y curvilínea.

Un vehículo realiza un MRUV ya que su velocidad no es constante.

La caída libre

En este movimiento, el móvil cae de forma vertical desde cierta altura sin ningún obstáculo. Es un tipo de movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) porque su aceleración es constante y coincide con el valor de la gravedad.

El lanzamiento de paracaídas es una caída libre y además un MRUV.

La gravedad

Al encontrarse cerca de la superficie terrestre, los cuerpos experimentan una fuerza de atracción que les confiere una aceleración. Cuando una manzana cae de un árbol, lo hace por acción de dicha fuerza. En el caso de la Tierra, la gravedad puede considerarse constante y su dirección es hacia abajo. Generalmente se designa con la letra g y sus valores aproximados para algunos sistemas de medición son:

Sistema M.K.Sg = 9,8 m/s²

Sistema c.g.sg = 980 cm/s²

Sistema inglésg = 32 ft/s² (pies por segundo)

¿Sabías qué?
En 1687, el físico, filósofo, teólogo, inventor, alquimista y matemático inglés Isaac Newton propuso la ley de gravitación universal o teoría de la gravedad.

MOVIMIENTO CURVILÍNEO

El movimiento curvilíneo se llama de esta manera ya que su trayectoria es una línea curva, que puede ser circular, parabólica, elíptica y ondulatoria.

Movimiento circular: en el movimiento circular la trayectoria siempre es una circunferencia, y son variables el desplazamiento y el sentido del móvil, que repite su trayectoria al pasar por los mismos puntos. Un ejemplo de este movimiento lo observamos en las ruedas de una bicicleta en movimiento o una piedra unida a una cuerda girando.

En un movimiento circular, si la rapidez es constante, la velocidad a cada momento cambia de dirección.

Movimiento parabólico: en este tipo de movimiento la trayectoria siempre es una parábola, un arco con sentido variable; un ejemplo del movimiento curvilíneo parabólico se observa en un chorro de agua que sale de un conducto.

Este movimiento es realizado por un objeto en dos dimensiones o sobre un plano.

Movimiento elíptico: debe su nombre a que la trayectoria es una elipse, es decir, una curva cerrada y simétrica como la que se forma por la órbita que se observa de la Tierra alrededor el Sol. El desplazamiento y sentido se mantienen constantes, pasa por los mismos puntos del recorrido.

El movimiento de la Tierra alrededor del Sol es elíptico y produce las estaciones del año.

Movimiento oscilatorio: este movimiento se da cuando la trayectoria, en este caso una curva, se repite mientras varía el sentido sucesivamente. Un ejemplo se ve en el vaivén de un columpio, en donde el movimiento está impulsado por el peso del móvil.

Este movimiento se produce en torno a un punto de equilibrio estable.

Movimiento ondulatorio: es aquel en donde una oscilación se propaga de un punto a otro, por lo que se transporta energía, siendo su trayectoria rectilínea, mientras que el desplazamiento y sentido permanecen hasta que la onda disminuye o presenta un obstáculo. El movimiento ondulatorio puede definirse también como un movimiento vibratorio, por lo que puede darse en los diferentes estados de la materia: sólido, líquido y gaseoso. Un ejemplo de este movimiento se da al caer una gota de agua en un espacio acuático en reposo.

RECURSOS PARA DOCENTES

Artículo “Dinámica”

Artículo destacado donde se diferencia la cinemática de la dinámica.

VER

Artículo “Lanzamiento vertical”

Artículo destacado con más información sobre este movimiento inverso a la caída libre.

VER

El movimiento mecánico

Nos movemos, vamos de un lugar para otro y, a veces, también desplazamos objetos. La vida a diario nos lleva a movernos, de la casa a la escuela, del trabajo al banco, del cine a un restaurante, etc. Veamos cómo explica la física estos tipos de movimientos.

En física clásica movimiento mecánico es el fenómeno físico que se define como todo cambio de posición en el espacio que experimentan los cuerpos de un sistema con respecto a ellos mismos o a otro cuerpo que se toma como referencia. Todo cuerpo en movimiento describe una trayectoria. La descripción y estudio del movimiento de un cuerpo exige determinar su posición en el espacio en función del tiempo. Para ello es necesario un sistema de referencia o referencial.

