CAPÍTULO 5 / TEMA 1

Características del movimiento

Todo movimiento presenta características particulares que pueden ser definidas por las leyes que postuló Sir Isaac Newton. La cinemática es la rama de la ciencia que estudia este fenómeno físico observable en todo el universo. 

Todo ser vivo está en constante movimiento.

Las leyes de Newton

En 1687, el físico, filósofo, teólogo, inventor, alquimista y matemático inglés Isaac Newton, publicó su famosa obra Philosophiæ naturalis principia mathematica (Principios matemáticos de la filosofía natural), donde dio a conocer al mundo sus descubrimientos sobre mecánica y cálculo matemático. En este libro, que es considerado el más importante de la historia científica, Newton estableció las tres leyes que rigen los movimientos. Estas son: la ley de inercia, el principio fundamental de la dinámica y el principio de acciónreacción.

¿Sabías qué?
El primero en estudiar el movimiento fue Aristóteles, quien formuló la teoría de la caída de los cuerpos en la que postulaba que un cuerpo pesado cae más rápido que uno ligero.

Primera ley de Newton o ley de inercia

La primera ley de Newton o ley de inercia establece que: “todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él”. Es decir, todo cuerpo permanece en reposo a menos de que se aplique una fuerza neta sobre él.

Cuando se habla de reposo se tiene en cuenta un sistema de referencia.

Segunda ley de Newton o principio fundamental de la dinámica

La segunda ley de Newton o principio fundamental de la dinámica señala que: “el cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime”. Esto quiere decir que la aceleración de un cuerpo es proporcional a la fuerza neta aplicada sobre él e inversamente proporcional a su masa.

La energía generada a través de los molinos de viento depende del movimiento del aire.

Tercera ley de Newton o principio de acción-reacción

La tercera ley de Newton o principio de acciónreacción establece que: “con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto”. Esto quiere decir que cuando un cuerpo ejerce una fuerza sobre un segundo cuerpo, este último ejercerá una fuerza de igual magnitud pero en sentido contrario a la primera.

Ver infografía

Sistema de referencia

Para describir un movimiento es preciso tener un sistema de referencia, es decir, unos ejes coordenados respecto a los cuales se pueda fijar la posición del móvil en cada instante.

Un sistema de referencia mide posición y otras magnitudes físicas de un sistema físico y de mecánica.

Un sistema de referencia puede ser fijo o móvil. Si queremos describir el movimiento de un pasajero que camina por el pasillo de un vagón de tren mientras éste avanza en línea recta a 100 km/h, puede ser útil tomar un eje de abscisas ligado al vagón y, respecto a ese eje, diríamos que el pasajero se mueve, por ejemplo, a 5 km/h; pero podría interesarnos más tomar un eje de abscisas ligado a la vía del tren, y respecto a ese sistema de referencia la velocidad del pasajero sería de 105 km/h.

De hecho, los ejes ligados a la vía tampoco son fijos, ya que la propia Tierra también se mueve. Así pues, en realidad todos los movimientos son relativos. Pero en los problemas de cinemática corrientes, cuando no se especifica otra cosa, se sobreentiende que el movimiento se ha referido  un sistema O(xyz) ligado a la Tierra y, por lo tanto, en reposo con respecto a ésta.

¿Sabías qué?
La trayectoria descrita por un objeto depende del sistema de referencia usado, que se elige de forma arbitraria por el observador y casi siempre el ojo del observador es el origen del sistema de coordenadas usado en el sistema de referencia.

Si describimos un movimiento respecto a dos sistemas de referencia distintos, la ecuación de la curva de la trayectoria será distinta y, si además se trata de dos sistemas de referencia que están en movimiento relativo uno respecto a otro, también la propia curva será en general distinta.

Respecto a un sistema de referencia, la posición del móvil en cada instante está fijada por su vector de posición, que es variable en función del tiempo.

Si expresamos ese vector mediante sus componentes, éstas también serán funciones del tiempo:

Para cada valor de t tendremos la posición del móvil en ese instante y la trayectoria es la curva que describe el extremo del vector:

Ejemplo: el vector desplazamiento desde el punto P 0 al punto P se puede expresar como la diferencia de dos vectores: el vector de posición de P y el vector de posición de P 0, esto es:

Existen dos tipos de sistemas de referencia: sistema de referencia inercial y sistema de referencia no inercial.

Sistema de referencia inercial

El sistema de referencia es inercial cuando se cumplen las leyes de movimiento establecidas por Newton. Es decir, cuando la variación del momento lineal del cuerpo o del objeto es igual a la sumatoria de las fuerzas aplicadas sobre él.

Sistema de referencia no inercial

El sistema de referencia es no inercial cuando no se cumplen las leyes de Newton. Esto quiere decir que la variación del momento lineal del cuerpo o del objeto no es proporcional a la sumatoria de las fuerzas aplicadas sobre él.

Trayectoria y desplazamiento de un móvil

Se denomina trayectoria al camino recorrido por un móvil a lo largo del tiempo. Es decir, la trayectoria es el conjunto de las sucesivas posiciones ocupadas por el móvil. La medida de la longitud de esa trayectoria es lo que se denomina espacio. Así pues, el espacio es una magnitud escalar.

Es importante no confundir estos dos conceptos con el de desplazamiento. El desplazamiento de un móvil desde un punto P0 a un punto P1 es un vector que tiene su origen en el punto P0 y su extremo en el punto P1. El desplazamiento es independiente de la trayectoria: sólo depende de los puntos inicial y final.

Clasificación del movimiento

El movimiento se clasifica según trayectoria, rapidez y orientación.

Según la trayectoria, los movimientos son:

Movimiento rectilíneo: en el movimiento rectilíneo, la trayectoria del móvil es recta y la velocidad siempre lleva la misma dirección. Este se clasifica en:

  • Movimiento rectilíneo uniforme (MRU): trayectoria recta, velocidad constante y aceleración nula porque no hay cambio de velocidad.  Por ejemplo: ciclistas que avanzan en línea recta a velocidad constante. La aceleración es nula porque la velocidad no varía, siempre van a 20 km/h.
En el MRU el móvil se desplaza en un solo sentido, con trayectoria constante.
  • Movimiento rectilíneo uniformemente variado (MRUV): trayectoria recta, velocidad variada y aceleración constante.

Debido a que la velocidad varía, por ejemplo de 20 km/h a 28 km/h, aparece otro concepto que se llama aceleración, que nos indica cuán rápido cambia la velocidad un móvil. Está relacionada con el cambio de velocidad y el tiempo empleado en realizar ese cambio.

Por ejemplo, la caída libre o el lanzamiento vertical.  En el caso de la caída libre, el movimiento es provocado por la atracción gravitatoria de la Tierra (9,8 m/s2). Por lo tanto, la velocidad del cuerpo en caída libre aumentará 9,8 m/s por cada segundo transcurrido.

El lanzamiento de paracaídas es un MRUV.

Movimiento curvilíneo: el movimiento curvilíneo se llama de esta manera ya que su trayectoria es una línea curva que puede  ser circular, parabólica, elíptica y ondulatoria.

  • Movimiento circular: en el movimiento circular la trayectoria siempre es una circunferencia, varía el desplazamiento y el sentido del móvil, repite su trayectoria al pasar por los mismos puntos. Un ejemplo de este movimiento lo observamos en las ruedas de una bicicleta en movimiento y en una piedra unida a una cuerda que gira, entre otros.
Aunque parezca simple, en el movimiento de un ciclista se pueden medir una gran cantidad de magnitudes.
  • Movimiento parabólico: en este tipo de movimiento la trayectoria siempre es una parábola, un arco con sentido variable, es decir, un arco en el que el móvil realiza su recorrido sin pasar por los mismos puntos. Un ejemplo del movimiento curvilíneo parabólico se observa en una chorro de agua que sale de un conducto.
El chorro de agua describe un movimiento curvilíneo parabólico.
  • Movimiento elíptico: este movimiento debe su nombre a que la trayectoria es una elipse, es decir, una curva cerrada y simétrica como la que se forma por la órbita de la Tierra alrededor el Sol. El desplazamiento y el sentido se mantienen constantes, el móvil pasa por los mismos puntos del recorrido.
El movimiento de la Tierra alrededor del Sol es elíptico y produce las estaciones del año.
  • Movimiento oscilatorio: este movimiento se da cuando la trayectoria, en este caso una curva, se repite pero varía el sentido sucesivamente, y es  constante en la dirección o desplazamiento del móvil. Un ejemplo de este movimiento se ve en el vaivén de un columpio, en donde el movimiento está impulsado por el peso del móvil.
Este movimiento de un columpio se produce en torno a un punto de equilibrio estable.
  • Movimiento ondulatorio: es aquel en donde una oscilación se propaga de un punto a otro, por lo que se transporta energía con trayectoria rectilínea, mientras que el desplazamiento y sentido permanecen hasta que la onda disminuye o presenta un obstáculo. El movimiento ondulatorio puede definirse también como un movimiento vibratorio por lo que puede darse en los diferentes estados de la materia: sólido, líquido y gaseoso. Un ejemplo de este movimiento se da al caer una gota de agua en un espacio acuático en reposo.
En movimiento ondulatorio la energía se propaga sin transferencia de materia.

Según su rapidez, un movimiento puede ser:

Uniforme: sucede cuando el móvil recorre distancias iguales en tiempos iguales.

Variado: sucede cuando el móvil recorre distancias iguales en tiempos distintos.

Esto puede demostrarse al comparar el recorrido constante de las manecillas de un reloj al dar la vuelta completa siempre a los 60 minutos, y el recorrido irregular de los atletas de 100 metros planos en las Olimpíadas, en donde todos tienen récords de tiempo diferente a una misma distancia.

En el movimiento uniforme la velocidad es constante.

La rapidez o velocidad en el movimiento es una magnitud escalar que permite determinar mediante una comparación si un movimiento es rápido o lento con respecto a otro, por lo que dependerá de la distancia y el tiempo que el móvil tarda en realizar el recorrido. En el movimiento variado la velocidad no es constante mientras que en el uniforme sí lo es, por ello la trayectoria en éste último siempre será rectilínea mientras que en el variado será rectilínea y curvilínea.

La característica principal del movimiento variado es el cambio de la velocidad y dirección.

Según su orientación, un movimiento puede ser:

De traslación pura: la traslación es el movimiento en el cual se modifica la posición de un objeto en contraposición a la rotación. 

De rotación pura: es el cambio de orientación de un cuerpo sobre un eje de referencia, de manera que el eje permanece fijo y el objeto gira sobre sí mismo cuando pasa por su centro de gravedad.

¿Sabías qué?
La Tierra tarda 23 horas y 56 minutos en dar una vuelta completa sobre su propio eje.
RECURSOS PARA DOCENTES

Artículo “Leyes y teorías astronómicas”

El siguiente artículo proporciona más información sobre los científicos y sus tratados sobre el movimiento.

VER

Artículo “Dinámica”

Este artículo profundiza la información sobre la dinámica y las leyes postuladas por Isaac Newton.

VER

 

CAPÍTULO 5 / REVISIÓN

MOVIMIENTOS| ¿qué aprendimos?

Características del movimiento

Para describir un movimiento, es preciso tener un sistema de referencia, es decir, unos ejes coordenados respecto a los cuales se pueda fijar la posición del móvil en cada instante. Este sistema puede ser fijo o móvil, y mide posición y otras magnitudes físicas de un sistema físico y de mecánica. Se denomina trayectoria al camino recorrido por un móvil a lo largo del tiempo, mientras que el desplazamiento de un móvil desde un punto P0 a un punto P1 es un vector que tiene su origen en el punto P0 y su extremo en el punto P1. Los movimientos se clasifican según su trayectoria, rapidez y orientación.

Todo ser vivo está en constante movimiento.

Rapidez, velocidad y aceleración

La rapidez, la velocidad y la aceleración son magnitudes cinemáticas con propiedades diferentes. La rapidez indica la cantidad de distancia que logra recorrer un móvil en un intervalo de tiempo. La velocidad proporciona la rapidez y agrega también la dirección y el sentido en el cual se desplaza el móvil. El análisis de la velocidad se divide en dos partes importantes: la velocidad media y velocidad instantánea. La velocidad constante es aquella donde el modulo y la dirección no cambian a través del tiempo y sólo aplica para el Movimiento Rectilíneo Uniforme (MRU).  La aceleración se define como el aumento de velocidad durante un intervalo de tiempo.

La rapidez es una magnitud escalar, la velocidad es una magnitud vectorial.

Tipos de movimientos

Se dice que un cuerpo está en movimiento cuando cambia de posición, pero depende de su trayectoria el tipo de movimiento que realice. El movimiento rectilíneo debe su nombre a que su trayectoria es una línea recta, y son constantes la trayectoria y la dirección. El movimiento rectilíneo uniforme (o simplemente movimiento uniforme) es el que tiene un móvil que se mueve en línea recta con velocidad constante. En el movimiento variado la velocidad no es constante, mientras que en el uniforme sí lo es, por ello la trayectoria en éste último siempre será rectilínea mientras que en el variado será rectilínea y curvilínea. En la caída libre el móvil cae de forma vertical desde cierta altura sin ningún obstáculo. El movimiento curvilíneo se llama de esta manera ya que su trayectoria es una línea curva, que puede ser circular, parabólica, elíptica y ondulatoria.

Los movimientos se diferencian de acuerdo a la trayectoria que el cuerpo haya tomado.

CAPÍTULO 5 / TEMA 2

Rapidez, velocidad y aceleración

La rapidez, la velocidad y la aceleración son magnitudes cinemáticas con propiedades diferentes. La rapidez y la aceleración varían de acuerdo al tipo de movimiento.

VER INFOGRAFÍA

Diferencia entre rapidez y velocidad

Cuando decimos que un vehículo se desplaza a 80 km por hora nos referimos a su rapidez, puesto que la misma nos indica la cantidad de distancia que logra recorrer en un intervalo de tiempo. En este caso, el vehículo recorre 80 km cada vez que pasa una hora. En el trascurso de dos horas duplicará la distancia recorrida a 160 km.

La tortuga puede ganarle a la liebre ya que su movimiento es rectilíneo uniforme.

Pero la rapidez nos brinda muy poca información de la posición del móvil. Si deseamos conocer en qué posición se encontrará un móvil en el futuro, se requiere que dispongamos de una información muy importante: la dirección que lleva el cuerpo.

Si no conocemos estos datos, no se logrará saber qué trayectoria puede seguir el móvil, debido a que existen infinitas a tomar. Por lo cual, para poder determinar con mayor exactitud la posición futura de un cuerpo se desarrolló el concepto de velocidad.

¿Sabías qué?
La rapidez en el sistema internacional se expresa en m/s, aunque también es común que se exprese en km/h.

La velocidad es un concepto más amplio que la rapidez, debido a que nos entrega la información que nos proporciona la rapidez y anexa también la dirección y el sentido en el cual se desplaza el móvil. A este tipo de medida se la conoce como vectorial, puesto que dispone de un valor escalar seguido de una dirección.

Regresemos al caso del vehículo que ya sabemos que se desplaza con una rapidez de 80 km por hora, pero además ahora diremos que se desplaza en la calle principal, que será su dirección, y con sentido hacia el norte, lo que convierte a toda la información en su velocidad. Con ella, podremos determinar qué posición tendrá al cabo de un tiempo.

Análisis vectorial de la velocidad

El análisis de la velocidad se divide en dos partes importantes: velocidad media y velocidad instantánea.

Velocidad media

La velocidad media de un móvil es la razón de su vector desplazamiento al intervalo de tiempo durante el cual se produce ese desplazamiento. Siendo el cociente de un vector por un escalar, la velocidad media es un vector cuya dirección y sentido son los mismos que los del vector desplazamiento. Si en el instante t0 el móvil está en el punto P0 y su vector de posición es r(t0), y en el instante t el móvil está en el punto P y su vector de posición es r(t), la velocidad media del móvil entre P0 y será:

Donde:

Δr = vector desplazamiento.

Δt = escalar tiempo.

Un concepto distinto es el de celeridad o rapidez media sobre la trayectoria, que es una magnitud escalar que se define como el cociente entre el espacio recorrido y el tiempo empleado en recorrerlo.

La velocidad media se puede definir como el desplazamiento dividido por el tiempo.

Velocidad instantánea

La velocidad instantánea es una magnitud vectorial que representa la velocidad que tiene el móvil en cierto instante o, lo que es lo mismo, en un punto determinado de su trayectoria. La velocidad instantánea debe representarse por un vector porque se trata de una magnitud que, además de ser cuantificable, tiene una orientación determinada. Veamos cómo se define.

Si en un instante t0 un móvil está en el punto P0 cuyo vector de posición es r(t0), una fracción de segundo más tarde, es decir, en el instante t0 + ∆t, estará en otro punto P cuyo vector de posición será r(t0 + ∆t).

Si consideramos cada vez fracciones de segundo más pequeñas, es decir, ∆t más pequeños, el punto P se va acercando al punto P0, y la dirección del vector desplazamiento r(t0 + ∆t) – r(t0) se va acercando a la recta tangente a la trayectoria en el punto P0.

¿Sabías qué?
La velocidad tiene las dimensiones de una longitud dividida por un tiempo [L]·[T]-1. En el Sistema Internacional y en el técnico se expresa en metros por segundo (m/s), y en el Sistema Cegesimal de Unidades (CGS) en centímetros por segundo (cm/s).

Velocidad constante y velocidad variable

La velocidad constante es aquella donde el módulo y la dirección no cambian a través del tiempo. Solo aplica para Movimiento Rectilíneo Uniforme (MRU).

Su fórmula es la siguiente:

La velocidad variable es aquella donde la rapidez o la dirección (o ambas) cambian en el transcurso del tiempo.

Sus fórmulas son las siguientes:

a) Aceleración

b) Tiempo

c) Velocidad inicial

d) Velocidad final

Aceleración y velocidad

La aceleración es mayor si la velocidad de un cuerpo presenta variaciones bruscas y es pequeña si la velocidad presenta variaciones de a poco. En cambio, la aceleración es cero cuando la velocidad es constante y es negativa cuando disminuye.

La aceleración

Se define como la variación de velocidad durante un intervalo de tiempo. Si un cuerpo se desplaza con una velocidad que no permanece constante, se define como un movimiento variado.

Un carro acelera a medida que aumenta su velocidad.

Tomemos el ejemplo de un vehículo que arranca con una velocidad específica, la cual incrementa a una tasa de 3 kilómetros por hora cada segundo. Se puede decir que el vehículo experimenta variaciones iguales en tiempos iguales. Esto indica que su movimiento es uniformemente variado. Si la razón de cambio de velocidad siempre aumenta, el movimiento es propiamente acelerado, pero si la tasa decae, con el tiempo se considera un movimiento desacelerado.

Al igual que la velocidad, la aceleración es una magnitud vectorial. Esto nos indica que, además de poseer un valor escalar, también dispone de una dirección. Por lo tanto, un cuerpo que sube aceleradamente no es igual a otro que cae con la misma magnitud. Sus unidades son normalmente un cociente entre las unidades de longitud y las unidades del tiempo al cuadrado (m/s2, km/s2, km/h2, etc.).

La aceleración es una magnitud vectorial con un valor escalar.

Las aceleraciones son principalmente causadas por la presencia o interacción de una fuerza interna o externa con un cuerpo, y sus expresiones matemáticas pueden ser expresadas en función del cambio de velocidad con relación al tiempo (a= V/t), o en relación entre la fuerza y la masa del cuerpo (a= F/m ). En el caso de los cuerpos que caen libremente, la fuerza que actúa sobre ellos y produce su aceleración es la gravedad. Como esta fuerza es constante sobre la superficie de la Tierra, la aceleración gravitacional siempre se mantiene uniforme, y en promedio tiene un valor de 9,8 m/s2.

RECURSOS PARA DOCENTES

Artículo “Conceptos fundamentales de la cinemática: componentes de la aceleración”

Este artículo destacado presenta más información sobre la aceleración respecto al movimiento curvilíneo.

VER

Artículo “Concepto físico del tiempo”

Este articulo destacado específica lo que es el tiempo como magnitud de carácter físico.

VER

CAPÍTULO 5 / EJERCICIOS

movimientos

Características del movimiento

1. Investiga sobre la frase “El movimiento es relativo” y explica lo que significa con tus propias palabras.

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

2. Escribe el  nombre del término al que corresponde cada definición.

  • ______________________________: punto o posición desde donde comienza el movimiento.
  • ______________________________: representación gráfica del movimiento.
  • ______________________________: eje de las coordenadas representado con la letra Y.
  • ______________________________: eje de las abcisas representado con la letra X.

rapidez, velocidad y aceleración

1. En las siguientes oraciones, responde con una V si es verdadero o F si es falso. En caso de ser falso, justifica la respuesta.

  • Cuando decimos que un vehículo viaja a 100 km/h nos referimos a su trayectoria.  (   )

______________________________________________________________________________________________________

  • La velocidad incluye la rapidez y la dirección de un móvil.  (   )

______________________________________________________________________________________________________

  • La medida de la velocidad se conoce como vectorial, ya que dispone de un valor escalar y una dirección.  (   )

______________________________________________________________________________________________________

  • En la velocidad media, la dirección y el sentido son diferentes.  (   )

______________________________________________________________________________________________________

2. Realiza con tus propias palabras una definición para cada una las siguientes opciones y explica de qué manera se puede graficar.

  • Velocidad instantánea: _______________________________________________________________________

______________________________________________________________________________________________.

  • Aceleración: _______________________________________________________________________________

______________________________________________________________________________________________.

3. Resuelve los siguientes ejercicios:

  • Un automóvil tiene una velocidad inicial de 30 m/s y 10 segundos más tarde alcanza una velocidad final de 60 m/s ¿Cuál es su aceleración?

Solución:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

  • Una pelota rueda hacia la derecha en línea recta y recorre una distancia de 15 m en 10 s. Calcular la rapidez.

Solución:

______________________________________________________________________________________________________

______________________________________________________________________________________________________

______________________________________________________________________________________________________

tipos de movimientos

1. Completa las siguientes oraciones:

  • En el movimiento rectilíneo el móvil se desplaza en un solo sentido, con _____________ y _____________ constante, y no pasa por los mismos puntos del recorrido.
  • Todos los cuerpos en caída libre tienen un movimiento _____________.
  • En el _________________________ la velocidad en la que se mueve el vector es invariable en módulo, dirección y sentido.
  • Al movimiento en el que el móvil cae en forma vertical desde cierta altura y sin obstáculos se lo llama ____________________.

2. Describe con un ejemplo los diferentes tipos de movimientos y dibuja su trayectoria.

  • Movimiento rectilíneo uniforme

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

  • Movimiento rectilíneo uniformemente variado

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

  • Caída libre

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

  • Movimiento parabólico

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

  • Movimiento circular

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

  • Movimiento ondulatorio

Ejemplo: ___________________________________________________________________________________.

Trayectoria:

 

 

CAPÍTULO 5 / TEMA 3

Tipos de movimiento

Se dice que un cuerpo está en movimiento cuando cambia de posición, pero depende de su trayectoria el tipo de movimiento que realice. En la física hay varios tipos de movimientos que a continuación estudiaremos.

Ver infografía

Descripción del movimiento

A diario somos parte de un entorno que se encuentra en movimiento, lo que se evidencia en nuestras horas de luz y oscuridad por los movimientos del planeta Tierra en su eje de rotación, así como los movimientos de traslación en torno al Sol durante el año y las diferentes estaciones; por lo que todo lo que está en el planeta se mueve y de allí la formación de diferentes fenómenos, como las mareas, las corrientes marinas, el viento, los terremotos y la deriva continental.

¿Sabías qué?
El movimiento de una bala es parabólico, es el ojo del observador quien le da el nombre de Movimiento Rectilíneo Uniformemente Variado (MRUV).

Este proceso físico también se demuestra a niveles microscópicos, en el movimiento de los cromosomas durante la división celular y en el movimiento de los electrones que orbitan los núcleos de los átomos. Sin embargo, a pesar de saber que ningún objeto, factor abiótico o ser vivo está inmóvil, se debe partir de un punto o posición para poder facilitar el estudio del movimiento, este punto se conoce como sistema de referencia, por lo que se dice que el movimiento de un cuerpo se da al cambiar su posición con respecto a un sistema de referencia.

El punto medio del sistema de coordenadas es cero.

Imaginemos que se deja caer un balón desde una altura de 1 metro y que se necesita estudiar el recorrido del movimiento. Para ello se hace una representación gráfica del movimiento a través del sistema de ejes de coordenadas, el cual consta de dos rectas perpendiculares que convergen en un punto denominado origen. La recta vertical corresponde al eje de las ordenadas descrito con la letra Y; y la recta horizontal corresponde al eje de las abscisas descrito con la letra X. Al representar gráficamente el ejemplo anterior podemos conocer la naturaleza del movimiento, es decir, que la dirección del movimiento es vertical, de arriba hacia abajo, por lo que el movimiento es rectilíneo.

El balón está en movimiento.

MOVIMIENTOS RECTILÍNEOS

El movimiento rectilíneo debe su nombre a que su trayectoria es una línea recta, es decir, cuando el móvil se desplaza en un solo sentido, con constante trayectoria y dirección, y no pasa por los mismos puntos del recorrido. Todos los cuerpos en caída libre tienen un movimiento rectilíneo.

Una carrera de 100 metros planos es un movimiento rectilíneo.

Movimiento rectilíneo uniforme (MRU)

Existe un movimiento en el que el vector velocidad es invariable en módulo, dirección y sentido: el movimiento rectilíneo uniforme (o simplemente movimiento uniforme), que es el que tiene un móvil que se mueve en línea recta con velocidad constante.

Si tenemos los puntos P0 y P de la trayectoria que recorre un móvil con movimiento uniforme y tomamos esa recta como eje x, esos puntos quedarán fijados con una única coordenada: su abscisa. Los vectores:

 

Serán:

Y la velocidad media entre P0 y P será:

Como la velocidad instantánea es constante, podemos escribir:

De donde X= X0  + v. (t – t 0)                                                                                                                                                                                                                                                                   

Si empezáramos a medir los tiempos cuando el móvil se halla en el punto P0, sería t0 = 0, y por lo tanto, x = x0 + v·t. Y si además tomásemos el origen de abscisas en el punto P0, se reduciría a x = v·t.

Movimiento rectilíneo uniformemente variado (MRUV)

Según la naturaleza de los movimientos pueden ser regulares o irregulares. El movimiento uniforme se refiere a cuando el móvil recorre distancias iguales en tiempos iguales, mientras que el movimiento variado es el caso contrario. Esto puede demostrarse al comparar el recorrido constante de las manecillas de un reloj al dar la vuelta completa siempre a los 60 minutos, y el recorrido irregular de los atletas de 100 metros planos en las Olimpíadas, en donde todos tienen récords de tiempo diferente a una misma distancia.

La rapidez en el movimiento es una magnitud escalar que permite determinar mediante una comparación si un movimiento es rápido o lento con respecto a otro, por lo que dependerá de la distancia y del tiempo que tarda en realizar el recorrido. Si se repitiese el ejemplo del balón de básquet, el móvil, es decir el balón, realiza desplazamientos iguales en diferentes tiempos con cambios constantes en la rapidez, por lo que el movimiento es variado. En el movimiento variado la velocidad no es constante, mientras que el uniforme sí lo es, por ello la trayectoria en éste último siempre será rectilínea mientras que en el variado será rectilínea y curvilínea.

Un vehículo realiza un MRUV ya que su velocidad no es constante.

La caída libre

En este movimiento, el móvil cae de forma vertical desde cierta altura sin ningún obstáculo. Es un tipo de movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) porque su aceleración es constante y coincide con el valor de la gravedad.

El lanzamiento de paracaídas es una caída libre y además un MRUV.

La gravedad

Al encontrarse cerca de la superficie terrestre, los cuerpos experimentan una fuerza de atracción que les confiere una aceleración. Cuando una manzana cae de un árbol, lo hace por acción de dicha fuerza. En el caso de la Tierra, la gravedad puede considerarse constante y su dirección es hacia abajo. Generalmente se designa con la letra g y sus valores aproximados para algunos sistemas de medición son:

Sistema M.K.Sg = 9,8 m/s²

Sistema c.g.sg = 980 cm/s²

Sistema inglésg = 32 ft/s² (pies por segundo)

¿Sabías qué?
En 1687, el físico, filósofo, teólogo, inventor, alquimista y matemático inglés Isaac Newton propuso la ley de gravitación universal o teoría de la gravedad.

MOVIMIENTO CURVILÍNEO

El movimiento curvilíneo se llama de esta manera ya que su trayectoria es una línea curva, que puede ser circular, parabólica, elíptica y ondulatoria.

Movimiento circular: en el movimiento circular la trayectoria siempre es una circunferencia, y son variables el desplazamiento y el sentido del móvil, que repite su trayectoria al pasar por los mismos puntos. Un ejemplo de este movimiento lo observamos en las ruedas de una bicicleta en movimiento o una piedra unida a una cuerda girando.

En un movimiento circular, si la rapidez es constante, la velocidad a cada momento cambia de dirección.

Movimiento parabólico: en este tipo de movimiento la trayectoria siempre es una parábola, un arco con sentido variable; un ejemplo del movimiento curvilíneo parabólico se observa en un chorro de agua que sale de un conducto.

Este movimiento es realizado por un objeto en dos dimensiones o sobre un plano.

Movimiento elíptico: debe su nombre a que la trayectoria es una elipse, es decir, una curva cerrada y simétrica como la que se forma por la órbita que se observa de la Tierra alrededor el Sol. El desplazamiento y sentido se mantienen constantes, pasa por los mismos puntos del recorrido.

El movimiento de la Tierra alrededor del Sol es elíptico y produce las estaciones del año.

Movimiento oscilatorio: este movimiento se da cuando la trayectoria, en este caso una curva, se repite mientras varía el sentido sucesivamente. Un ejemplo se ve en el vaivén de un columpio, en donde el movimiento está impulsado por el peso del móvil.

Este movimiento se produce en torno a un punto de equilibrio estable.

Movimiento ondulatorio: es aquel en donde una oscilación se propaga de un punto a otro, por lo que se transporta energía, siendo su trayectoria rectilínea, mientras que el desplazamiento y sentido permanecen hasta que la onda disminuye o presenta un obstáculo. El movimiento ondulatorio puede definirse también como un movimiento vibratorio, por lo que puede darse en los diferentes estados de la materia: sólido, líquido y gaseoso. Un ejemplo de este movimiento se da al caer una gota de agua en un espacio acuático en reposo.

RECURSOS PARA DOCENTES

Artículo “Dinámica”

Artículo destacado donde se diferencia la cinemática de la dinámica.

VER

Artículo “Lanzamiento vertical”

Artículo destacado con más información sobre este movimiento inverso a la caída libre.

VER

La revolución tecnológica en los medios masivos

A partir de la segunda mitad del siglo XX los medios de comunicación han logrado avances que los han llevado a ser parte de una auténtica revolución cultural. La tecnología ha sido un factor clave en este cambio, introduciendo modificaciones en el modo en que nos comunicamos.

Nos levantamos y encendemos el televisor. Mirando el noticiero nos enteramos de una catástrofe natural en Indonesia y el estreno de una nueva película en Estados Unidos, al mismo tiempo que nos informan del clima en la calle. Vamos a la computadora y abrimos nuestro correo electrónico, recibimos un boletín informativo de una página de internet de viajes turísticos y lo leemos mientras chateamos con nuestro amigo de España. Nos pide que le mostremos la nueva remera que compramos y le sacamos una foto con el celular y la subimos a internet a través de facebook para que la conozcan cientos de personas. Al mismo tiempo proyectamos nuestros planes para el fin de semana y averiguamos el precio de una camisa en una página de ventas, contrastando el precio con otras 5 o 6 páginas de otros comercios.

En el texto anterior vemos como una rutina, tan parecida en algunas acciones a la nuestra, ha influenciado de forma determinante en nuestras vidas sin que nos demos cuenta. Primero definamos a qué nos referimos con “comunicación de masas”. Se trata de la interacción entre un emisor único y un receptor masivo, que es el destino al que se transmite nuestro mensaje. Pensemos en la forma en que llegan a nuestros ojos noticias de lugares distantes u ofertas para que adquiramos nuevos productos, además de nuestra posibilidad de ser quienes generemos algo para que sea visto a través de otros ojos en todo el mundo y entenderemos porque los medios masivos de comunicación son un tema tan en boga en la actualidad.

¿Sabías qué...?
El Día Mundial de las Telecomunicaciones se celebra el 17 de mayo.

A través de la pantalla

Los avances tecnológicos en torno al descubrimiento de los electrones, las ondas electromagnéticas y los circuitos eléctricos y electrónicos posibilitaron la aparición de uno de los descubrimientos más revolucionarios del siglo XX: la televisión. Referirnos a la televisión es referirnos al medio masivo por excelencia, al cual se le puede aplicar respecto a su función una fórmula aplicada con otros medios posteriores: formar, informar y entretener al público. Desde su creación en el año 1926 hasta la actual “Smart TV” o “televisión inteligente”, la influencia de la televisión como transmisora de imágenes y generadora de cultura ha sido un elemento determinante en la cultura masiva.

Los avances generados por la televisión desplazaron al uso de la radio que, a pesar del uso de transistores y las mejores auditivas, fue lentamente reemplazada a finales de la década del ´60. Asimismo, la audiencia fue modificando sus hábitos en función de una televisión que también modificaba el formato de su contenido: así lo manifiesta el intelectual italiano Umberto Eco, que señala la existencia de una paleotelevisión y una neotelevisión. En la paleotelevisión existe una cobertura formal de la noticia, que tiene que ser presentada con la mayor elegancia ante la audiencia, introduciendo figuras reconocidas que tienen la finalidad de entretener sin poner en evidencia el artificio de la puesta en escena ante las cámaras. Por otro lado, la neotelevisión es autoreferencial, a menudo fomentando poner en evidencia el artificio de la puesta en escena televisiva. Es decir, si antes se procuraba ocultar los artefactos con los que se daba lugar al programa televisivo, como cámaras o micrófonos, en la neotelevisión se abandona todo decoro y esto aparece como parte de la escena. Lo mismo ocurre con la actitud del público: mientras que en la paleotelevisión el televidente tenía una nula participación, disfrutando del espectáculo que se le presentaba, en la neotelevisión el espectador participa de forma directa sobre el contenido del programa a través de incentivos.

La irrupción del zapping con el control remoto, que le daba al espectador el poder de cambiar el canal de la TV, obligó a la neotelevisión a captar al receptor utilizando todas las herramientas posibles, dando lugar a programas basados íntegramente en su participación a través de concursos, encuestas o entretenimientos. Por otro lado, el trabajo de producción de la imagen que veía el televidente era elaborada a través de un cuidadoso trabajo de puesta en escena, dando lugar a que los límites entre “fantasía” y “ficción” comenzaran a desdibujarse en los informativos. Un caso emblemático de la espectacularización de la imagen a través de un informativo se puede ver en las transmisiones que se hicieron de la Guerra del Golfo en 1991: la elección de la escenografía, el montaje y el trabajo sobre el sonido fueron una herramienta de manipulación diseñada por personalidades hollywoodenses para generar un discurso paralelo y fragmentario de un conflicto bélico que buscaba el consenso de la opinión pública.

Rutas de información

Los avances en los medios de transmisión lograron que el caudal de información fuera mayor y de mayor calidad visual. Tal es el caso de la fibra óptica, un invento revolucionario que utiliza la luz para transmitir información a través de conductos con sensores. Las ventajas de este medio -que tendría su primera transmisión telefónica a finales de la década del ´70-se observarían en la mayor capacidad que otorga el ancho de banda en las frecuencias ópticas, la inmunidad tanto en transmisiones cruzadas como en interferencia estática, la resistencia a climas extremos y la seguridad en su instalación y mantenimiento debido a que el material utilizado (fibra de vidrio y plástico) no es conductor de electricidad.

Para tener una idea aproximada de la revolución tecnológica que implicó el uso de la fibra óptica hay que tener en cuenta que en un cable con sólo 8 fibras ópticas se puede transmitir la misma cantidad de comunicaciones que 60 cables de 1623 pares de cobre o 4 cables coaxiales de 8 tubos. Su tamaño también resulta sumamente versátil para su manipulación, contando con un revestimiento de tan sólo 125 micras de diámetro. Si comparamos utilizando la relación tamaño/cantidad entre un cable tipo TAB con un grosor de 8 centímetros, y uno de fibra óptica del mismo tamaño, veremos que el primero logra la transmisión de 2400 llamadas simultaneas mientras que el segundo logra 30.720 llamadas simultaneas.

El mundo conectado

Los avances en la tecnología informática y la comunicación dieron lugar al nacimiento de Internet, herramienta que surgió como una necesidad militar a mediados de la década del ´50 pero que daría lugar a una auténtica revolución cultural y comunicacional. La primera incursión ocurrió en el año 1969 con la conexión entre la Universidad de California y la Universidad de Stanford, que debido a su éxito llevo a la creación de Arpanet a comienzo de los años ´70, una red interuniversitaria que precedió a Internet y dio el puntapié para la aparición del correo electrónico. En el año 1974 se crea el TCP de VintonCerf y Bob Kahn, luego reemplazado por el TCP/IP, que quiere decir “Protocolo de Control de Transmisión / Protocolo de Internet”, un conjunto de protocolos de red basados en Internet que posibilitan la transmisión de datos. La popularización de estos protocolos, que son la base de Internet como la conocemos hoy en día, se debe a que el TCP/IP no correspondía a una empresa concreta y el Departamento de Defensa de los Estados Unidos autorizaba su uso a cualquier fabricante, dando lugar a que terminaran adoptando el TCP/IP y abandonaran sus propios códigos.

Hacia el año 1987 el número de servidores instalados promediaba los 10.000 y en el año 1989 el número de computadoras conectadas ascendía a las 100.000, dando lugar a que el número de investigaciones nos acerque a Internet como la conocemos hoy en día. Un avance significativo se dio gracias al británico Timothy Berners-Lee, que desarrolló la famosa World Wide Web (WWW) en un proyecto enmarcado en la investigación nuclear. Su objetivo era que se pudiera efectuar un intercambio efectivo de información entre los miembros del proyecto, facilitando la transferencia de archivos de textos, gráficos, sonidos y videos, vinculándose entre sí.

Este avance dio la posibilidad de que se gestaran aplicaciones interactivas sobre cualquier navegador de la web (browser), que eran ubicados en el Localizador Universal de Recursos (cuya traducción sería URL). Esta terminología también sería parte del proceso conocido como globalización, a través de la universalización de un lenguaje vinculado directamente a Internet que figura en todos los idiomas. Algunos casos serían el uso de la @, http, mail, PC, URL, browser o password. Hacia mediados de los ´90 Internet se transformó en una utilidad incorporada por casi 50 millones de usuarios alrededor del mundo que ahora contaban con un acceso a un correo electrónico consolidado, el chat, el comercio electrónico (e-commerce) y la multiplicación de páginas de empresas vinculadas a Internet a través del “.com”.

¿Sabías qué...?
Las telecomunicaciones se desarrollaron en la primera mitad del siglo XIX con el telégrafo eléctrico.

Al alcance de la mano

A pesar de que la invención de un modelo de teléfono celular ocurrió en 1947, recién fue un modelo portátil en el año 1983. Está tecnología se basa en la combinación de una red de estaciones transmisoras-receptoras de radio y centrales telefónicas de conmutación que posibilitan la comunicación entre terminales telefónicas móviles o entre ellas y teléfonos de la red tradicional. Si bien su principal función es la comunicación de voz como el teléfono tradicional, sus funcionalidades se han expandido drásticamente a comienzos del siglo XXI con la incorporación de cámara de fotos, reproducción multimedia o sistema operativo para dispositivos móvil. El potencial de esta herramienta móvil como medio de transmisión impactó en la sociedad, llevando a que la captura “del momento” sea parte de la vida social del individuo a través del uso de estas aplicaciones. La generación de información y datos susceptibles de ser utilizados en los medios aumento drásticamente, dando lugar a individuos conectados que “suben” constantemente información a Internet a través de distintos canales, sin necesidad de estar conectados a un ordenador fijo.

El teléfono celular

El teléfono celular o móvil se ha convertido en el símbolo de los avances tecnológicos recientes y en un artículo de consumo de demanda creciente con amplias posibilidades.

Se trata de un dispositivo portátil que emite ondas electromagnéticas y que, gracias a su conexión a una red celular, permite al usuario su utilización en cualquier punto cubierto por esa red. El sistema de telefonía móvil avanzada fue empleado por primera vez en 1983 en Estados Unidos.

De forma muy esquemática, un teléfono móvil es un aparato de radio extremadamente sofisticado. Una radio de onda corta, por ejemplo, permite que dos personas se comuniquen utilizando la misma frecuencia, de manera que sólo puede hablar una persona a la vez. Un teléfono móvil es un dispositivo dual: emplea una frecuencia para hablar y otra para escuchar, de manera que dos usuarios pueden hablar al mismo tiempo.

El teléfono celular se utilizó por primera vez en Estados Unidos en 1983.

Estas comunicaciones son, además, de doble sentido entre el teléfono móvil y las estaciones base. Estas estaciones resultan necesarias para captar correctamente la señal, puesto que la comunicación se realiza a baja potencia (alrededor de 2 vatios para estaciones base pequeñas). Las emisiones a baja potencia implican un bajo consumo de energía del teléfono, lo que permite que las baterías sean pequeñas y recargables, reduciendo considerablemente el tamaño del aparato. Los sistemas actuales operan con frecuencias entre 800 y 1 800 MHz.

Red de comunicaciones

Para posibilitar las comunicaciones entre teléfonos móviles distantes se requiere una estructura o red con muchas estaciones base de forma que cada una de ellas ofrezca una cobertura para la comunicación sobre un área geográfica determinada. Para ello, se divide territorialmente un área (una ciudad, por ejemplo) en sectores de unos pocos kilómetros cuadrados de superficie (células). En cada una se emplaza una estación base, equipada con una antena de comunicaciones que soporta un cierto número de llamadas al mismo tiempo. A medida que aumenta el número de usuarios se amplía también el número de estaciones para satisfacer el incremento de llamadas. Los operadores de telefonía disponen en cada ciudad de una oficina central desde donde gestionan y controlan todas las conexiones telefónicas y las estaciones base de la región.

Cuando se efectúa una llamada a un teléfono móvil, la central trata de localizarlo, cosa que consigue si el teléfono está conectado, activándolo en cada célula de la región hasta que responde. Una vez la estación base y el teléfono determinan el canal a emplear en la comunicación, se puede empezar la conversación. A medida que el usuario del teléfono se desplaza, alejándose de una célula y acercándose a otra, las dos estaciones base correspondientes detectan los cambios en la intensidad de la señal. Entonces se coordinan entre sí, por mediación de la central y se relevan sin que los usuarios perciban el cambio de frecuencia. En los sistemas modernos, la red mantiene los datos de la ubicación de cada teléfono y conoce dónde se encuentra si desea localizarlo. A medida que se desplaza, el teléfono detecta los cambios de canal y los compara con los de la nueva célula. Cuando no encuentra canales para escuchar, está fuera de cobertura y, en la pantalla del móvil, aparece entonces el mensaje que lo indica.

En la actualidad existen los teléfonos inteligentes o smartphones, teléfonos capaces de realizar prácticamente todas las funciones de una computadora.

Identificadores

Para cargar el importe de la llamada e impedir usos fraudulentos cuando se efectúa una llamada, además de las claves de acceso al aparato se transmiten dos identificadores: el Número de Identificación Móvil (un número de 10 dígitos derivado del número de teléfono) y el Número de Serie Electrónico (un número de 32 bits preprogramado).
El sistema de mensajes cortos (SMS) es uno de los grandes éxitos de la telefonía móvil. Permite enviar y recibir mensajes de hasta 160 caracteres, en tiempo real, a otros teléfonos móviles a un coste reducido. Los teléfonos móviles digitales emplean una tecnología similar pero comprimen la voz en unos y ceros. Ello permite que el espacio ocupado por la señal analógica se pueda ahora concentrar entre 3 y 10 llamadas telefónicas. Además, estos aparatos ofrecen servicios de correo electrónico y otros.

Hoy en día, los teléfonos celulares forman parte de la vida cotidiana de la mayoría de las personas.

Conceptos fundamentales de cinemática: trayectoria, espacio y desplazamiento 

Trayectoria y desplazamiento

Se denomina trayectoria al camino recorrido por un móvil a lo largo del tiempo. Es decir, la trayectoria es el conjunto de las sucesivas posiciones ocupadas por el móvil. La medida de la longitud de esa trayectoria es lo que se denomina espacio. Así pues, el espacio es una magnitud escalar.

Es importante no confundir estos dos conceptos con el de desplazamiento. El desplazamiento de un móvil desde un punto P0 a un punto P1 es un vector que tiene su origen en el punto P0 y su extremo en el punto P1. El desplazamiento es independiente de la trayectoria: sólo depende del punto inicial y final.

Ejemplo

En relación a la trayectoria, un movimiento puede ser rectilíneo, si su trayectoria es una línea recta, o curvilíneo, si es una curva. Entre los movimientos curvilíneos, tiene especial interés el movimiento circular, en el que el móvil se mueve describiendo una circunferencia.

Sistemas de referencia

Para describir un movimiento es preciso tener un sistema de referencia, es decir, unos ejes coordenados respecto a los cuales se pueda fijar la posición del móvil en cada instante.

Siempre se puede elegir el sistema de referencia a voluntad, de manera que lo escogeremos en función de las características del problema. Por ejemplo, para describir un movimiento rectilíneo lo más cómodo es hacerlo respecto a un eje que coincida con la dirección de ese movimiento, y para describir un movimiento circular lo más cómodo es tomar unos ejes que se corten en el centro de la circunferencia que recorre el móvil.

Un sistema de referencia puede ser fijo o móvil. Si queremos describir el movimiento de un pasajero que camina por el pasillo de un vagón de tren mientras éste avanza en línea recta a 100 km/h, puede ser útil tomar un eje de abscisas ligado al vagón y, respecto a ese eje, diríamos que el pasajero se mueve, por ejemplo, a 5 km/h; pero podría interesarnos más tomar un eje de abscisas ligado a la vía del tren, y respecto a ese sistema de referencia la velocidad del pasajero sería de 105 km/h. De hecho, los ejes ligados a la vía tampoco son fijos, ya que la propia Tierra también se mueve. Así pues, en realidad todos los movimientos son relativos. Pero en los problemas de cinemática corrientes, cuando no se especifica otra cosa, se sobreentiende que el movimiento se ha referido a un sistema O(xyz) ligado a la Tierra y, por lo tanto, en reposo con respecto a ésta.

Si describimos un movimiento respecto a dos sistemas de referencia distintos, la ecuación de la curva de la trayectoria será distinta y, si además se trata de dos sistemas de referencia que están en movimiento relativo uno respecto a otro, también la propia curva será en general distinta.

Respecto a un sistema de referencia, la posición del móvil en cada instante está fijada por su vector de posición, que es variable en función del tiempo. 

Si expresamos ese vector mediante sus componentes, éstas también serán funciones del tiempo:

Para cada valor de t tendremos la posición del móvil en ese instante y la trayectoria es la curva que describe el extremo del vector

Ejemplo

El vector desplazamiento desde el punto P 0 al punto P se puede expresar como la diferencia de dos vectores: el vector de posición de P y el vector de posición de P 0, esto es, como

Conceptos fundamentales de cinemática: aceleración 

Cuando un automóvil aumenta su velocidad decimos que está acelerando, y si ese aumento de velocidad se produce en un espacio de tiempo muy corto decimos que el automóvil ha acelerado muy deprisa. La aceleración es, pues, una variación de la velocidad por unidad de tiempo.

Puede ser positiva o negativa, produciendo un aumento o una disminución de la velocidad. En el caso de un movimiento curvilíneo, la aceleración produce una variación del módulo y de la dirección del vector velocidad. Podemos definir de forma rigurosa la aceleración diciendo que es la velocidad de la velocidad. Es decir, que la aceleración representa para el vector velocidad lo mismo que la velocidad para el vector de posición.

Partiendo de esta idea, definiremos la aceleración media de un móvil entre dos puntos de su trayectoria P0 y P (o, lo que es lo mismo, entre dos instantes t0 y t) de forma análoga a como definimos la velocidad media, es decir, como:

Ejemplo

A partir de esta definición de aceleración media, podemos definir la aceleración instantánea mediante un paso al límite similar al que aplicamos para definir la velocidad instantánea. Si el punto P está próximo al punto P0, podemos escribir:

Cuando ∆t→0 tiende a cero, atiende hacia un vector aplicado en el punto P0. Ese vector es la aceleración instantánea en P0.

Hodógrafa

Cuando un móvil M recorre una determinada trayectoria, en cada punto de ésta tendremos un vector velocidad. Por ejemplo, en el punto P0 será v(t0).

Ejemplo

Tomamos un punto O  y colocamos en él los vectores velocidad correspondientes a todos los puntos de la trayectoria de M. Los extremos de esos vectores dibujan una curva que es la hodógrafa del movimiento.

Ejemplo

La hodógrafa sería la trayectoria de un móvil M  cuyo vector de posición fuese v(t). El vector velocidad del móvil M  en el punto P  de la hodógrafa coincide con el vector aceleración en el punto P correspondiente de la trayectoria del móvil M, lo que justifica pensar la aceleración como la velocidad de la velocidad.

Polo de la hodógrafa

Punto fijo O’ en el que se sitúan vectores equipolentes a los vectores velocidad del movimiento de un punto material para dibujar la curva hodógrafa.

Dimensiones y unidades de la aceleración

La aceleración es una velocidad dividida por un tiempo, por lo que, como [v] = [L]·[T]-1, las dimensiones de la aceleración serán las de una longitud dividida por un tiempo al cuadrado[a] = [L]·[T]-2. En el Sistema Internacional y en el técnico se expresa en m/s2, mientras que en el sistema CGS se mide en cm/s2.

Conceptos fundamentales de cinemática: movimiento uniforme

Sólo existe un movimiento en el que el vector velocidad es invariable en módulo, dirección y sentido: el movimiento rectilíneo uniforme (o simplemente movimiento uniforme), que es el que tiene un móvil que se mueve en línea recta con velocidad constante.

Si tenemos dos puntos, P0 y P, de la trayectoria que recorre un móvil con movimiento uniforme y tomamos esa recta como eje x, esos puntos quedarán fijados con una única coordenada: su abscisa. Los vectores \vec{v}(t_{0}) y \vec{v}(t) serán:

\vec{v}(t_{0}) = x_{0}\cdot i y \vec{v}(t) = x\cdot i

y la velocidad media entre P0 y P será:

\vec{v}_{m}=\frac{\vec{v}(t)-\vec{v}(t_{0})}{t-t_{0}}=\frac{x-x_{0}}{t-t_{0}}\cdot i

Como el vector velocidad es constante, podemos escribir:

v=\frac{x-x_{0}}{t-t_{0}}

Donde:

x=x_{0}+v(t-t_{0})

Si empezáramos a medir los tiempos cuando el móvil se halla en el punto P0, sería t0 = 0, y por lo tanto, x = x0 + v·t. Y si además tomásemos el origen de abscisas en el punto P0, se reduciría a x = v·t.

Caída libre

Es el movimiento que posee un cuerpo que únicamente se encuentra sometido a la acción de la fuerza de la gravedad.

Fuerza de la gravedad

Es una fuerza de atracción debida a la masa de los cuerpos. Obedece a la Ley de gravitación universal de Newton.

Instante inicial de un movimiento

Instante en el que empieza a contarse el tiempo en la descripción de un movimiento, es decir, instante en el cual es t = 0. Asimismo, se denomina velocidad inicial a la velocidad que tiene el móvil en ese instante y aceleración inicial a su aceleración en ese mismo instante.