CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES │ ¿qué aprendimos?

OPERACIONES CON DECIMALES

Con los números decimales podemos realizar las mismas operaciones aritméticas que con los números enteros. Para la suma y la resta, las cifras deben tener la misma cantidad de decimales y las comas deben estar alineadas en una línea vertical. En la multiplicación, el resultado tendrá el total de decimales que tengan los factores. Existen tres posibles casos para dividir con decimales: decimal entre entero, entero entre decimal y decimal entre decimal.

Los decimales son parte de nuestra vida cotidiana, por ejemplo, los precios de los artículos vienen por lo general expresados en cifras decimales.

OPERACIONES COMBINADAS

Con frecuencia, en matemática debemos realizar cálculos que combinan diferentes operaciones algebraicas, así como varios tipos de números, y en ocasiones se requiere el uso de signos de agrupación que determinan las prioridades de dichas operaciones. Debemos resolver primero las operaciones dentro del paréntesis, luego las del corchete y, por último, las de las llaves. Es importante recordar que las multiplicaciones y las divisiones se resuelven primero que las sumas y las restas.

Los signos de agrupación sirven para expresar el orden de las operaciones. Para aplicar propiedades como la asociativa y la distributiva podemos usar paréntesis.

ECUACIONES

Las ecuaciones son expresiones algebraicas compuestas por miembros separados por una igualdad. Los miembros contienen términos y al menos una variable, también llamada incógnita. Por lo general, para obtener el valor de las incógnitas debemos realizar despejes: proceso que consiste en aplicar en ambos miembros de la ecuación la operación opuesta del término o coeficiente que se desea despejar.

Las ecuaciones son expresiones que deben contener una igualdad y al menos una variable o incógnita.

INECUACIONES

Son expresiones que muestran relaciones de desigualdad por medio de símbolos como <, >, o . Deben contener por lo menos una variable, y la solución la representamos a través de un intervalo de valores que satisfacen la desigualdad. Los despejes en las inecuaciones siguen las mismas reglas que en las ecuaciones pero, además, si se multiplica o divide por un número negativo, debemos cambiar el sentido de la desigualdad.

Las inecuaciones se pueden utilizar para plantear situaciones cuya variable está limitada por algún rango de valores, por ejemplo, la rapidez de un vehículo.

CAPÍTULO 2 / TEMA 2

OPERACIONES COMBINADAS

En ocasiones necesitamos efectuar cálculos que combinan varios tipos de números y, por lo tanto, diferentes tipos de operaciones. Para estos casos lo más importante es saber las jerarquías o el orden en el que debemos resolverlos, y para eso están los signos de agrupación. Aprendamos cuáles son y cómo usarlos.

SIGNOS DE AGRUPACIÓN

En matemática, los signos de agrupación hacen referencia a los paréntesis “( )”, corchetes “[ ]” y llaves “{ }” que empleamos para saber el orden o prioridad en el que realizamos las operaciones. En este sentido, existe una convención respecto a la jerarquía de estos signos:

  • En primer lugar, resolvemos los cálculos que se encuentran entre paréntesis “( )”.
  • En segundo lugar, realizamos los cálculos que están agrupados dentro de los corchetes “[ ]”.
  • Finalmente, hacemos las operaciones que están dentro de las llaves “{ }”.

¿Sabías qué?

En una ecuación no deberían aparecer corchetes sin la presencia de paréntesis, ya que los paréntesis tienen la prioridad en el orden de operaciones.

Operaciones combinadas en la calculadora

Muchas calculadoras u hojas de cálculo no utilizan los corchetes ni las llaves para jerarquizar el orden de operaciones combinadas y solo aplican los paréntesis para indicar qué operaciones se realizan primero. Por ejemplo, si deseamos resolver la operación:

\sqrt{\frac{\left ( 27-15 \right )\times 8}{\left [ (11+39)-(47-19) \right ]\times 6}}

El modo de introducir esta operación en algunas calculadoras (con entrada de datos SVPAM) sería:

Como observamos, hay diferentes niveles de jerarquía en los paréntesis, que en este caso, los denotamos por colores.

En las calculadoras también debemos emplear los signos de agrupación para indicar el orden de las operaciones. El uso incorrecto de los paréntesis, o su omisión cuando se necesiten, arrojará resultados erróneos. Por ejemplo, la operación (12 − 10) / 4 da como resultado 0,5; sin embargo, si obviamos los paréntesis y solo escribimos 12 − 10 / 4, el resultado será 9,5.

METODOLOGÍA PARA RESOLVER PROBLEMAS COMBINADOS

Cuando se presentan ejercicios que combinan diversas operaciones, así como diferentes tipos de números, es recomendable que sigamos los siguientes pasos:

1. Identificamos los signos de agrupación que aparecen en el ejercicio para saber el orden en el que vamos a resolver los términos. En este ejemplo tenemos paréntesis, corchetes y llaves.

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( -\frac{9}{4}\times 7,81+22,06 \right ) \right ] \right \}=

2. Realizamos primero las operaciones que se encuentran dentro del paréntesis.

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( {\color{Red} -\frac{9}{4}\times 7,81+22,06} \right ) \right ] \right \}=

Multiplicación y división primero

Si en una operación tenemos dos o más términos que se suman o restan y no hay paréntesis, pero a su vez cada término tiene una multiplicación o una división, primero hacemos la multiplicación o la división antes de hacer la suma o la resta.

Multiplicamos la fracción por 7,81 ya que esta operación tiene prioridad sobre la suma. Las multiplicaciones se resuelven de manera lineal, así que basta con multiplicar −9 × 7,81, y dividir el producto de esta multiplicación entre el denominador de la fracción (4).

-9\times 7,81 = -70,29

-70,29\div 4=-17,5725

Luego realizamos la suma de este resultado con 22,06. Como se trata de una suma de números con signos diferentes, empleamos una regla de los signos: ambos números se restan y se mantiene el signo del número con mayor valor absoluto.

(-17.5725)+ (22,06)=4,4875

3. Una vez que realizamos todas las operaciones dentro del paréntesis, lo eliminamos y agregamos el resultado obtenido. Luego seguimos con las operaciones dentro de los corchetes:

\frac{1}{12}\times \left \{ -36\times \left [ {\color{Blue} \frac{5}{3}}{\color{Blue} \times 4,4875} \right ] \right \}=

Multiplicamos el número decimal por 5 y el producto lo dividimos entre 3.

5\times 4,4875=22,4375

22,4375\div 3\approx 7,48

4. Eliminamos los corchetes y colocamos el resultado obtenido. A continuación, realizamos la operación dentro de las llaves:

\frac{1}{12}\times \left \{{\color{Green} -36\times 7,48} \right \}=

Multiplicamos el número negativo por el número decimal. Aplicamos la regla de los signo para la multiplicación: (−)(+)=(−).

-36\times 7,48 = -269,28

5. Por último, resolvemos la multiplicación. En este caso solo tenemos que multiplicar el resultado anterior por la fracción 1/12, lo que es igual a solo dividir entre 12 el número −269,28.

1\times -269,28=-269,28

-269,28\div 12=-22,44

6. Escribimos el resultado:

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( -\frac{9}{4}\times 7,81+22,06 \right ) \right ] \right \}=\boldsymbol{-22,44}

En ocasiones no se utilizan todos los signos de agrupación y se trabaja solo con paréntesis que tienen diferentes jerarquías como podemos ver en la parte superior de la imagen. En este caso, debemos resolver primero las operaciones que están dentro de los paréntesis más internos hasta terminar con los paréntesis externos.

EJERCICIOS COMBINADOS

Los ejercicios combinados pueden involucrar diferentes tipos de números y además varias operaciones, y de ser necesario, el orden para realizarlos viene determinado por los signos de agrupación.

Si los términos dentro de un signo de agrupación contienen diferentes tipos de números, por ejemplo, fracciones, decimales, potencias o radicales; será necesario que realicemos primero una transformación para unificar el tipo de número antes de resolver.

– Ejemplo:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ( \frac{9}{7}-\frac{2}{3} \right ) \right ]+\sqrt{4} \right \}=

  • Primero resolvemos la operación dentro de los paréntesis:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ({\color{Red} \frac{9}{7}-\frac{2}{3} }\right ) \right ]+\sqrt{4} \right \}=

En este caso, es una resta de fracciones:

\frac{9}{7}-\frac{2}{3}=\frac{27-14}{21}=\frac{13}{21}

  • Eliminamos los paréntesis y colocamos el resultado. Luego resolvemos la operación dentro de los corchetes:

\left \{ \frac{8}{12}\left [ {\color{Blue} 5^{3}-\frac{13}{21}} \right ]+\sqrt{4} \right \}=

Resolvemos la potencia:

5^{3}=5\times 5\times 5 = 125

Después resolvemos la resta:

\frac{125}{1}-\frac{13}{21}=\frac{2.625-13}{21}=\frac{2.612}{21}

Expresamos la fracción como su número decimal equivalente por medio de una división entre su numerador y denominador:

2.612\div 21=124,38

  • Eliminamos lo corchetes y escribimos el nuevo resultado. Ahora, resolvemos las operaciones dentro de las llaves:

\left \{ {\color{Green} \frac{8}{12}\times 124,38} +\sqrt{4}\right \}=

Tenemos dos operaciones dentro de las llaves, y como las multiplicaciones tienen prioridad sobre las sumas, hacemos la multiplicación de la fracción con el número decimal primero:

8\times 124,38=995,04

995,04\div 12=82,92

Después realizamos la suma con el radical:

\left \{ 82,92+\sqrt{4} \right \}=

Resolvemos la raíz cuadrada. En este caso, es un cuadrado perfecto y la raíz es exacta.

\sqrt{4}=2

Finalmente sumamos:

82,92+2=84,92

  • Por último, escribimos el resultado:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ( \frac{9}{7}-\frac{2}{3} \right ) \right ]+\sqrt{4} \right \}=\boldsymbol{84,92}

Las operaciones básicas utilizadas en aritmética son la suma, la resta, la multiplicación y la división. Sin embargo, podemos encontrar otras operaciones, como la potenciación, que en esencia es una multiplicación sucesiva de factores iguales. Por ejemplo, si queremos conocer el resultado de 23, solo efectuamos la operación 2 x 2 x 2 = 8.

¡A practicar!

Determina la solución de los siguientes ejercicios combinados.

  • \frac{8}{9}\left \{ -14,7+\frac{6^{3}}{4}\left [ 3^{2}+\sqrt{9}\times \left ( 6,5-\frac{13}{4} \right ) \right ] \right \}=
Solución

\frac{8}{9}\left \{ -14,7+\frac{6^{3}}{4}\left [ 3^{2}+\sqrt{9}\times \left ( 6,5-\frac{13}{4} \right ) \right ] \right \}=\boldsymbol{886,9\widehat{3}}

  • \left \{ \frac{1}{3}\times \frac{7}{8}+\sqrt{4}\left [ 2^{3}-\frac{21}{9}\left ( 0,75+\frac{3}{2} \right ) \right ] \right \}=
Solución

\left \{ \frac{1}{3}\times \frac{7}{8}+\sqrt{4}\left [ 2^{3}-\frac{21}{9}\left ( 0,75+\frac{3}{2} \right ) \right ] \right \}=\boldsymbol{5,79}

  • 2\left \{5^{3} \left [ \frac{1}{5}\left ( 8,36-\sqrt{25} \right )+3 \right ] \right \}=
Solución

2\left \{5^{3} \left [ \frac{1}{5}\left ( 8,36-\sqrt{25} \right )+3 \right ] \right \}=\boldsymbol{918}

RECURSOS PARA DOCENTES

Artículo “¿Cómo realizar ejercicios combinados con fracciones?”

Este recurso describe por medio de ejemplos el procedimiento para realizar operaciones combinadas entre números naturales, fracciones y potencias.

VER

Artículo “Los números irracionales”

El enlace que se presenta explica las características y propiedades de los números irracionales, así como ejemplos de esta categoría de números.

VER

Artículo “Resolución de cálculos combinados con paréntesis, corchetes y llaves”

Con este material podrá expandir la práctica sobre las operaciones combinadas y sus respectivos signos de agrupación.

VER