Bien, ya explicamos el concepto de movimiento mecánico y los aspectos que se estudian del mismo. Ahora vamos a identificarlos uno a uno.

Dijimos que el movimiento se estudia en función de un sistema de referencia; es decir, de un sistema que permita determinar la posición en el espacio (metros) y en el tiempo (segundos). De este modo podremos establecer, dónde empieza el movimiento, por qué lugares pasa y en qué punto se detiene.

Gráfico de dos dimensiones espaciales.

Un sistema de referencia está formado por ejes de coordenadas y por un punto tomado como posición de origen.
Por ejemplo:

Teniendo en cuenta el sistema de referencia, un objeto, por ejemplo un auto, se mueve cuando cambia su posición inicial a medida que pasa el tiempo. Continuando con el ejemplo, supongamos que el auto recorre 800 metros. En este punto podemos analizar su desplazamiento y la trayectoria. Ambos conceptos son diferentes.

La trayectoria es el camino o curva que recorre el auto, en cambio el desplazamiento es el vector que va del punto inicial al final de una trayectoria. Hay que tener en cuenta que si el auto se desplaza en línea recta, entonces la trayectoria y el desplazamiento coincidirán.

Tipos de movimientos

A continuación vamos a detallar una serie de movimientos, en primer lugar vamos a tener en cuenta el tipo de trayectoria que describen; es decir, si es recta (rectilínea) o curva (curvilínea).

Con respecto a las trayectorias curvilíneas podemos citar los siguientes movimientos: elípticos, circulares y parabólicos.

Movimiento rectilíneo uniforme (MRU)

Trayectoria: recta.
Velocidad: constante.
Aceleración: nula porque no hay cambio de velocidad.

Por ejemplo: ciclistas que avanzan en un línea recta a velocidad contante. La aceleración es nula porque la velocidad no varía. Siempre van a 20 km/h.

El tren bala cuando se mueve a su velocidad crucero (constante) es un ejemplo de MRU.

Movimiento rectilíneo uniformemente variado (MRUV)

Trayectoria: recta.
Velocidad: variada.
Aceleración: constante.

Debido a que la velocidad varía, por ejemplo de 20 km/h a 28 km/h, aparece otro concepto que se llama aceleración. Esta última nos dice cuán rápida cambia la velocidad un móvil. Está relacionada con el cambio de velocidad y el tiempo empleado en realizar ese cambio.

Por ejemplo: Podemos mencionar dos ejemplos clásicos, caída libre o lanzamiento vertical.

En el caso de la caída libre, el movimiento es provocado por la atracción gravitatoria de la Tierra (9,8 m/s2). Por tanto la velocidad del cuerpo en caída libre aumentará 9,8 m/s por cada segundo transcurrido.

Tiro vertical, ejemplo de MRUV.

En relación al lanzamiento vertical, la atracción gravitatoria actuará del mismo modo que en la caída libre. Por lo tanto si lanzamos una pelota hacia arriba, la velocidad del cuerpo irá disminuyendo gradualmente con una aceleración constante de 9,8 m/s2. Este movimiento es simétrico porque la pelota llegará a una altura máxima en un tiempo determinado y luego bajará a la posición inicial en el mismo tiempo que tardó en ascender, siempre y cuando no se tenga en cuenta el roce con el aire y otros factores ambientales.

Movimiento circular uniforme

Trayectoria: circunferencia.
Velocidad: constante.
Aceleración: constante.

Leyes de Newton

Para los fenómenos de la vida diaria, las tres leyes del movimiento de Newton constituyen la piedra angular de la dinámica (el estudio de las causas del cambio en el movimiento).

Primera ley: Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas externas impresas sobre él.

Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas externas cuyo resultante no sea nulo sobre él.

Segunda ley: El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea de acción a lo largo de la cual aquella fuerza se imprime.

Esta ley explica qué ocurre si sobre un cuerpo en movimiento actúa una fuerza neta. La fuerza modificará el estado de movimiento, cambiará la velocidad en módulo o dirección.

Tercera ley: Con toda acción ocurre siempre una reacción igual magnitud y sentido contrario: o sea, las acciones mutuas de dos cuerpos siempre son iguales en magnitud y dirigidas en sentido opuesto.

Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad y dirección, pero de sentido contrario sobre el cuerpo que la produjo. Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, y producen en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley.